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Abstract: N,N-dimethylglycine (DMG) is a naturally occurring compound being widely used as
an oral supplement to improve growth and physical performance. Thus far, its effects on human
skin have not been described in the literature. For the first time, we show that N,N-dimethylglycine
sodium salt (DMG-Na) promoted the proliferation of cultured human epidermal HaCaT keratinocytes.
Even at high doses, DMG-Na did not compromise the cellular viability of these cells. In a scratch
wound-closure assay, DMG-Na augmented the rate of wound closure, demonstrating that it promotes
keratinocyte migration. Further, DMG-Na treatment of the cells resulted in the upregulation of the
synthesis and release of specific growth factors. Intriguingly, DMG-Na also exerted robust anti-
inflammatory and antioxidant effects, as assessed in three different models of human keratinocytes,
mimicking microbial and allergic contact dermatitis as well as psoriasis and UVB irradiation-induced
solar dermatitis. These results identify DMG-Na as a highly promising novel active compound to
promote epidermal proliferation, regeneration, and repair, and to exert protective functions. Further
preclinical and clinical studies are under investigation to prove the seminal impact of topically applied
DMG-Na on relevant conditions of the skin and its appendages.

Keywords: N,N-dimethylglycine sodium salt; DMG-Na; anti-inflammatory; dermatitis models;
human epidermal keratinocytes; HaCaT

1. Introduction

N,N-dimethylglycine (DMG) is part of the endogenous homocysteine pathway and is
found in several food sources and plants [1,2], and the sodium salt of N,N-dimethylglycine
(DMG-Na) has been widely used as a food supplement in animal husbandry to increase
the feed/weight ratio, induce fattening, or boost physical performance [2–11]. Moreover,
DMG is also approved as a safe, non-fuel food supplement for human application [2,12,13].
Besides these effects, it has also been proposed that DMG and its sodium salt may function
as a source of glycine for glutathione synthesis, and hence may improve cellular and tissue
antioxidant capacities. Indeed, in various animal studies that model pathologies of, e.g.,
the gastrointestinal tract [14–16], liver [17,18], skeletal muscle [19–21], and peripheral neu-
rons [22], both DMG and its sodium salt were shown to reduce oxidative stress damage by
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exhibiting scavenger activities against excess free radicals and to improve the utilization of
oxygen [14–23]; hence, they can be conductive to the body’s redox status and its regenera-
tion and repair. Moreover, DMG, acting as a methyl donor, has been suggested to improve
immunity and enhance immune responses [24–26].

Despite these beneficial effects for maintaining the homeostasis of the body, to our
knowledge, so far there is no report in the literature on the putative effects of DMG or
its salt on the human skin, the largest organ of the body with constant cellular and tissue
regeneration–rejuvenation–remodeling [27–29], and continuous exposition to stressor chal-
lenges from the environment [30–33]. Therefore, in this current proof-of-concept study, we
aimed at assessing the effects of N,N-dimethylglycine sodium salt on different biological
functions (proliferation, migration, growth factor synthesis, inflammatory processes) of
cultured human epidermal keratinocytes. Among the available, quite versatile human skin
models, e.g., in vitro epidermal cell cultures, reconstructed skin equivalents, and ex vivo
full-thickness skin organ cultures [34–37], among which all have numerous advantages but
also shortcomings, we carried out the current study on the human HaCaT keratinocyte cell
line, as it is one of the most widely used cell lines in the field of experimental dermatology.
Indeed, human epidermal HaCaT keratinocytes, cultured either in vitro or in reconstructed
skin equivalents, have been extensively employed to model, e.g., keratinocyte prolifer-
ation and migration [38–40], the complex processes of re-epithelization in skin wound
healing [41,42], growth factor synthesis and release [43,44], epidermal senescence and
aging [45,46], as well as numerous inflammatory conditions [47–49].

Here, we report for the first time that DMG-Na promotes proliferation, migration, and
the release of specific growth factors from epidermal keratinocytes. Moreover, we provide
the first evidence that DMG-Na exerts profound anti-inflammatory and antioxidant effects,
as assessed in three different human keratinocyte models, mimicking microbial and allergic
contact dermatitis [50–52], inflammatory skin diseases such as psoriasis [36,53], and UVB
irradiation-induced solar dermatitis [54–56].

Therefore, DMG-Na may constitute a novel, promising active compound in various
skin-targeting topical formulations for promoting epidermal homeostasis, protection, re-
generation, and repair. Furthermore, our findings provide new insights on the potential
therapeutic applications of DMG-Na in the management of certain inflammatory conditions
of the skin, and possibly even its appendages.

2. Results
2.1. DMG-Na Promotes Viability, Cell Proliferation, Migration, and the Release of Specific Growth
Factors in Human Epidermal Keratinocytes
2.1.1. DMG-Na Maintains Cellular Viability of Human Epidermal HaCaT Keratinocytes

First, the effects of three different concentrations of DMG-Na (0.00005%, 0.0005%,
and 0.005%) on the cellular viability of human HaCaT keratinocytes were assessed by the
colorimetric MTT assay in multiple independent experiments. Notably, even at the highest
concentration (0.005%), DMG-Na did not compromise the cellular viability of the cells up to
72 h of treatment (Figure 1A). Instead, DMG-Na appeared to (at least tendentially) increase
the viable cell number, especially at the 72 h time point. These findings suggested that
DMG-Na may stimulate the proliferation of human HaCaT keratinocytes.

2.1.2. DMG-Na Increases the Number of Ki67-Positive Cells and Upregulates the
mRNA-Level Expression of Ki67

In order to investigate whether DMG-Na has pro-proliferative effects, fluorescence
immunolabeling and qRT-PCR studies assessing the expression of the nuclear marker and
indicator of cellular proliferation, Ki67, were performed [57]. Notably, DMG-Na increased
(albeit only tendentially, due to the large standard error) the number of Ki67-positive cells
after both 24 and 48 h of treatment (Figure 1B,C and Supplementary Figure S1). Moreover,
0.0005% and 0.005% DMG-Na significantly (p < 0.05, ANOVA) upregulated the mRNA-
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level expression of Ki67 after 24 h of administration (Figure 1D). These data collectively
further argued for the proliferation-stimulating action of DMG-Na.
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Figure 1. Effects of DMG-Na on the cellular viability, proliferation, and migration of human epider-
mal HaCaT keratinocytes. (A) Effects of various concentrations of DMG-Na on the viability of Ha-
CaT keratinocytes were assessed by the MTT assay after 24, 48, and 72 h of treatment. Pooled data 
of independent experiments (n = 4) are shown. (B–D) Effects of various concentrations of DMG-Na 
on the expression of the proliferation marker Ki67 after 24 and 48 h of treatment. Representative 
images of Ki67 immunofluorescence labeling (Ki67: purple, DAPI: blue) of Experiment 1 (B) (the 
other 2 experiments are presented in Supplementary Figure S1A,B). Pooled data of these independ-
ent experiments (n = 3) on determining the percentage of Ki67 immuno-positive cells (C). Pooled 
data of independent experiments (n = 3) on determining the expression of mRNA transcripts of Ki67 
by qRT-PCR (D). (E,F) Effects of DMG-Na on scratch wound closure (i.e., migration) of human epi-
dermal HaCaT keratinocytes, as assessed at different time points. Representative photomicrographs 
of Experiment 1 (E) (the other 2 experiments are presented in Supplementary Figure S2). Pooled 
data of wound-closure curves of independent experiments (n = 3) (F). Data are presented as mean ± 
SEM. * p < 0.05, ** p < 0.01, compared to the control. 

Figure 1. Effects of DMG-Na on the cellular viability, proliferation, and migration of human epidermal
HaCaT keratinocytes. (A) Effects of various concentrations of DMG-Na on the viability of HaCaT
keratinocytes were assessed by the MTT assay after 24, 48, and 72 h of treatment. Pooled data of
independent experiments (n = 4) are shown. (B–D) Effects of various concentrations of DMG-Na
on the expression of the proliferation marker Ki67 after 24 and 48 h of treatment. Representative
images of Ki67 immunofluorescence labeling (Ki67: purple, DAPI: blue) of Experiment 1 (B) (the
other 2 experiments are presented in Supplementary Figure S1A,B). Pooled data of these independent
experiments (n = 3) on determining the percentage of Ki67 immuno-positive cells (C). Pooled data
of independent experiments (n = 3) on determining the expression of mRNA transcripts of Ki67 by
qRT-PCR (D). (E,F) Effects of DMG-Na on scratch wound closure (i.e., migration) of human epidermal
HaCaT keratinocytes, as assessed at different time points. Representative photomicrographs of
Experiment 1 (E) (the other 2 experiments are presented in Supplementary Figure S2). Pooled data of
wound-closure curves of independent experiments (n = 3) (F). Data are presented as mean ± SEM.
* p < 0.05, ** p < 0.01, compared to the control.
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2.1.3. DMG-Na Promotes Migration of Human Epidermal HaCaT Keratinocytes

To assess whether the proliferation-promoting effects of DMG-Na are accompanied by
a stimulation of cellular migration, further experiments were performed using the scratch
wound assay [42]. For these experiments, the fetal bovine serum (FBS) concentration
of the culturing media was reduced to 5% to decrease the rate of cellular proliferation
(albeit without compromising cell viability and attachment). In addition to its effects
on cell proliferation, DMG-Na also promoted human epidermal keratinocyte migration
(Figure 1E,F and Supplementary Figure S2). As revealed by the area under the curve
(AUC) statistical analysis of the pooled wound-closure curves (Figure 1F), 0.005% DMG-Na
significantly accelerated the scratch wound closure. This result reflects an augmented
migration (AUCControl = 2402 ± 56.8, AUCDMG 0.005% = 1925 ± 119, mean ± SD, p < 0.05,
ANOVA), which is also apparent from the photomicrographs taken during the individual
experiments (Figure 1E and Supplementary Figure S2).

2.1.4. DMG-Na Upregulates the Synthesis and Release of Specific Growth Factors in
Human Epidermal HaCaT Keratinocytes

We next assessed the effects of DMG-Na on the synthesis and release of selected growth
factors. As shown in Figure 2, DMG-Na treatment of human epidermal keratinocytes sig-
nificantly (p < 0.05, ANOVA) upregulated the synthesis (0.00005%, 0.0005%, and 0.005%),
while only the 0.005% DMG-Na concentration upregulated the release of vascular endothe-
lial growth factor (VEGF) (Figure 2A,B). Further, 0.005% DMG-Na tendentially (p = 0.074
for qRT-PCR, p = 0.071 for ELISA) stimulated the synthesis and release of granulocyte-
macrophage colony-stimulating factor (GM-CSF) (shown in Supplementary Figure S3A,B).
When assessing the expressions of other growth factors, we found that DMG-Na did not up-
regulate the mRNA-level synthesis of genes encoding transforming growth factor (TGF)β1
and TGFβ2 (Supplementary Figure S3C,D). Further, expression levels of genes encoding
hepatic growth factor (HGF) and epidermal growth factor (EGF) were below the detection
limit, both in the control and the DMG-Na-treated keratinocytes, also indicating a lack of
upregulation by DMG-Na.
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qRT-PCR and 48 h of ELISA treatment. Each panel shows pooled data of independent experiments 
(n = 4). Mean ± SEM. Data points are shown as  for Control,  for 0.00005% DMG-Na,  for 
0.0005% DMG-Na and  for 0.005% DMG-Na. * p < 0.05, ** p < 0.01, *** p < 0.001 by ANOVA, com-
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Figure 2. Effects of DMG-Na on the synthesis and release of vascular endothelial growth factor in
human epidermal HaCaT keratinocytes. Effects of various concentrations (0.00005%, 0.0005%, and
0.005%) of DMG-Na on the mRNA-level ((A) qRT-PCR assay) and protein-level release ((B) ELISA)
of vascular endothelial growth factor (VEGF) of HaCaT keratinocytes were assessed after 24 h of
qRT-PCR and 48 h of ELISA treatment. Each panel shows pooled data of independent experiments
(n = 4). Mean± SEM. Data points are shown as • for Control,� for 0.00005% DMG-Na, N for 0.0005%
DMG-Na and H for 0.005% DMG-Na. * p < 0.05, ** p < 0.01, *** p < 0.001 by ANOVA, compared to the
control.
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2.2. DMG-Na Exerts Anti-Inflammatory Effects in Three In Vitro Keratinocyte Models of Various
Inflammatory Skin Conditions
2.2.1. DMG-Na Exerts Anti-Inflammatory Effects in an In Vitro Keratinocyte Model of
Microbial and Allergic Contact Dermatitis

In order to assess whether the above growth-promoting effects of DMG-Na, arguing
for the stimulation of epidermal regeneration and repair, are accompanied by protective
effects against inflammatory skin cell conditions, we also investigated the impact of DMG-
Na in three different in vitro inflammation models of cultured human keratinocytes. Since
the two highest tested DMG-Na concentrations (0.005% and 0.0005%) were most effective in
the above-presented experiments, we focused on these two concentrations for the following
assessments.

First, the potential anti-inflammatory effects of DMG-Na were assessed on toll-like re-
ceptor (TLR)-3 activation-induced cultured human HaCaT keratinocytes, a well-established
in vitro model of microbial and allergic contact dermatitis [50–52]. As assessed by qRT-
PCR (Figure 3A), both tested concentrations of DMG-Na prevented the action of the
inflammation-inducer TLR3-agonist polyinosinic:polycytidylic acid (Poly-IC, 20 µg/mL) to
upregulate the expression of various inflammatory markers. Notably, the anti-inflammatory
effects of DMG-Na were statistically significant (p < 0.05, ANOVA) in the cases of genes
encoding interleukin (IL)1α (IL1A), IL1β (IL1B), IL8 (IL8), and TNFα (TNFA), while the
effect on IL6 (IL6) was not significant.

As measured by ELISA (Figure 3B), DMG-Na in both concentrations significantly
(p < 0.05, ANOVA) inhibited the action of Poly-IC to induce the inflammation-associated
release of IL1β, while only the higher concentration (0.005%) of DMG-Na had a statistically
significant effect on the release of IL6 proteins. However, no effect of DMG-Na was
observed on the Poly-IC-induced release of IL8, despite the robust and significant effect on
the IL8 gene expression, as measured by qRT-PCR (Figure 3A).

2.2.2. DMG-Na Exerts Anti-Inflammatory Effects in an In Vitro Keratinocyte Model of
Various Inflammatory Skin Diseases Such as Psoriasis

Next, the putative anti-inflammatory effects of DMG-Na were assessed on cultured
human HaCaT keratinocytes stimulated with the combination of 25 ng/mL of interferon-
γ (INFγ) + 25 ng/mL of TNFα, a well-established in vitro model of inflammatory skin
diseases including, but not limited to, psoriasis [36,53].

As shown in Figure 4A,B, DMG-Na prevented the effect of the INFγ + TNFα cocktail
to upregulate the mRNA-level expression (qRT-PCR) and protein-level secretion (ELISA)
of the inflammatory cytokines IL6, IL8, and C-X-C motif chemokine ligand 10 (CXCL10),
also known as INFγ-induced protein 10. Notably, except for the protein-level secretion of
IL6, these effects were statistically significant for 0.005% DMG-Na (p < 0.05, ANOVA), and
in the case of IL8 (both mRNA and protein levels) for 0.0005% DMG-Na as well.

2.2.3. DMG-Na Exerts Anti-Inflammatory and Antioxidant Effects in an In Vitro
Keratinocyte Model of UVB Irradiation-Induced Solar Dermatitis

Finally, the potential anti-inflammatory effects of DMG-Na were assessed on UVB-
irradiated, cultured human HaCaT keratinocytes to mimic solar dermatitis in vitro [54–56].
In this model, DMG-Na significantly (p < 0.05, ANOVA) prevented the effect of UVB to
upregulate the expressions of IL6 (0.005% DMG-Na) and TNFA (both concentrations) genes;
however, only tendential prevention was observed for IL1A and IL1B (both concentrations),
as well as IL8 (0.005% DMG-Na) (Figure 5A). Notably, both concentrations of DMG-Na
significantly (p < 0.05, ANOVA) prevented the action of UVB to induce the secretion of
IL6 and IL8 proteins (Figure 5B). In this model, we also assessed whether DMG-Na can
also mitigate the well-established [58–60] pro-oxidation effect of UVB irradiation. Both
investigated concentrations significantly (p < 0.05, ANOVA) prevented the action of UVB
irradiation to induce the production of reactive oxygen species (ROS) (Figure 5C).
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model of microbial and allergic contact dermatitis. Effects of two different concentrations of DMG-
Na on the mRNA-level ((A) qRT-PCR assay) and protein-level release ((B) ELISA) of various inflam-
matory cytokines of HaCaT keratinocytes were assessed after 24 h. Cells were pre-treated with 
DMG-Na for 1 h and then inflammation was induced by the administration of the TLR3 activator 
Poly-IC (20 µg/mL). Each panel shows pooled data of independent experiments (n = 3). Data were 
normalized to the Poly-IC group and are presented as mean ± SEM fold change values (where Poly-
IC = 1). Data points are shown as  for Control,  for Poly-IC,  for 0.0005% DMG-Na and  for 
0.005% DMG-Na. * Represents statistical differences when compared to the control, whereas # rep-
resents statistical differences when compared to the Poly-IC group. # p < 0.05, **,## p < 0.01, *** p < 
0.001, ****,#### p < 0.0001 by ANOVA. 

Figure 3. Effects of DMG-Na on the synthesis and release of inflammation markers in a keratinocyte
model of microbial and allergic contact dermatitis. Effects of two different concentrations of DMG-Na
on the mRNA-level ((A) qRT-PCR assay) and protein-level release ((B) ELISA) of various inflammatory
cytokines of HaCaT keratinocytes were assessed after 24 h. Cells were pre-treated with DMG-Na
for 1 h and then inflammation was induced by the administration of the TLR3 activator Poly-IC
(20 µg/mL). Each panel shows pooled data of independent experiments (n = 3). Data were normalized
to the Poly-IC group and are presented as mean ± SEM fold change values (where Poly-IC = 1).
Data points are shown as • for Control, � for Poly-IC, N for 0.0005% DMG-Na and H for 0.005%
DMG-Na. * Represents statistical differences when compared to the control, whereas # represents
statistical differences when compared to the Poly-IC group. # p < 0.05, **,## p < 0.01, *** p < 0.001,
****,#### p < 0.0001 by ANOVA.
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Figure 4. Effects of DMG-Na on the synthesis and release of inflammation markers in a keratinocyte
model of psoriasis and atopic dermatitis. Effects of two different concentrations (0.0005% and 0.005%)
of DMG-Na on the mRNA-level ((A) qRT-PCR assay) and protein-level release ((B) ELISA) of various
inflammatory cytokines of HaCaT keratinocytes were assessed after 24 h. Cells were pre-treated
with DMG-Na for 1 h and then inflammation was induced by the administration of 25 ng/mL of
INFγ + 25 ng/mL of TNFα (IFN + TNF). Each panel shows pooled data of independent experiments
(n = 3). Data were normalized to the IFN + TNF group and are presented as mean ± SEM fold
change values (where IFN + TNF =1). Data points are shown as • for Control, � for IFN + TNF, N for
0.0005% DMG-Na and H for 0.005% DMG-Na. * Represents statistical differences when compared
to the control, whereas # represents statistical differences when compared to the IFN + TNF group.
# p < 0.05, ## p < 0.01, ***,### p < 0.001, ****, #### p < 0.0001 by ANOVA.
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were pre-treated with DMG-Na and vehicle for 1 h, irradiated with a total dose of 100 mJ/cm2 of 
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Figure 5. Effects of DMG-Na on the synthesis and release of inflammation markers as well as
ROS in a keratinocyte model of UVB irradiation-induced solar dermatitis. Effects of two different
concentrations (0.0005% and 0.005%) of DMG-Na on the mRNA-level ((A) qRT-PCR assay) and
protein-level release ((B) ELISA) of various inflammatory cytokines of HaCaT keratinocytes were
assessed after 6 h. Cells were pre-treated with DMG-Na for 1 h and then irradiated with a total
dose of 40 mJ/cm2 of UVB (312 nm). Further, the effects of DMG-Na were also assessed on the
UVB irradiation-induced ROS production ((C), 2′,7′-dichlorofluorescein diacetate-based assay). For
this assay, cells were pre-treated with DMG-Na and vehicle for 1 h, irradiated with a total dose of
100 mJ/cm2 of UVB (312 nm), and the ROS production was immediately measured. Each panel
shows pooled data of independent experiments (n = 3–4). Data were normalized to the UVB group
and are presented as mean ± SEM fold change values (where UVB =1). Data points are shown as •
for Control, � for UVB, N for 0.0005% DMG-Na and H for 0.005% DMG-Na. * Represents statistical
differences when compared to the control, whereas # represents statistical differences when compared
to the UVB group. *,# p < 0.05, ## p < 0.01, ***,### p < 0.001, ****,#### p < 0.0001 by ANOVA.
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3. Discussion

The findings of our in vitro investigation collectively demonstrated that DMG-Na
exerted a positive impact on crucial parameters for epidermal biology by maintaining cell
viability, promoting cellular proliferation and migration, and inducing both the synthesis
and release of certain growth factors (VEGF, GM-CSF) in cultured immortalized human
epidermal keratinocytes. Further, we provided the first evidence that DMG-Na exerts
profound anti-inflammatory actions in all three in vitro models of epidermal inflamma-
tory conditions employed, which are accompanied by its antioxidant effects against UVB
irradiation.

The presented data might have numerous impactful cutaneous perspectives. It was
previously shown that DMG, as part of the endogenous metabolic homocysteine pathway
in plants and animals [1,2], and its sodium salt markedly modulate numerous mitochondria
functions and energy output [18–21]. Indeed, it was found that DMG-Na activates the
mitochondrial metabolic network of nuclear factor erythroid 2-related factor 2/sirtuin
1/peroxisome proliferator-activated receptor-γ coactivator-1α (NRF2/Sirtuin 1/PGC1α)
in other tissues (skeletal muscle, liver), which established the most robust basis for its
beneficial effects. Importantly, these pathways are also involved in preventing premature
and/or pathological aging of the skin [61–63]. Likewise, VEGF (released from epidermal
keratinocytes upon DMG-Na treatment) was recently implicated as a key growth factor
promoting skin rejuvenation [64]. Therefore, it is proposed (and hence to be assessed in
further studies) that DMG-Na may not only boost overall epidermal health and fitness
(based on its “anabolic” effects presented in this study) but most probably also acts as a
novel rejuvenating and anti-aging active compound by subsequently releasing VEGF.

Another skin condition where great potential for DMG-Na could be realized is the
management of wound healing. Indeed, we found that DMG-Na stimulates proliferation
and migration of epidermal keratinocytes, key events of re-epithelization after wound-
ing [65,66]. Further, we also showed that DMG-Na upregulates the synthesis and release
of VEGF and GM-CSF, positive master regulators of skin wound healing [67–71]. Since
DMG was previously shown to promote proliferation and overall activation of human
lymphocytes [24,25], another key event of wound healing, the beneficial effects of DMG
should be explored in future skin wound treatments.

Based on the above, we also propose that DMG-Na could be beneficial in maintaining
not only epidermal, but also hair (follicle) health. Hair follicles are considered as the “brain
of the skin” as they control, via their cell reservoirs and by releasing a plethora of soluble
mediators, practically all cutaneous functions [72–74]. With respect to our current data, it
is intriguing to note that VEGF (that was found to be released by DMG-Na in our in vitro
epidermal model) was previously shown to markedly promote hair growth [75–77] and to
be involved in mediating the action of minoxidil, one of the few approved anti-alopecia
drugs [78], thereby establishing a concept for DMG-Na as a putative new active against
hair loss.

Possibly the most striking finding of our work was the identification of the robust,
in most cases both biologically and statistically significant, anti-inflammatory effects of
DMG-Na, phenomena that had never been previously investigated in any tissue. Of further
importance, these actions of DMG-Na were observed in all three in vitro keratinocyte
systems, modeling a wide array of inflammatory skin diseases, irrespective of whether
the inflammation was induced by TLR3 stimulation, the combination of INFγ and TNFα,
or UVB irradiation. Since, in these models, human epidermal keratinocytes engage dis-
tinct and/or only partially overlapping intracellular signaling pathways to upregulate
expression and secretion of a myriad of pro-inflammatory cytokines [36,55,79], and since
DMG-Na exhibited a remarkable effect in mitigating the upregulation of most of the inves-
tigated inflammatory markers in all three models, it can be concluded that DMG-Na exerts
“universal” (i.e., model-independent) anti-inflammatory actions.

Further, by using the classical UVB irradiation-induced model system, we also showed
that DMG-Na significantly counteracted the effect of UVB irradiation to upregulate ROS
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production of epidermal keratinocytes. This corroborates well with previous studies that
reported the profound antioxidant and scavenger actions of DMG and its sodium salt in
practically all (extra-cutaneous) tissues measured so far [14–23], including the gastrointesti-
nal tract [14–16], liver [17,18], skeletal muscle [19–21], and peripheral neurons [22].

Further studies are now invited to describe the molecular mechanism of action of
DMG-Na. Along this line, in our preliminary experiments, we found that DMG-Na induced
a dose-dependent increase of the intracellular Ca2+ concentration of human epidermal ker-
atinocytes (microfluorimetric Ca-imaging data obtained in two independent experiments
are shown in Supplementary Figure S4). Elevation of the intracellular Ca2+ concentration is
one of the key intracellular signaling pathways that regulate practically all keratinocytes’
functions, including, but not limited to, proliferation, differentiation, migration, wound
healing, growth factor release, inflammatory and immune signaling pathways, etc. [80–86].
Therefore—albeit further experiments are needed to uncover how the intracellular Ca2+

concentration elevated by DMG-Na is mechanistically linked to such signaling systems as,
e.g., certain inflammatory signal transduction pathways (NF-κB, MAPK, or JAK-STAT) or
the release of VEGF and other mediators—it is highly possible that the quite versatile effects
(stimulation of proliferation, migration, and growth factor release; anti-inflammatory and
antioxidant action) of DMG-Na are mediated (or at least closely linked) to its action on
elevating the intracellular level of the ‘universal’ signal transducer Ca2+.

Taken together, our preclinical findings presented here collectively argue for the
versatile effects of DMG-Na on promoting epidermal proliferation, regeneration, protection,
as well as epithelial and inflammatory repair. Further clinical studies are currently under
investigation to assess whether topically applied DMG-Na can be therapeutically employed
in the future management of skin and hair conditions characterized by impaired cellular
growth, repair, and dysregulated oxidative metabolic status (e.g., skin aging, atrophy, acute
or chronic wounds, hair loss of any kind, among others), as well as various inflammatory
skin diseases (e.g., psoriasis, allergic contact dermatitis, solar irritation, and dermatitis).

4. Materials and Methods
4.1. Materials

The sodium salt of N,N-dimethylglycine was obtained from Eastman Chemical Com-
pany (Eastman EnhanzTM, Kingsport, TN, USA). Human TNFα and IFNγ recombinant
proteins were purchased from Thermo Fisher Scientific (Waltham, MA, USA; Cat. No.
PHC3011 and PHC4031), whereas Poly-IC was bought from Merck KGaA (Darmstadt,
Germany; Cat. No. P0913). All agents were dissolved in nuclease-free water (Thermo
Fisher Scientific; Cat. No. AM9930).

4.2. Cell Culturing

Spontaneously immortalized human HaCaT epidermal keratinocytes were cultured in
Dulbecco’s Modified Eagle Medium supplemented with 10% (v/v) FBS (or 5% (v/v) for the
migration assay), 1% (v/v) Penicillin–Streptomycin mixture, and 0.5% (v/v) Amphotericin
B (all from Thermo Fisher Scientific; Cat. No. 31966021, 10500064, 15140122, and 15290026,
respectively), at 37 ◦C in a humidified, 5% CO2-containing atmosphere. The Ca2+ concen-
tration of the cell culturing medium was 264 mg/mL (1.8 mM). As shown in our previous
publication [87], this medium allows the constant proliferation of pre-confluent HaCaT ker-
atinocytes. The current study was performed on pre-confluent (hence proliferating) HaCaT
keratinocytes. The medium was substituted every other day and cells were sub-cultured at
70–80% confluence [88,89].

4.3. MTT Assay

The MTT assay was used to measure cellular metabolic activity as an indicator of
cell viability, proliferation, and cytotoxicity. For the experiments, HaCaT keratinocytes
(5 × 103 cells/well) were cultured in 96-well plates and treated as indicated with DMG-Na
for 24, 48, and 72 h; then, cells were incubated with 0.5 mg/mL of MTT (Merck KGaA; Cat.
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No. M5655) for 2 h. The insoluble formazan crystals were dissolved using a solubilizing
solution containing 81% (v/v) 2-propanol, 9% (v/v) 1M HCl, and 10% (v/v) Triton-X100 (all
from Merck KGaA; Cat. No. I9516, 320331 and X100), and the resulting colored solution
was quantified by measuring absorbance at 540 nm using a Halo LED 96-microplate reader
(Dynamica Scientific Ltd., Livingston, UK) [90–92].

4.4. Immunocytochemistry

HaCaT keratinocytes (3 × 104 cells/10 mm circular glass coverslips) treated with
DMG-Na were fixed with freshly prepared 1% paraformaldehyde (Merck KGaA; Cat.
No. P6148) for 10 min at room temperature and then washed with phosphate-buffered
saline (PBS, Merck KGaA; Cat. No. P3813), followed by a post-fixation step with −20 ◦C
ethanol:acetic acid (2:1) for 5 min. In the permeabilization step, cells were incubated
with 0.25% Triton X-100 in PBS for 10 min and were then blocked with Antibody Diluent
(Thermo Fisher Scientific; Cat. No. 003118) for 30 min. Cells were incubated with mouse
anti-human Ki67 antigen primary antibody at 1:100 dilution (Dako, Agilent, Santa Clara,
CA, USA; Cat. No. M7240) at 4 ◦C overnight. Following the appropriate washing step
with PBS, cells were labeled with the secondary antibody, Alexa Fluor 568 goat anti-mouse
IgG (Thermo Fischer Scientific; Cat. No. A-11004), at 1:500 dilution for 45 min at room
temperature. Superfluous secondary antibodies were washed away with PBS and nuclei
were counterstained with 4′,6-diamidino-2-phenylindole (DAPI, Merck KGaA; Cat. No.
D9542). After another washing step, cells on slides were mounted with Fluoromount-G®

(SouthernBiotech, Birmingham, AL, USA; Cat. No. 0100-01) and images were taken by a
Nikon A1 confocal microscope (Nikon, Tokyo, Japan). During image analysis, cells positive
for Ki67 were counted in multiple visual fields and were normalized to the number of
nuclei, i.e., the number of DAPI+ cells, by using the Image J Fiji software version 2.9.0.
(National Institutes of Health, Bethesda, MD, USA) [89,93].

4.5. Scratch Wound-Closure Migration Assay

HaCaT keratinocytes were seeded at a density of 2 × 104 cells/chamber in 2-Well
Culture Inserts (Ibidi GmbH, Gräfelfing, Germany; Cat. No. 80209). After reaching 100%
confluence, a cell-free gap of 500 µm was created by removal of the plastic inserts, and the
cells were treated with DMG-Na, as indicated in the above culturing medium containing
5% FBS. Images were then taken of the cultures at different time points (0, 16, 20, 24, and
40 h) using an Olympus IX81 inverted microscope (Olympus Corporation, Tokyo, Japan),
and the size of the scratch wounds (the decrease of which corresponds to the degree of cell
migration) were measured by Image J Fiji software version 2.9.0. For the analysis, wound-
closure curves were generated and area under the curve (AUC) values were calculated,
where the AUC value is inversely proportional to the velocity of wound closure [42,94].

4.6. Inflammatory Model Systems
4.6.1. In Vitro Keratinocyte Model of Microbial and Allergic Contact Dermatitis

TLR-3 activation on in vitro-cultured human HaCaT keratinocytes results in such pro-
inflammatory alterations which well-model the processes of microbial and allergic contact
dermatitis [50–52]. For this, keratinocytes were seeded at a density of 3 × 105 cells/well in
6-well plates. The next day, the medium was renewed, and keratinocytes were pre-treated
with DMG-Na for 1 h, as indicated, and then stimulated with a TLR3 ligand, 20 µg/mL of
Poly-IC, for an additional 23 h. After incubation, supernatants and cells were harvested and
processed for ELISA and qRT-PCR determinations, respectively, of various inflammation
markers.

4.6.2. In Vitro Keratinocyte Model of Inflammatory Skin Diseases Such as Psoriasis

Treatment of cultured human HaCaT keratinocytes with a defined combination of
IFNγ and TNFα is a well-established in vitro model for studying cellular changes of various
inflammatory skin diseases, e.g., psoriasis, etc. [36,53]. For this, HaCaT cells were seeded
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at a density of 3 × 105 cells/well into 6-well plates. After cell adherence, the medium
was replaced with a fresh conventional culture medium with or without DMG-Na. After
1 h, cells were stimulated with a combination of 25 ng/mL of IFNγ and 25 ng/mL of
TNFα, as previously described [36,95], and 23 h later, supernatants were collected and cells
were harvested for qRT-PCR and ELISA analyses of the expression and release of various
pro-inflammatory cytokines.

4.6.3. UVB Irradiation-Induced Inflammation and Oxidative Stress Model

Keratinocytes (3 × 105 cells/well) were seeded in 6-well plates and treated with DMG-
Na for 1 h, as indicated. After this pre-treatment and before irradiation, the medium was
replaced with 800 µL/well of Sebomed Basal Medium (Merck KGaA; Cat. No. F8205). Lids
were removed and cells were irradiated with a total dose of 40 mJ/cm2 of UVB (312 nm)
by using a narrow-band, microprocessor-controlled UV irradiation instrument (Bio-Sun,
Vilber Lourmat, Marne-la-Vallée, France). Control samples were sham-irradiated under
the same conditions. Immediately after UVB irradiation, the medium was replaced with
the conventional culture medium of the cells with or without DMG-Na. Following a
6 h incubation period, cells and supernatants were collected for qRT-PCR and ELISA to
determine the cytokine expression and release.

As UVB irradiation of epidermal keratinocytes is not only a pro-inflammatory but
also an oxidative stress [54–56,58–60], in this model, we also assessed the putative ef-
fects of DMG-Na on the UVB-induced ROS production. For this, we employed the
DCFDA/H2DCFDA-Cellular ROS Assay Kit (Abcam, Cambridge, UK; Cat. No. ab113851)
according to the manufacturer’s instructions. In brief, cells were seeded at a density of
2.5 × 104 cells/well in a black, clear-bottom, 96-well plate, and treated as indicated. Imme-
diately after irradiation with 100 mJ/cm2 of UVB (Bio-Sun, Vilber Lourmat), the medium
was discharged, and cells were washed with 1X Buffer and then incubated with 20 µM of
2′,7′-dichlorofluorescein diacetate (DCFDA) solution for 45 min at 37 ◦C, protected from
light. After the incubation, the DCFDA solution was removed, 1X Buffer was added to
the cells, and fluorescence was measured at an excitation/emission of 485/535 nm using a
FlexStation II (Molecular Devices, Sunnyvale, CA, USA) fluorescence microplate reader.

4.7. RNA Isolation and Reverse Transcription

Total RNA was isolated using the TRI Reagent® (Molecular Research Center, Inc.,
Cincinnati, OH, USA; Cat. No. TR 118) according to the manufacturer’s protocol, and
quality-checked with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). Next,
DNase I treatment was performed, and 1000 ng of total RNA was reverse-transcribed into
complementary DNA (cDNA) by using the High-Capacity cDNA Reverse Transcription
Kit (both obtained from Thermo Fisher Scientific; Cat. No. AM2222 and 4368813) on
an Applied Biosystems 2720 Thermal Cycler (Thermo Fisher Scientific), according to the
manufacturer’s protocols [88–92,96].

4.8. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Quantitative real-time PCR was performed on a Light Cycler® 480 Instrument II
(Roche Life Science, Basel, Switzerland) by using the TaqMan 5′ nuclease assays and the
TaqMan Gene Expression Master Mix protocol (both from Thermo Fisher Scientific;
Cat. No. 4331182 and 4369016). The following assays were used: CXCL10 (Hs99999049_m1),
GM-CSF (Hs00929873_m1), IL-1α (Hs00174092_m1), IL-1β (Hs00174097_m1), IL-6
(Hs00985639_m1), IL-8 (Hs00174103_m1), Ki67 (Hs01032443_m1), TNFα (Hs00174128_m1),
VEGF (Hs00900055_m1), TGFβ1 (Hs00171257_m1), TGFβ2 (Hs00234244_m1), EGF
(Hs01099999_m1), and HGF (Hs00300159_m1). As endogenous controls, transcripts of
actin-β (ACTB, Hs99999903_m1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH,
Hs99999905_m1), or peptidylprolyl isomerase A (PPIA, Hs99999904_m1) were determined,
respectively. The amount of the abovementioned transcripts was normalized first to the
expression of the relevant housekeeping gene, then to the expression of the vehicle control
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using the 2−∆∆CT method [92,97]. qRT-PCR analysis was performed on samples treated for
24 h.

4.9. Enzyme-Linked Immunosorbent Assay (ELISA)

Keratinocytes were treated as indicated for 6 or 24 h (for determining pro-inflammatory
markers) or 48 h (for determining growth factors), then supernatants were collected and
the released amounts of interleukin (IL)-1β, IL-6, or IL-8 (BD OptEIA ELISA Kits, Becton
Dickinson, BD Biosciences, Franklin Lakes, NJ, USA; Cat. No. 557953, 555220 and 555244)
and/or CXCL10, VEGF, or GM-CSF (Merck KGaA; Cat. No. RAB0119, RAB0507 and
RAB0100) were determined according to the manufacturer’s protocols. Absorbance was
measured at 450 nm using a Halo LED 96-Microplate reader (Dynamica Scientific Ltd.). The
amount of cytokines in the supernatant was expressed in pg/mL, calculated from standard
curves [88,89,91,92].

4.10. Ca-Imaging—Microfluorimetric Measurements of Intracellular Ca Concentration ([Ca2+]i)

HaCaT keratinocytes were seeded in 96-well, black-well/clear-bottom plates (Greiner
Bio-One, Kremsmünster, Austria; Cat. No. 655090) at a density of 2 × 104 cells/well in
keratinocyte medium supplemented as above and cultured at 37 ◦C for 24 h. The cells
were then loaded with the cytoplasmic calcium indicator 2 µM Fluo-4 AM (Thermo Fisher
Scientific; Cat. No. F14201) at 37 ◦C for 1 h in Hank’s balanced salt solution (136.89 mM
NaCl, 5.55 mM glucose, 5.36 mM KCl, 4.17 mM NaHCO3, 1.26 mM CaCl2, 0.49 mM MgCl2
× 6 H2O, 0.34 mM Na2HPO4 × 2 H2O, 0.44 mM KH2PO4, 0.24 mM MgSO4 × 7 H2O,
pH 7.2; all from Merck KGaA) containing 2.5 mM of Probenecid and 1% bovine serum
albumin (both from Merck KGaA). The cells were washed and the plates were then placed
into a FlexStation II384 Fluorescence Imaging Plate Reader (Molecular Devices, Sunnyvale,
CA, USA), and changes in [Ca2+]i (reflected by changes in fluorescence, λEX = 494 nm,
λEM = 516 nm) induced by various concentrations of DMG-Na were recorded in each well
(during the measurement, cells in a given well were exposed to only one given concentration
of the agent). Experiments were performed in quadruplicates and the averaged data were
used in the calculations [98,99].

4.11. Statistical Analysis

For each read-out, n = 3–4 independent experiments were performed, with multiple
intra-experimental technical repeats. Data obtained in the independent experiments were
pooled. For normally distributed data, groups were compared using ordinary one-way
ANOVA, followed by Dunnett’s post hoc test. When data distribution was not normal, the
Kruskal–Wallis nonparametric test with Dunn’s multiple comparison test were performed
using GraphPad Prism version 8.0.1. for Windows (GraphPad Software, San Diego, CA,
USA). p-values < 0.05 were regarded as significant differences. Graphs were plotted by
using OriginPro 8.6 software (OriginLab Corporation, Northampton, MA, USA). The results
are shown as mean ± standard errors of the mean (SEM) or mean ± standard deviation
(SD).

5. Conclusions

Our study identified DMG-Na as a highly promising novel active ingredient that—by
stimulating epidermal proliferation and exerting robust anti-inflammatory as well as antiox-
idant actions—maintains overall epidermal fitness, promotes regeneration and repair, and
applies protective functions. Therefore, further preclinical and clinical studies are ongoing to
systematically assess the beneficial effects of DMG-Na in the management of relevant skin
conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms241411264/s1.
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