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few hours of forecasts are not disseminated on time) and the grid-side 
submission lead time (i.e., forecasts are to be submitted a few hours 
before the operating day). 

Notwithstanding, given the fact that the PV power data has a reso-
lution of 15 min (see below), the hourly NWP needs to be downscaled. 
Here, a simple clear-sky interpolation is used for GHI forecasts, whereas 
simple linear interpolation is used for temperature and wind speed 
forecasts. It should be emphasized that clear-sky interpolation of irra-
diance is essential due to the presence of the diurnal cycle in irradiance 
time series. Stated differently, the interpolation must be done first in 
clear-sky index terms and then back-transformed into irradiance using 
the corresponding clear-sky GHI values at the interpolated time stamps. 
The clear-sky irradiance model used to retrieve the clear-sky index from 
GHI is McClear [17,18], which has been recommended as suitable for 
solar forecasting applications [19,20]. 

2.2. Satellite-derived irradiance data 

Since the PV power forecast accuracy depends on that of irradiance, 
it is of interest to verify the NWP irradiance forecasts. For that purpose, 
this work considers the satellite-derived irradiance from the CAMS-Rad 
database. The verification of forecasts, at least in the solar energy 
meteorology context, is conventionally based upon ground-based mea-
surements, for data of this kind is of a higher quality as compared to 
satellite-derived irradiance. Whereas this preference still holds, it suffers 
from a major drawback—high-quality long-term radiometry stations are 
exceedingly few due to their high equipment and maintenance costs. 
Therefore, meteorologists have long been leveraging remote-sensed 
observations as verifications (i.e., the “true” values), especially when 
forecast verification needs to be done over a region [21,22]. 

Verification of irradiance forecasts using satellite-derived irradiance 
is but a very recently thought of strategy. The earliest known work is the 
one by Perez et al. [23], who noticed that the forecast root mean square 
errors (RMSEs) of some forecasts against ground-based measurements 
and that against SolarAnywhere irradiance are comparable. Nonethe-
less, it is well known now that accuracy is just one aspect of forecast 
quality, and many other aspects, such as bias, calibration, refinement, or 
discrimination, do contribute to the overall judgment and confidence of 
forecasters and forecast users. In this regard, Yang and Perez [24] 
revisited the problem, presented a holistic extension to the initial work, 
and documented the distinctions in NWP forecast verification results, 
using both ground-based measurements and satellite-derived irradiance; 
the Murphy–Winkler verification framework was used, which is able to 
quantify the different aforementioned aspects of forecast quality. The 
main conclusion made therein is that satellite-derived irradiance, based 
on the latest generation of geostationary weather satellites and 

cloud-to-irradiance algorithms, is adequate for forecast-verification 
purposes. 

Coming back to CAMS-Rad, it is derived using the Heliosat-4 method 
from the images acquired by the Meteosat Second Generation (MSG) 
satellites, and has been shown to be more advantageous than the Surface 
Solar Radiation Data Set – Heliosat (SARAH-2) [25], which is another 
satellite-derived irradiance product based on the MSG satellites. 
Spatially, CAMS-Rad covers a disk region centered at the Meridian and 
the Equator, extending out to ±66◦ in latitude and similar in longitude. 
Temporally, CAMS-Rad irradiance can be obtained in 1-, 15-, 30-, and 
60-min resolutions. In this work, 15-min CAM-Rad irradiance is down-
loaded using the web services from the SoDa-pro website,2 over the 
two-year (2019–2020) period and for each PV system location. It is 
worth mentioning that, unlike other satellite-derived irradiance prod-
ucts, such as SARAH-2 or the National Solar Radiation Database 
(NSRDB), of which the spatial resolution is fixed to that of the raw 
satellite imagery, CAMS-Rad uses interpolation. For that reason, it is 
able to alleviate spatial-scale mismatch to some extent, and thus may 
better resemble ground-based measurements. 

The verification of the NWP GHI forecasts is performed by calcu-
lating the mean absolute error (MAE) and root mean square error 
(RMSE) of the control forecasts, all ensemble members, and the mean 
and median of the ensemble. The MAE and RMSE are shown separately 
for each PV plant location in Fig. 2. The results reveal that the control 
forecasts lower errors than any of the 50 individual ensemble members 
in terms of both metrics in all locations. However, the mean and median 
of the ensemble is even considerably more accurate than the “best guess” 
control forecasts, which suggests that ensemble forecasting has a sig-
nificant added value even if the ultimate goal is deterministic fore-
casting. In terms of MAE, the median of the ensemble is the more 
accurate, while in terms of RMSE, the mean is the most accurate, which 
empirically demonstrates the statistical fact that the MAE is minimized 
by the median, and the MSE is minimized by the mean. 

2.3. Photovoltaic power plant and production data 

The power forecasting methods proposed in this paper are tested for 
14 utility-scale ground-mounted PV plants in Hungary. These PV plants 
were installed in 2018, and they are operated by MVM Green Generation 
Ltd. The modules are mounted on parallel rows of mounting structures 
with a south-facing orientation and 20–35◦ tilt angles, depending on the 
plants. The power generation data of these PV plants cover the whole 
years of 2019 and 2020 with a 15-min temporal resolution. 

The preprocessing of the power production data includes the 
removal of all nighttime values, which are identified by a zenith angle 
>90◦ filter. Moreover, the daytime periods with no power output are 
also removed, as those discontinuities are due to errors or maintenance 
of the PV plants. The metadata of the PV plant and generation data is 
listed in Table 1. 

3. Methods 

The general concepts of creating deterministic and probabilistic 
power forecasts are explained in Section 3.1. Afterward, the methods 
responsible for the generation and calibration of the power forecasts 
from the raw NWP forecasts, namely, physical PV model chains and the 
quantile regression, are described in Sections 3.2 and 3.3, respectively. 
Finally, Sections 3.4 and 3.5 present the applied verification practices, 
respectively, for the deterministic and probabilistic forecasts. 

Table 1 
Name, location, and design data of the 14 ground-mounted PV power plants 
included in this paper. PDC: installed DC capacity, PAC: nominal AC power.  

Name Coordinates PDC kW PAC kW Nr. Of valid data 
points 

2019 2020 

Bodajk 47.33◦ N, 18.22◦ E 590 498 17,496 17,547 
Cegléd 47.19◦ N, 19.80◦ E 590 498 17,035 17,015 
Felsőzsolca 48.12◦ N, 20.89◦ E 20,038 16,776 17,300 17,337 
Fertőszéplak 47.61◦ N, 16.84◦ E 590 498 17,499 17,583 
Győrvár 46.99◦ N, 16.83◦ E 590 498 17,467 17,437 
Kajárpéc 47.51◦ N, 17.62◦ E 590 498 17,339 17,574 
Kecel 46.53◦ N, 19.22◦ E 590 498 17,056 17,084 
Kötegyán 46.74◦ N, 21.48◦ E 590 498 16,921 17,102 
Mezőkovácsháza 46.40◦ N, 20.90◦ E 590 498 17,052 16,973 
Nagyvázsony 46.98◦ N, 17.69◦ E 590 498 17,513 17,543 
Paks 46.57◦ N, 18.82◦ E 20,680 17,244 17,179 17,188 
Pécs 46.06◦ N, 18.26◦ E 10,044 10,097 16,993 17,090 
Újkígyós 46.60◦ N, 20.99◦ E 590 498 17,061 16,924 
Veszprém 47.10◦ N, 17.87◦ E 590 498 17,517 17,533  

2 https://www.soda-pro.com/web-services/radiation/cams-radiation-service 
. 
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3.1. Concepts for photovoltaic power forecasting 

The general procedure of NWP-based physical PV power forecasting 
is to convert the GHI, ambient temperature, and wind speed forecasts to 
power output forecasts by simulating the behavior of the PV plants by a 
physical model chain.3 The model chain itself is a general concept, 
which can be realized in many different ways, depending on how many 
modeling steps are included and which models are used in these steps. 
Different model chains map the weather forecasts to PV power differ-
ently; therefore, the selection of the model chain can affect the power 
forecast errors by more than 10% [8]. To that end, the power conversion 
with an arbitrarily selected model chain is often suboptimal, and thus it 
prevents reliably judging the potential accuracy of any forecasting 
method that involves model chains. A possible solution, as proposed in 
Ref. [8], is to optimize the model chain by calculating the power fore-
casts with many different model chains, then selecting the one that 
performs the best in terms of a chosen metric. This process, which can 
only issue deterministic forecasts, is referred to as method 0 in this paper. 

Model chain was traditionally considered a deterministic tool, and it 
was not until the method recently proposed by Mayer and Yang [26] that 
the utilization of the model chain was extended for probabilistic 
irradiance-to-power conversion. The idea behind this extension is the 
poor man’s ensemble (or model ensemble), where the same input data 
are converted to different outputs by different models. In the context of 
irradiance-to-power conversion, it means that the deterministic NWP 
forecasts are converted to PV power by a set of different model chains, 
which are then interpreted as an ensemble, describing a probability 
distribution of the power output. This approach is implemented in this 
paper and is referred to as method 1 henceforth; without loss of gener-
ality, we randomly selected 50 model chains for method 1, as to match 
the number of ensemble members of the ECMWF ENS forecasts. 

In methods 2 and 3, the irradiance-to-power conversion is performed 
similarly as in methods 0 and 1, respectively, with the difference that 
methods 2 and 3 are based on probabilistic instead of deterministic NWP 
forecasts. In the case of the ensemble members, it must be noted that 
they cannot be regarded as models, since the members for each run are 
subject to a random initialization independent of previous runs. In other 
words, members having the same index for two consecutive days (e.g., 
member 1 today and member 1 tomorrow) are unrelated and thus 
should not be grouped together during training. What should be done 
instead is to first translate the ensemble members into the quantiles of 
the predictive density by assuming equal probability for each member, 
which can be done simply by sorting the GHI member forecasts for each 
timestep. Afterward, instead of the original members, the sorted quan-
tiles are used in all further calculations. In method 2, the GHI, ambient 
temperature, and wind speed forecasts of all 50 ENS quantiles are con-
verted individually to PV power by a single model chain, namely, the 
one that was found to be the best for deterministic forecasting in method 
0. In method 3, the NWP forecasts of the 50 ensemble quantiles are 
converted to PV power with 50 different, randomly selected model 
chains (1-to-1 paring, i.e., one model chain for each ENS quantile). 

Raw ensemble forecasts are typically underdispersed, as they are 
unable to fully account for all sources of uncertainty during their crea-
tion [27]. Therefore, the reliability of the ensemble forecasts can only be 
ensured by a data-driven calibration procedure. In this paper, the cali-
bration is achieved by performing quantile regression, which requires no 
assumption on the shape of the distribution of the power forecast error. 
Calibration requires historical data; therefore, it cannot be performed 
for newly commenced PV plants. Considering the calibration step, 

methods 1, 2, and 3 can all be further separated into two cases, distin-
guished by letters "R" and "C," which stand for the raw and calibrated 
ensemble, respectively. In the methods relying on the raw ensemble, the 
ensemble members are translated to quantiles using a uniform spacing of 
the cumulative probabilities [28]. 

The above-presented methods are visualized in Fig. 3. As mentioned 
in the introduction, the NWP forecasts and the irradiance-to-power 
conversion can both be deterministic or probabilistic, which results in 
four distinct combinations. Based on this, method 0 yields deterministic 
forecasts with no uncertainty quantification, while the forecasts created 
by method 1 only include the uncertainty of the PV plant modeling, the 
forecasts of method 2 only include the uncertainty of the weather pre-
diction, while the forecasts of method 3 include the uncertainty of both 
sources. Methods 1R, 2R, and 3R, when paired with quantile regression, 
lead to three new methods (i.e., 1C, 2C, and 3C), making a total of seven 
methods. 

Six out of the seven methods generate probabilistic forecasts; how-
ever, these can also be summarized into deterministic forecasts by 
assigning a statistical functional, e.g., the mean or the median, of the 
probability density function for each timestep. A sample time series plot 
of how the original probabilistic and the resulting deterministic fore-
casts are related to each other is shown in Fig. 4. All seven methods are 
capable of creating deterministic forecasts as well; therefore, they are 
also evaluated as deterministic forecasting methods, which enables one 
to quantify the added benefit of the ensemble NWP not only for prob-
abilistic but also for deterministic PV power forecasting. 

3.2. Physical photovoltaic model chains 

Conversion of weather forecasts into PV power forecasts can be done 
by a successive set of models, which are constituents of a model chain. 
After solar positioning, which is essential for obtaining the Sun-position- 
related information such as zenith and incidence angles, the calculation 
starts with the separation of the GHI into the beam and diffuse compo-
nents, which is then followed by transposing the horizontal irradiance 
components onto the tilted module plane. Afterward, the cell tempera-
ture is estimated from the incident irradiance, ambient temperature, and 
wind speed, and the power output of the PV modules is calculated by 
taking into account the dependence of the DC power output on the 
irradiance and cell temperature. Above these basic modeling steps, more 
sophisticated model chains also account for the reflection losses from the 
module surface, the inter-row shading, and the inverter, cable, and other 
losses. 

The model chain framework used in this paper follows the imple-
mentation first proposed in Ref. [8], which has benefited several later 
studies [11,29]. As shown in Fig. 5, this model chain framework includes 
nine modeling steps, seven of which are considered as the main steps, 
where multiple component model options are included. The list of the 
component models of choice is summarized in Table 2. In summary, the 
nine separation, ten transposition, three reflection, five cell tempera-
ture, four PV efficiency, two shading, and three inverter models, result in 
a total of 32,400 different model chains. During the optimization of the 
model chain, the power forecasts are calculated by all these model 
chains for the year 2019, and the model chains that lead to the lowest 
mean absolute error (MAE) and root mean square error (RMSE) are 
selected as the two best options corresponding to these two verification 
directives. In the methods with randomly selected model chains, the 
used model chains are picked from these 32,400 variants with a uniform 
probability. 

3.3. Quantile regression 

Quantile regression (QR) maps the relationship between the pre-
dictors and a selected quantile of a probability distribution. To do this, 
the loss function of quantile regression is the pinball loss, which is 
calculated as 

3 For high-latitude region, surface albedo constitutes another essential input 
parameter, as excessive surface brightness due to white sand and snow can 
affect the ground-reflected irradiance substantially. But considering the geog-
raphy of Hungary, surface albedo is less important a parameter, and thus is not 
considered. 
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carries much significance in practical applications where probabilistic 
irradiance forecasts are not available. Among the raw forecasts, method 
2R has the lowest CRPS, which is (in relative terms) 12.0% higher than 
the overall lowest CRPS (method 3C). This suggests that, even if the 
calibration is not possible due to the lack of historical data, the ensemble 
NWP carries enough information about the expected uncertainties to 
make probabilistic forecasts with a relatively low CRPS—even though 
these forecasts, as shown above, are highly unreliable. 

The QS, as a function of the quantiles, is shown in Fig. 8. The overall 
quadratic shape of the curve with the highest values around the median 
is typical for the QS [28], and thus this observation does not require 
further explanation. Method 3C has the lowest score for all quantiles, 

which is in line with its lowest CRPS. All curves show some degree of 
asymmetry, which is more pronounced for the raw methods, reflecting 
that the forecasts for the higher quantiles are slightly more accurate than 
the forecasts for the lower quantiles. The reason for this should be 
sought in the propagation of the errors through the irradiance-to-power 
conversion process, as analyzed in detail in Ref. [68]. Particularly, the 
power outputs higher than the nominal AC power of the PV plants are 
clipped by the inverter, which means that the errors in the high irradi-
ance domain are effectively reduced or even eliminated by the PV plant, 
making it easier to estimate the higher than the lower quantiles. 

4.2. Deterministic PV power forecasting 

The verification results for the seven methods for deterministic 
forecasting are summarized in Table 4, in parallel for the MAE- 
optimized and MSE-optimized forecasts. For all methods, the MAE- 
optimized forecasts have lower MAEs, and the MSE-optimized fore-
casts have lower MSEs compared to the forecasts optimized for the other 
directive, which confirms the expectations and justifies the importance 
of the optimization. In all cases, it is important to keep the rule of 
consistency in mind, which means that the predictive distribution 
should always be summarized by the elicitable functional that corre-
sponds to the directive, i.e., the median and mean for the MAE and MSE- 
optimized forecasts, respectively. 

The best deterministic forecasts, optimized either for MAE or MSE, 
are created by method 3C, the one that also provides the most accurate 
probabilistic forecasts. Among the uncalibrated methods, method 2R 
also offers a decent accuracy with only a 1.8% higher MAE and 1.3% 
higher RMSE compared to method 3C, which might suggest that cali-
bration is only of marginal importance to deterministic forecasting. 
However, it must be seen that method 3R has significantly higher errors, 
which means that using random model chains is only advised if cali-
bration is possible; otherwise, it is better to stay with the single opti-
mized model chain for all ensemble NWP members. The added value of 
the ensemble NWP in the deterministic PV power forecasting is in line 
with the GHI forecast verification results, shown in Fig. 2, which 
revealed that both the mean and the median of the ensemble are more 
accurate than the control forecast. 

If only deterministic NWP is available, method 1C can still offer a 
4.5% MAE and 4.6% RMSE reduction as compared to the base case of 
method 0. The calibration is an important contributor to the good per-
formance of this method, since its uncalibrated version (method 1R) has 
the highest errors in all respects, which is coherent with the findings of 
[26]. The calibration also decreases the quite significant positive bias of 
the raw forecasts, and it also helps to set the variance ratio close to its 
optimal value. For example, the optimal variance ratio of an 
MSE-optimized forecast with a 0.883 correlation coefficient is around 
78% (which is the square of the correlation coefficient), which is indeed 
close to the actual variance ratio of the forecasts created with method 
3C. For the best methods, the RMSE skill scores over the CLIPER refer-
ence exceed 40%, which is even higher than the skill of other 
state-of-the-art PV power forecasting methods, e.g., the hybridization of 
physical model chains with machine learning [29], which can be 
attributed to the known good accuracy of the ECMWF GHI forecasts 
[69], the added value of the ensemble NWP, and the effectiveness of the 

Table 3 
Verification metrics of the probabilistic forecasts created with the six different methods averaged for all PV plants. Bold fonts stand for the column-wise best values.  

Method QR NWP Model chain CRPS REL RES MARE PIAW 

1R Raw Point Random 26.8% 21.8% 45.2% 0.176 8.4% 
2R Ensemble Single best 20.6% 7.0% 36.5% 0.145 24.9% 
3R Random 21.3% 6.7% 35.6% 0.120 28.4% 
1C Calibrated Point Random 19.1% 0.6% 31.7% 0.014 53.7% 
2C Ensemble Single best 18.8% 0.8% 32.1% 0.013 51.5% 
3C Random 18.4% 0.7% 32.4% 0.014 50.7%  

Fig. 7. Normalized PIAW, averaged for all PV plants, as a function of the PI 
nominal coverage rate for all six methods. MC: model chain. 

Fig. 8. Normalized quantile score, averaged for all PV plants, as a function of 
the quantiles for all six methods. MC: model chain. 

M.J. Mayer and D. Yang                                                                                                                                                                                                                      



´

– 

– 

´

´

’

’

–

–

–

–

–

´

ρ ρ 

−
−
−

https://doi.org/10.1016/j.rser.2022.112348
https://doi.org/10.1007/s00376-021-1372-8
https://doi.org/10.1007/s00376-021-1372-8
https://doi.org/10.1109/OAJPE.2020.3029979
https://doi.org/10.1109/OAJPE.2020.3029979
https://doi.org/10.1016/j.rser.2021.110735
https://doi.org/10.1016/j.rser.2021.110735
https://doi.org/10.1016/j.solener.2021.03.023
https://doi.org/10.1016/j.jcp.2007.02.014
https://doi.org/10.1007/978-3-642-39925-1_13
https://doi.org/10.1007/978-3-642-39925-1_13
https://doi.org/10.1016/j.apenergy.2020.116239
https://doi.org/10.1016/j.apenergy.2020.116239
http://hdl.handle.net/10890/15112
http://hdl.handle.net/10890/15112


Renewable and Sustainable Energy Reviews 175 (2023) 113171

11
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