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Under the two-step framework of photovoltaic (PV) power forecasting, that is, forecasting first the irradiance and
then converting it to PV power, there are two chief ways in which one can account for the uncertainty embedded
in the final PV power forecast. One of those is to produce probabilistic irradiance forecast through, for example,
ensemble numerical weather prediction (NWP), and the other is to pass the irradiance forecast through a
collection of different irradiance-to-power conversion sequences, which are known as model chains. This work
investigates, for the first time, into the question: Whether pairing ensemble NWP with ensemble model chain is
better than leveraging any individual method alone? Using data from 14 utility-scale ground-mounted PV plants
in Hungary and the state-of-the-art global mesoscale NWP model of the European Centre for Medium-Range
Weather Forecasts, it is herein demonstrated that the best probabilistic PV power forecast needs to consider
both ensemble NWP and ensemble model chain. Furthermore, owing to the higher-quality probabilistic forecasts,
the point forecast accuracy is also improved substantially through pairing. Overall, the recommended paring
strategy achieves a mean-normalized continuous ranked probability score and a root mean square error of 18.4%

and 42.1%, respectively.

1. Introduction

The backbone of state-of-the-art photovoltaic (PV) power fore-
casting, or energy forecasting in general, is physical modeling [1-3]. The
general process of physical PV power forecasting, on intra-day and
day-ahead scales, includes, as the first step, modeling the dynamics of
the atmosphere with numerical weather prediction (NWP) models, and
then, modeling the power output of the PV plant with physical model
chains. At the end of these two steps, one should further apply various
data-driven (i.e., statistical and machine learning) post-processing
methods, which are able to enhance the quality of the physical
modeling results, as to achieve bias reduction and calibration [4,5].
There are certainly many aspects of post-processing that still require
attention, this work should nonetheless wish to focus on the physical
modeling itself, and use just a basic calibration tool.

Forecasts can be either deterministic (also known as point, single-
valued, or best-guess) or probabilistic (also known as ensemble or
distributional). NWP leverages the laws of physics to predict the state of
the atmosphere. In that respect, it is a two-step procedure, first of
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diagnosis and second of prognosis. The diagnosis step may be viewed as
an initial value problem, in which myriads of observations of current
weather from heterogeneous and autonomous sources are assimilated,
as to arrive at an estimate of the current state of the atmosphere. Then, in
the prognosis step, future states of the atmosphere are determined by
integrating the governing partial differential equations describing the
evolution of the weather. Weather is historically regarded as a deter-
ministic process, in that if the initial conditions and the physical laws are
known exactly, the future states can be deterministically calculated. In
this regard, each NWP model consists of a set of physical schemes and
parameterizations, selected from a large pool of differing options. The
most appropriate combination (i.e., the “perfect” model) is usually
identified by a group of experienced meteorologists, according to the
forecasting situation of concern and after years of tuning and updating.
Unfortunately, owing to the chaotic nature of the weather, which was
first discovered in the 1960s, even the accuracy of the “perfect” model is
frequently found to be unsatisfactory. Ensemble NWP has thence
become the mainstream. Simply put, ensemble NWP runs the same NWP
model several times, each with a different set of initial conditions, which
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results in as many equally likely weather trajectories, i.e., ensemble
weather forecasts [6,7]. Insofar as the present experience can advise,
ensemble NWP possesses two distinct advantages over deterministic
NWRP: (1) it is able to quantify the uncertainty and thus predictability of
the forecasting situation; and (2) when forecasts from an ensemble NWP
model are summarized into deterministic ones, e.g., by taking the means
or medians, they are almost always found to be more accurate than the
best-guess forecasts from the “perfect” model. The concept of ensemble
NWP is illustrated in Fig. 1 (a).

Physical model chain, as suggested by its name, considers a series of
energy meteorology models in cascade, where the output of a preceding
model acts as input of a succeeding model. For instance, with the loca-
tion and time information, solar positioning can be performed, of which
an output is the solar zenith angle, which is required by the separation
and transposition models. And the output of transposition models,
namely, the tilted global irradiance, is needed by the DC power model.
Whereas the DC power model outputs the DC power, an inverter model
is used to convert that into AC power, considering the topology of the PV
system, which includes wiring, fleet spacing, voltage level, among other
factors. The reader is referred to Refs. [8-10] for fundamentals of model
chains. In short, a model chain converts the initial weather input vari-
ables, which include, in the main, global horizontal irradiance (GHI),
ambient temperature, and surface wind speed, into PV power, in a
step-by-step fashion, using the PV plant’s design parameters and speci-
fications. In the language of computer scientists, the model chain is the
cyber dual of the physical PV system. Generally speaking, the higher
degree to which the design parameters and specifications are known, the
better the performance of a model chain would be, although some in-
formation is more critical than others [11]. Similar to the physical
schemes and parameterizations of NWP, solar energy meteorology
models used in the model chain also need to be selected, as there could
be as many as hundreds of options for each stage of the model chain.
Traditionally, the model chain is also viewed as a deterministic process:
One can either select the best-performing model for each stage, or
optimize the model chain as a whole—this is because the simple cascade
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Fig. 1. Schematics of (a) ensemble numerical weather prediction and (b)
ensemble of model chains, where each circle represents a component model. In
both subfigures, the red line marks the “best-guess” prediction, whereas the
blue lines exemplify the member trajectories.
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of best single-stage models can rarely lead to the best overall perfor-
mance [8]. On this point, if each model chain is considered as a probable
path of irradiance-to-power conversion, collecting several of those re-
sults in an ensemble model chain; the situation is highly analogous to the
ensemble of weather trajectories. Fig. 1 (b) shows the schematic diagram
of the ensemble model chain.

With the above background information, it is obvious that there are
three ways to generate probabilistic PV power forecast: (1) deterministic
NWP + ensemble model chain, (2) ensemble NWP + deterministic
model chain, and (3) ensemble NWP 4 ensemble model chain. The
relevant question is therefore this: Which option is the most advanta-
geous and why? This work seeks to provide some empirical evidence on
that, using data collected at 14 utility-scale ground-mounted PV plants
in Hungary, alongside the ensemble NWP forecasts from the European
Centre for Medium-Range Weather Forecasts (ECMWF). As a byproduct,
we also investigate the deterministic forecasting performance of various
options—recall that probabilistic forecasts can be summarized into
deterministic ones—and compare the summarized forecasts to the ones
obtained from the traditional deterministic forecasting procedure, that
is, deterministic NWP + deterministic model chain. Last but not least,
since ensemble forecasts from physical methods are often found to be
underdispersed, quantile regression, as a calibration tool, is thought
beneficial and therefore included in the analysis.

The remaining part of the paper is organized as follows. Section 2
introduces the data. Worth-noting is that, aside from the PV system and
NWP forecast data, we also consider satellite-derived irradiance in this
work, which is used to gauge the quality of NWP irradiance forecasts.
Section 3 delivers the methods for generating and calibrating the PV
power forecasts. The verification of deterministic and probabilistic
forecasts resulting from various aforementioned options is depicted in
Section 4. Conclusions follow at the end.

2. Data

The analyses performed in this study rely on data from three sources,
which are introduced in the following subsections. The ensemble NWP
weather forecast data of the ECMWF, which serve as a basis for calcu-
lating the PV power forecasts, is described in Section 2.1. The specifi-
cations and characteristics of the Copernicus Atmosphere Monitoring
Service (CAMS) radiation service (CAMS-Rad) satellite-derived irradi-
ance, which is used as verifications for NWP forecasts, are detailed in
Section 2.2. The design data of the PV plants, which is required for their
physical modeling, and their power production data, which is used for
the verification, are summarized in Section 2.3.

2.1. Numerical weather prediction data

The NWP forecasts used in this paper come from the ECMWEF’s In-
tegrated Forecasting System (IFS). IFS is a mesoscale NWP system
covering the entire globe and hosts a range of meteorological and
oceanographic products. Two products are of relevance here, which are
“Set I — Atmospheric Model high resolution 10-day forecast (HRES)” and
“Set III — Atmospheric model ensemble 15-day forecast (ENS),” with the
former issuing deterministic forecasts and the latter probabilistic. Both
products are operational and disseminate forecasts to licensed users four
times a day, at 00Z, 06Z, 12Z, and 18Z, where “Z” denotes Zulu time. In
each run, HRES and ENS produce 240-h and 360-h forecasts, respec-
tively. Since these products are operational, they undergo changes
regularly, not just in terms of the physics packages and parameteriza-
tions used in the model, but also in terms of output variable and output
resolution.

HRES is the highest-resolution configuration of IFS. At present, it has
a horizontal resolution of 9 km with 137 vertical layers. Temporally,
HRES forecasts are hourly for the first 90 h, 3 hourly for 93-144 h, and 6
hourly for 150-240 h. In contrast, ENS has a lower horizontal resolution
of 18 km, but with the same temporal resolution, except that it issues 6-
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Fig. 2. Mean absolute errors (MAE) and root mean square errors (RMSE) of the 50 ensemble members (shown by boxplots), the control forecast, and the mean and

median of the ensemble members.

hourly forecasts for horizons ranging from 150 to 360 h. Hence, to
isolate the effect of spatial-scale mismatch [12,13] as far as possible, we
do not mix HRES deterministic forecasts with ENS ensemble forecasts in
this work. Instead, the control (i.e., best-guess) run of ENS is used as the
deterministic version.

Indeed, ENS, as an ensemble model, repeats the HRES model 51
times, among which there are 1 control run and 50 perturbed runs.
Whereas the control run leverages the best-possible initial conditions,
each of the 50 perturbed runs uses a slightly different set of initial
conditions, which are obtained using a method combining both the
singular vector (SV) and ensemble data assimilation (EDA), following:

ENS member i = HRES + (EDA member i — EDA mean) + SV Perturbation i
(€8]

The reader is referred to Bonavita et al. [14] and Diaconescu and Laprice

[15], as well as the official documentation,’ for details on EDA and SV,
respectively. In any case, as reported by Buizza et al. [16], the combi-
nation of EDA and SV is novel and more effective than using any one
method alone.

ENS forecasts can be obtained in real-time from the ECMWEF’s
Meteorological Archival and Retrieval System (MARS). In this work,
forecasts from the 00Z run, over a period of two years (2019-2020), over
aregion covering all PV systems of interest, are downloaded from MARS
at the original resolution without any post-processing. More specifically,
three parameters, namely, GHI, ambient temperature at 2 m, and surface
wind speed (converted from the U- and V-component wind), are ac-
quired, which are necessary for meaningful model-chain implementa-
tion. To comply to the actual operational day-ahead solar forecasting
requirements, 25-48-h-ahead forecasts are selected for each 00Z run;
this factors in both the initial run time of the NWP model (i.e., the first

! https://confluence.ecmwf.int/display/FUG/5.1+Generation+of + the

+Ensemble.
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few hours of forecasts are not disseminated on time) and the grid-side
submission lead time (i.e., forecasts are to be submitted a few hours
before the operating day).

Notwithstanding, given the fact that the PV power data has a reso-
lution of 15 min (see below), the hourly NWP needs to be downscaled.
Here, a simple clear-sky interpolation is used for GHI forecasts, whereas
simple linear interpolation is used for temperature and wind speed
forecasts. It should be emphasized that clear-sky interpolation of irra-
diance is essential due to the presence of the diurnal cycle in irradiance
time series. Stated differently, the interpolation must be done first in
clear-sky index terms and then back-transformed into irradiance using
the corresponding clear-sky GHI values at the interpolated time stamps.
The clear-sky irradiance model used to retrieve the clear-sky index from
GHI is McClear [17,18], which has been recommended as suitable for
solar forecasting applications [19,20].

2.2. Satellite-derived irradiance data

Since the PV power forecast accuracy depends on that of irradiance,
it is of interest to verify the NWP irradiance forecasts. For that purpose,
this work considers the satellite-derived irradiance from the CAMS-Rad
database. The verification of forecasts, at least in the solar energy
meteorology context, is conventionally based upon ground-based mea-
surements, for data of this kind is of a higher quality as compared to
satellite-derived irradiance. Whereas this preference still holds, it suffers
from a major drawback—high-quality long-term radiometry stations are
exceedingly few due to their high equipment and maintenance costs.
Therefore, meteorologists have long been leveraging remote-sensed
observations as verifications (i.e., the “true” values), especially when
forecast verification needs to be done over a region [21,22].

Verification of irradiance forecasts using satellite-derived irradiance
is but a very recently thought of strategy. The earliest known work is the
one by Perez et al. [23], who noticed that the forecast root mean square
errors (RMSEs) of some forecasts against ground-based measurements
and that against SolarAnywhere irradiance are comparable. Nonethe-
less, it is well known now that accuracy is just one aspect of forecast
quality, and many other aspects, such as bias, calibration, refinement, or
discrimination, do contribute to the overall judgment and confidence of
forecasters and forecast users. In this regard, Yang and Perez [24]
revisited the problem, presented a holistic extension to the initial work,
and documented the distinctions in NWP forecast verification results,
using both ground-based measurements and satellite-derived irradiance;
the Murphy-Winkler verification framework was used, which is able to
quantify the different aforementioned aspects of forecast quality. The
main conclusion made therein is that satellite-derived irradiance, based
on the latest generation of geostationary weather satellites and

Table 1
Name, location, and design data of the 14 ground-mounted PV power plants
included in this paper. Pp¢: installed DC capacity, Pac: nominal AC power.

Name Coordinates Ppc kW Ppc kW Nr. Of valid data
points

2019 2020

Bodajk 47.33° N, 18.22° E 590 498 17,496 17,547
Cegléd 47.19° N, 19.80° E 590 498 17,035 17,015
Felsézsolca 48.12° N, 20.89° E 20,038 16,776 17,300 17,337
Fert6széplak 47.61° N, 16.84° E 590 498 17,499 17,583
Gy6rvar 46.99° N, 16.83° E 590 498 17,467 17,437
Kajarpéc 47.51° N, 17.62° E 590 498 17,339 17,574
Kecel 46.53° N, 19.22° E 590 498 17,056 17,084
Kotegyan 46.74° N, 21.48° E 590 498 16,921 17,102
Mezokovacshdza  46.40° N, 20.90° E 590 498 17,052 16,973
Nagyvazsony 46.98° N, 17.69° E 590 498 17,513 17,543
Paks 46.57° N, 18.82° E 20,680 17,244 17,179 17,188
Pécs 46.06° N, 18.26° E 10,044 10,097 16,993 17,090
Ujkigyos 46.60° N, 20.99° E 590 498 17,061 16,924
Veszprém 47.10° N, 17.87° E 590 498 17,517 17,533
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cloud-to-irradiance algorithms, is adequate for forecast-verification
purposes.

Coming back to CAMS-Rad, it is derived using the Heliosat-4 method
from the images acquired by the Meteosat Second Generation (MSG)
satellites, and has been shown to be more advantageous than the Surface
Solar Radiation Data Set — Heliosat (SARAH-2) [25], which is another
satellite-derived irradiance product based on the MSG satellites.
Spatially, CAMS-Rad covers a disk region centered at the Meridian and
the Equator, extending out to +66° in latitude and similar in longitude.
Temporally, CAMS-Rad irradiance can be obtained in 1-, 15-, 30-, and
60-min resolutions. In this work, 15-min CAM-Rad irradiance is down-
loaded using the web services from the SoDa-pro website,” over the
two-year (2019-2020) period and for each PV system location. It is
worth mentioning that, unlike other satellite-derived irradiance prod-
ucts, such as SARAH-2 or the National Solar Radiation Database
(NSRDB), of which the spatial resolution is fixed to that of the raw
satellite imagery, CAMS-Rad uses interpolation. For that reason, it is
able to alleviate spatial-scale mismatch to some extent, and thus may
better resemble ground-based measurements.

The verification of the NWP GHI forecasts is performed by calcu-
lating the mean absolute error (MAE) and root mean square error
(RMSE) of the control forecasts, all ensemble members, and the mean
and median of the ensemble. The MAE and RMSE are shown separately
for each PV plant location in Fig. 2. The results reveal that the control
forecasts lower errors than any of the 50 individual ensemble members
in terms of both metrics in all locations. However, the mean and median
of the ensemble is even considerably more accurate than the “best guess”
control forecasts, which suggests that ensemble forecasting has a sig-
nificant added value even if the ultimate goal is deterministic fore-
casting. In terms of MAE, the median of the ensemble is the more
accurate, while in terms of RMSE, the mean is the most accurate, which
empirically demonstrates the statistical fact that the MAE is minimized
by the median, and the MSE is minimized by the mean.

2.3. Photovoltaic power plant and production data

The power forecasting methods proposed in this paper are tested for
14 utility-scale ground-mounted PV plants in Hungary. These PV plants
were installed in 2018, and they are operated by MVM Green Generation
Ltd. The modules are mounted on parallel rows of mounting structures
with a south-facing orientation and 20-35° tilt angles, depending on the
plants. The power generation data of these PV plants cover the whole
years of 2019 and 2020 with a 15-min temporal resolution.

The preprocessing of the power production data includes the
removal of all nighttime values, which are identified by a zenith angle
>90° filter. Moreover, the daytime periods with no power output are
also removed, as those discontinuities are due to errors or maintenance
of the PV plants. The metadata of the PV plant and generation data is
listed in Table 1.

3. Methods

The general concepts of creating deterministic and probabilistic
power forecasts are explained in Section 3.1. Afterward, the methods
responsible for the generation and calibration of the power forecasts
from the raw NWP forecasts, namely, physical PV model chains and the
quantile regression, are described in Sections 3.2 and 3.3, respectively.
Finally, Sections 3.4 and 3.5 present the applied verification practices,
respectively, for the deterministic and probabilistic forecasts.

2 https://www.soda-pro.com/web-services/radiation/cams-radiation-service
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3.1. Concepts for photovoltaic power forecasting

The general procedure of NWP-based physical PV power forecasting
is to convert the GHI, ambient temperature, and wind speed forecasts to
power output forecasts by simulating the behavior of the PV plants by a
physical model chain.® The model chain itself is a general concept,
which can be realized in many different ways, depending on how many
modeling steps are included and which models are used in these steps.
Different model chains map the weather forecasts to PV power differ-
ently; therefore, the selection of the model chain can affect the power
forecast errors by more than 10% [8]. To that end, the power conversion
with an arbitrarily selected model chain is often suboptimal, and thus it
prevents reliably judging the potential accuracy of any forecasting
method that involves model chains. A possible solution, as proposed in
Ref. [8], is to optimize the model chain by calculating the power fore-
casts with many different model chains, then selecting the one that
performs the best in terms of a chosen metric. This process, which can
only issue deterministic forecasts, is referred to as method 0 in this paper.

Model chain was traditionally considered a deterministic tool, and it
was not until the method recently proposed by Mayer and Yang [26] that
the utilization of the model chain was extended for probabilistic
irradiance-to-power conversion. The idea behind this extension is the
poor man’s ensemble (or model ensemble), where the same input data
are converted to different outputs by different models. In the context of
irradiance-to-power conversion, it means that the deterministic NWP
forecasts are converted to PV power by a set of different model chains,
which are then interpreted as an ensemble, describing a probability
distribution of the power output. This approach is implemented in this
paper and is referred to as method 1 henceforth; without loss of gener-
ality, we randomly selected 50 model chains for method 1, as to match
the number of ensemble members of the ECMWF ENS forecasts.

In methods 2 and 3, the irradiance-to-power conversion is performed
similarly as in methods 0 and 1, respectively, with the difference that
methods 2 and 3 are based on probabilistic instead of deterministic NWP
forecasts. In the case of the ensemble members, it must be noted that
they cannot be regarded as models, since the members for each run are
subject to a random initialization independent of previous runs. In other
words, members having the same index for two consecutive days (e.g.,
member 1 today and member 1 tomorrow) are unrelated and thus
should not be grouped together during training. What should be done
instead is to first translate the ensemble members into the quantiles of
the predictive density by assuming equal probability for each member,
which can be done simply by sorting the GHI member forecasts for each
timestep. Afterward, instead of the original members, the sorted quan-
tiles are used in all further calculations. In method 2, the GHI, ambient
temperature, and wind speed forecasts of all 50 ENS quantiles are con-
verted individually to PV power by a single model chain, namely, the
one that was found to be the best for deterministic forecasting in method
0. In method 3, the NWP forecasts of the 50 ensemble quantiles are
converted to PV power with 50 different, randomly selected model
chains (1-to-1 paring, i.e., one model chain for each ENS quantile).

Raw ensemble forecasts are typically underdispersed, as they are
unable to fully account for all sources of uncertainty during their crea-
tion [27]. Therefore, the reliability of the ensemble forecasts can only be
ensured by a data-driven calibration procedure. In this paper, the cali-
bration is achieved by performing quantile regression, which requires no
assumption on the shape of the distribution of the power forecast error.
Calibration requires historical data; therefore, it cannot be performed
for newly commenced PV plants. Considering the calibration step,

3 For high-latitude region, surface albedo constitutes another essential input
parameter, as excessive surface brightness due to white sand and snow can
affect the ground-reflected irradiance substantially. But considering the geog-
raphy of Hungary, surface albedo is less important a parameter, and thus is not
considered.
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methods 1, 2, and 3 can all be further separated into two cases, distin-
guished by letters "R" and "C," which stand for the raw and calibrated
ensemble, respectively. In the methods relying on the raw ensemble, the
ensemble members are translated to quantiles using a uniform spacing of
the cumulative probabilities [28].

The above-presented methods are visualized in Fig. 3. As mentioned
in the introduction, the NWP forecasts and the irradiance-to-power
conversion can both be deterministic or probabilistic, which results in
four distinct combinations. Based on this, method 0 yields deterministic
forecasts with no uncertainty quantification, while the forecasts created
by method 1 only include the uncertainty of the PV plant modeling, the
forecasts of method 2 only include the uncertainty of the weather pre-
diction, while the forecasts of method 3 include the uncertainty of both
sources. Methods 1R, 2R, and 3R, when paired with quantile regression,
lead to three new methods (i.e., 1C, 2C, and 3C), making a total of seven
methods.

Six out of the seven methods generate probabilistic forecasts; how-
ever, these can also be summarized into deterministic forecasts by
assigning a statistical functional, e.g., the mean or the median, of the
probability density function for each timestep. A sample time series plot
of how the original probabilistic and the resulting deterministic fore-
casts are related to each other is shown in Fig. 4. All seven methods are
capable of creating deterministic forecasts as well; therefore, they are
also evaluated as deterministic forecasting methods, which enables one
to quantify the added benefit of the ensemble NWP not only for prob-
abilistic but also for deterministic PV power forecasting.

3.2. Physical photovoltaic model chains

Conversion of weather forecasts into PV power forecasts can be done
by a successive set of models, which are constituents of a model chain.
After solar positioning, which is essential for obtaining the Sun-position-
related information such as zenith and incidence angles, the calculation
starts with the separation of the GHI into the beam and diffuse compo-
nents, which is then followed by transposing the horizontal irradiance
components onto the tilted module plane. Afterward, the cell tempera-
ture is estimated from the incident irradiance, ambient temperature, and
wind speed, and the power output of the PV modules is calculated by
taking into account the dependence of the DC power output on the
irradiance and cell temperature. Above these basic modeling steps, more
sophisticated model chains also account for the reflection losses from the
module surface, the inter-row shading, and the inverter, cable, and other
losses.

The model chain framework used in this paper follows the imple-
mentation first proposed in Ref. [8], which has benefited several later
studies [11,29]. As shown in Fig. 5, this model chain framework includes
nine modeling steps, seven of which are considered as the main steps,
where multiple component model options are included. The list of the
component models of choice is summarized in Table 2. In summary, the
nine separation, ten transposition, three reflection, five cell tempera-
ture, four PV efficiency, two shading, and three inverter models, result in
a total of 32,400 different model chains. During the optimization of the
model chain, the power forecasts are calculated by all these model
chains for the year 2019, and the model chains that lead to the lowest
mean absolute error (MAE) and root mean square error (RMSE) are
selected as the two best options corresponding to these two verification
directives. In the methods with randomly selected model chains, the
used model chains are picked from these 32,400 variants with a uniform
probability.

3.3. Quantile regression

Quantile regression (QR) maps the relationship between the pre-
dictors and a selected quantile of a probability distribution. To do this,
the loss function of quantile regression is the pinball loss, which is
calculated as
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Fig. 3. Schematic of the different methods compared in this paper for PV power forecasting based on NWP. Orange and blue colors indicate deterministic and

probabilistic forecasts, respectively.
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of the predictive distribution for a sample period for the Kecel PV plant.
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where y is the observation and x; is the forecast for quantile 7. QR can
either be linear or nonlinear; however, as the model chains can account
for the nonlinear dependence of the PV power on the weather forecasts,
the linear regression is thought to be sufficient for calibration purposes.
Moreover, nonlinear QR models can also learn the uncertainty from the
historical data, while a linear QR only scales the spread of the ensemble.
Considering this, linear QR better aligns with the main aim of the pre-
sent paper, which is to gauge the capabilities of physical methods in
probabilistic forecasting.

The predictors of the QR are the 50 PV power forecast ensemble
members in the case of each method. The calibration is performed by
calculating the 20 quantiles from 0.025 to 0.975 with 0.05 increments
using the QuantileRegressor class of the scikit-learn Python package. The
coefficients of the linear quantile regression models are fitted using the
data from 2019. As a final post-processing step, the calculated quantiles
are limited to the range of the physically possible power output of the PV
plants, which is between zero and the nominal installed AC power.

3.4. Verification of deterministic power forecasts

In this paper, except for method 0, the deterministic forecasts are
summarized from the predictive distribution of probabilistic forecasts
either by using the mean or the median of the distribution as point
forecasts. These two statistical functionals, however, correspond to two
distinct directives. The mean value minimizes the mean square error

(MSE), while the median minimizes the mean absolute error (MAE) of
the forecasts [60]. These two directives are to create MSE-optimized
forecasts and MAE-optimized forecasts, respectively. In forecast verifi-
cation, the rule of consistency means that the forecasts should be eval-
uated using the same score as they are optimized for [61,62]. In that,
considering these two directives, the two main error metrics used for
deterministic forecast verification are the MAE and RMSE, calculated as

1 N
MAE:N;mfxfl, 3

RMSE = (C))

where f and x denote the forecast and observation, and N is the number
of daytime data points.

The correlation coefficient reflects the association between the ob-
servations and the forecasts, and it can be calculated as

cov(f,x
p: (f )7

Of0y

)

where cov (-,-) stands for the covariance and ¢ is the standard deviation.
The correlation coefficient can also be seen as a measure of the potential
skillfulness of forecasts [63]. On the one hand, this means it is less
affected by the directive for which the forecasts are calibrated; it can be
used as a more universal indicator of the goodness of forecasts [64]. On
the other hand, the correlation coefficient does not carry any
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Fig. 5. The component models of the physical PV model chains for converting
NWP into PV power output [8]. Yellow boxes represent the seven main
modeling steps where multiple model variants are compared.

information about the bias and variance of the forecasts; it should be
used along with other metrics that reflect the actual calibration of the
forecasts. The unconditional bias between the observations and forecasts
can be measured by the mean bias error (MBE), calculated as

1 N
MBE =~ ;(ﬁfx,‘). (6)

The dispersion of the forecasts can be reflected by the variance ratio,
as introduced in Ref. [8], which is the ratio of the variance of the fore-
casts and observations,

V()

F:m7 7)

where V () is the variance operator. A variance ratio lower and higher
than 1 indicates underdispersion and overdispersion of the forecasts,
respectively. Underdispersed forecasts are less capable of covering
extremely low and high power outputs. However, as shown in Ref. [64],
MSE-optimized forecasts are always underdispersed. Therefore, under-
dispersion, as long as it is done consciously, should not be considered a
sign of bad forecasting performance.

Finally, perhaps the most general recommendation for deterministic
solar forecast verification is to use the RMSE skill score to measure the
overall skillfulness of the forecasts [19]. The skill score is calculated as
the relative RMSE reduction compared to a naive reference method,

RMSE,

" RMSE,,’ ®

Sep = 1

where the cp subscript stands for the CLIPER reference method, which is
the optimal convex combination of climatology and persistence [65].
The RMSE skill score is only calculated for the MSE-optimized forecasts,
as it is not consistent with the directive of the MAE-optimized forecasts.
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Table 2
Modeling steps and component models of the physical model chains considered
in this study [11].

Modeling steps Component models Ref.
Separation Erss [30]
SKARTVEIT-OLSETH [31]
DISC [32]
DIRINT [33]
DIRINDEX [34]
BRL [35]
ENGERER [36]
STARKE [37]
ABREU [38]
Transposition Liu-JORDAN [39]
STEVEN [40]
Hay [41]
WiLLmotr [42]
SKARTVEIT-OLSETH [43]
GUEYMARD [44]
MUNEER [45]
KLUGHER [46]
PEREZ [47]
REINDL [48]
Reflection None
MARTIN-RUIZ [49]
PHYSICAL [50]
Temperature NOCT [51]
King [52]
FAIMAN [53]
MATTEI [54]
SKOPLAKI [55]
PV module Evans [56]
Huwp [57]
SINGLE DIODE 4 PAR. [58]
SINGLE DIODE 5 PAR. [58]
Shading None
BEAM SHADING [10]
Inverter CONSTANT
QUADRATIC [59]
DRIESSE [59]

3.5. Verification of probabilistic power forecasts

The two main attributes that characterize the quality of probabilistic
forecasts are reliability and sharpness. Reliability (or calibration) in-
dicates the statistical consistency between the observations and the
forecasts, which means that the difference between the nominal and
observed probabilities should be small. A visual tool to evaluate reli-
ability is a reliability diagram, which shows the proportions of the ob-
servations as the function of the nominal probability for all quantiles
(see Fig. 6). For perfectly reliable forecasts, all points of the reliability
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Fig. 6. Reliability diagram for all six methods. MC: model chain.
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diagram should fall on the diagonal line. A commonly used metric to
measure reliability is the prediction interval coverage probability
(PICP). Nevertheless, its drawback is that it can suggest perfect reli-
ability even if both quantiles defining the prediction interval are biased.
To overcome this drawback, a new metric called mean absolute reli-
ability error (MARE) is proposed in Ref. [26], which is calculated as the
mean absolute error between the observed and nominal proportions for
all quantiles, i.e.,

1 K
MARE = > |db = deomls ©
k=1

where K is the number of the calculated quantiles, and ¢ is the
observed and ¢X, is the nominal proportion at the k" calculated
quantile. Visually, MARE is the MAE of the calibration line compared to
the diagonal in the reliability diagrams (see Fig. 6).

Sharpness expresses how informative the forecasts are, which is re-
flected by the concentration of the predictive distribution. Sharpness is
commonly measured by the prediction interval average widths (PIAW),
calculated as

N

w1, (10)

i=1

PIAW =

where U; and L; are the upper and lower bounds of the prediction in-
terval of interest. PIAW is calculated and averaged for all symmetric
prediction intervals defined by the calculated quantiles, resulting in a
PIAW. Moreover, the sharpness of all symmetric prediction intervals
separately can be visualized by a sharpness diagram, which shows the
PIAW as a function of the nominal coverage of the prediction intervals.

The overall performance of probabilistic forecasts is measured by
scoring rules. The consistency, in this case, can be ensured by using
strictly proper scoring rules, which assign the best score if the forecasts
correspond to the best judgment of the forecasters [27]. The most
commonly used strictly proper score is the continuous ranked proba-
bility score (CRPS), calculated as

TN [~
CRPS:N;LO [F¥(x) — 1(x — y;)] dx, (11)

where Fi(x) is the predictive distribution of y;, 1(x —y;) is the Heaviside
step function, and N is the number of data points. The CRPS can be
decomposed into reliability (REL), uncertainty (UNC), and resolution
(RES) components [66], that is,

CRPS =REL + UNC — RES. (12)

The UNC term depends only on the variability of the observations;
therefore, it cannot be affected by the forecaster. The REL component
quantifies the contribution of reliability to the CRPS, with a lower value
representing more reliable forecasts. The RES term expresses the ability
to issue case-dependent forecasts, i.e., different distributions are forecast
for different conditions. Even though their definition is different, the
resolution is closely related to (but not the same as) sharpness for reli-
able forecasts, since the more case-dependent the forecasts are, the more
concentrated their distribution can be [28].

Quantile score (QS) measures the accuracy of a specific quantile, and
it is calculated for each quantile as the average of the pinball loss for the
whole dataset.

1 N
QSe= D, 13)
i=1

The weighted sum of the QS for all quantiles is equal to half of the
CRPS [67]; therefore, a diagram of QS as a function of the quantiles can
reveal how the estimations of the different quantiles contribute to the
CRPS.
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4. Results and discussion

All results presented herein are calculated for the 15-min forecasts
and observations covering the whole year of 2020. The generation and
verification of all forecasts are performed individually for each of the 14
PV plants. The relative performance of all methods is very similar at
each PV plant. For that reason, the results are not presented for the in-
dividual plants, but averaged over all of them to increase their overall
reliability. As three PV plants have significantly higher nominal power
compared to others, all metrics that are proportional to the nominal
power (namely the MAE, RMSE, MBE, PIAW, CRPS, REL, RES, and QS)
are normalized to the mean daytime power output of the PV plants
before averaging to ensure that all PV plants equally contribute to the
presented metrics.

First, the results for probabilistic forecasting are presented in Section
4.1, followed by the verification results for deterministic forecasting in
Section 4.2.

4.1. Probabilistic PV power forecasting

The averaged metrics used for the verification of probabilistic fore-
casts are presented in Table 3. First, the reliability of the forecasts
created by the different methods is assessed. Both the REL component of
the CRPS and the MARE shows that the raw ensembles are unreliable,
which is also supported by the reliability diagram in Fig. 6. Method 1R,
which only covers the uncertainty of the irradiance-to-power conver-
sion, is the least reliable, followed by method 2R, that only accounts for
the uncertainty of the NWP, while among the raw ensembles, the most
reliable is method 3R, which includes the uncertainty from both sources.
This supports the belief that the more sources of uncertainty are
included in the ensemble, the more reliable it can be [27].

The linear calibration largely improves the reliability of the fore-
casts. Based on the MARE, the three methods are almost equally reliable,
while based on the REL component, method 1C is slightly more reliable
than the others. The reliability diagram in Fig. 6 fully supports the
conclusion drawn from the metrics. The calibration curves for methods
1C, 2C, and 3C largely overlap, which suggests that QR, based on a full
year of fitting data, is an effective tool for calibration, regardless of the
reliability of the raw ensemble. For all three calibrated methods, there is
a small positive bias on the quantiles up to around 0.8 cumulative
probability, which supposedly originates from the inter-annual differ-
ences in the statistical characteristics of the solar resource, and it is
expected to decrease as the length of historical data increases.

The sharpness, as measured by the PIAW, varies inversely with the
reliability in the case of five out of these six methods (the exception
being method 3C), i.e., the more reliable forecasts are generally less
sharp. Gneiting’s paradigm for probabilistic forecasting is to maximize
sharpness subject to calibration [27], which suggests that reliability is a
prerequisite for good forecasts, whereas sharpness can be used to
identify the best among the reliable forecasts. Following this train of
thought, only the three calibrated methods can be accepted to be suit-
able for probabilistic forecasting, and among these three, method 3C is
the sharpest, thus the most recommended. A more detailed picture of the
sharpness of the forecasts created by the different methods can be seen
in the sharpness diagram in Fig. 7. The curves for the presented six
methods do not cross each other, which means that the forecasts that are
sharper on average are also sharper on all prediction intervals. The
resolution, as measured by the RES component, of the forecasts corre-
lates well with their average sharpness.

The forecasts with the lowest CRPS are created by method 3C, which
is a clear consequence of its good reliability and its best resolution
among the calibrated methods. It is followed by methods 2C and 1C with
a 2.2-3.5% relative increase in the CRPS, respectively. The relatively
good performance of method 1C is remarkable, as it achieves this good
performance without the need for ensemble NWP forecasts [26], which
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Table 3

Verification metrics of the probabilistic forecasts created with the six different methods averaged for all PV plants. Bold fonts stand for the column-wise best values.
Method QR NwWP Model chain CRPS REL RES MARE PIAW
1R Raw Point Random 26.8% 21.8% 45.2% 0.176 8.4%
2R Ensemble Single best 20.6% 7.0% 36.5% 0.145 24.9%
3R Random 21.3% 6.7% 35.6% 0.120 28.4%
1C Calibrated Point Random 19.1% 0.6% 31.7% 0.014 53.7%
2C Ensemble Single best 18.8% 0.8% 32.1% 0.013 51.5%
3C Random 18.4% 0.7% 32.4% 0.014 50.7%

—— Method 1R: det. GHI, random MC, raw
120%4 Method 2R: prob. GHI, best MC, raw

—— Method 3R: prob. GHI, random MC, raw
—— Method 1C: det. GHI, random MC, calibrated
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—— Method 3C: prob. GHI, random MC, calibrated
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Fig. 7. Normalized PIAW, averaged for all PV plants, as a function of the PI
nominal coverage rate for all six methods. MC: model chain.

carries much significance in practical applications where probabilistic
irradiance forecasts are not available. Among the raw forecasts, method
2R has the lowest CRPS, which is (in relative terms) 12.0% higher than
the overall lowest CRPS (method 3C). This suggests that, even if the
calibration is not possible due to the lack of historical data, the ensemble
NWP carries enough information about the expected uncertainties to
make probabilistic forecasts with a relatively low CRPS—even though
these forecasts, as shown above, are highly unreliable.

The QS, as a function of the quantiles, is shown in Fig. 8. The overall
quadratic shape of the curve with the highest values around the median
is typical for the QS [28], and thus this observation does not require
further explanation. Method 3C has the lowest score for all quantiles,
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Fig. 8. Normalized quantile score, averaged for all PV plants, as a function of
the quantiles for all six methods. MC: model chain.

which is in line with its lowest CRPS. All curves show some degree of
asymmetry, which is more pronounced for the raw methods, reflecting
that the forecasts for the higher quantiles are slightly more accurate than
the forecasts for the lower quantiles. The reason for this should be
sought in the propagation of the errors through the irradiance-to-power
conversion process, as analyzed in detail in Ref. [68]. Particularly, the
power outputs higher than the nominal AC power of the PV plants are
clipped by the inverter, which means that the errors in the high irradi-
ance domain are effectively reduced or even eliminated by the PV plant,
making it easier to estimate the higher than the lower quantiles.

4.2. Deterministic PV power forecasting

The verification results for the seven methods for deterministic
forecasting are summarized in Table 4, in parallel for the MAE-
optimized and MSE-optimized forecasts. For all methods, the MAE-
optimized forecasts have lower MAEs, and the MSE-optimized fore-
casts have lower MSEs compared to the forecasts optimized for the other
directive, which confirms the expectations and justifies the importance
of the optimization. In all cases, it is important to keep the rule of
consistency in mind, which means that the predictive distribution
should always be summarized by the elicitable functional that corre-
sponds to the directive, i.e., the median and mean for the MAE and MSE-
optimized forecasts, respectively.

The best deterministic forecasts, optimized either for MAE or MSE,
are created by method 3C, the one that also provides the most accurate
probabilistic forecasts. Among the uncalibrated methods, method 2R
also offers a decent accuracy with only a 1.8% higher MAE and 1.3%
higher RMSE compared to method 3C, which might suggest that cali-
bration is only of marginal importance to deterministic forecasting.
However, it must be seen that method 3R has significantly higher errors,
which means that using random model chains is only advised if cali-
bration is possible; otherwise, it is better to stay with the single opti-
mized model chain for all ensemble NWP members. The added value of
the ensemble NWP in the deterministic PV power forecasting is in line
with the GHI forecast verification results, shown in Fig. 2, which
revealed that both the mean and the median of the ensemble are more
accurate than the control forecast.

If only deterministic NWP is available, method 1C can still offer a
4.5% MAE and 4.6% RMSE reduction as compared to the base case of
method 0. The calibration is an important contributor to the good per-
formance of this method, since its uncalibrated version (method 1R) has
the highest errors in all respects, which is coherent with the findings of
[26]. The calibration also decreases the quite significant positive bias of
the raw forecasts, and it also helps to set the variance ratio close to its
optimal value. For example, the optimal variance ratio of an
MSE-optimized forecast with a 0.883 correlation coefficient is around
78% (which is the square of the correlation coefficient), which is indeed
close to the actual variance ratio of the forecasts created with method
3C. For the best methods, the RMSE skill scores over the CLIPER refer-
ence exceed 40%, which is even higher than the skill of other
state-of-the-art PV power forecasting methods, e.g., the hybridization of
physical model chains with machine learning [29], which can be
attributed to the known good accuracy of the ECMWF GHI forecasts
[69], the added value of the ensemble NWP, and the effectiveness of the
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Table 4
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Verification metrics of the deterministic forecasts created with the seven different methods averaged for all PV plants. Bold fonts stand for the column-wise best values.
MBE, MAE, and RMSE are presented as a percentage of the mean of the observations.

Method QR NwWP Model chain MAE-optimized MSE-optimized
MAE MBE RMSE P F RMSE MBE MAE P F Sep

0 Raw Point Single best 27.8% 5.2% 45.7% 86.7% 89.6% 44.8% 2.7% 29.1% 86.8% 77.6% 36.6%
1R Random 29.1% 11.1% 48.0% 86.0% 92.5% 48.1% 11.2% 29.2% 86.0% 92.2% 32.2%
2R Ensemble Single best 26.5% 5.6% 43.5% 87.9% 88.1% 42.7% 4.7% 27.0% 88.2% 83.5% 39.8%
3R Random 27.8% 11.3% 45.7% 87.4% 91.0% 44.8% 10.8% 28.1% 87.7% 86.1% 36.9%
1C Calib-rated Point Random 27.0% 2.6% 44.5% 87.2% 89.5% 43.5% —0.3% 29.2% 87.6% 73.2% 38.8%
2C Ensemble Single best 26.5% 1.2% 43.3% 87.8% 86.9% 42.5% -0.7% 28.5% 88.1% 72.3% 40.1%
3C Random 26.1% 1.5% 43.1% 88.0% 89.1% 42.1% —0.5% 27.9% 88.3% 74.8% 40.6%

presented methods.
5. Conclusion

The main aim of this paper is to discover the most effective proba-
bilistic photovoltaic (PV) power forecasting method relying on physical
modeling approaches, namely, numerical weather prediction (NWP) for
forecasting solar irradiance and other relevant weather variables, and
model chains to simulate the operation of PV plants and covert the
weather forecasts to PV power. In this two-step general framework, the
uncertainty information can be drawn from either (or both) an ensemble
NWP or an ensemble of model chains.

The performance of the raw and calibrated versions of three distinct
methods are evaluated empirically at 14 utility-scale ground-mounted
PV plants in Hungary, based on the ensemble NWP forecasts of the
ECMWEF. The results revealed that the best approach for probabilistic
forecasting, in terms of the lowest CRPS, is to convert all ensemble NWP
quantiles into PV power by randomly selected model chains and cali-
brate the resulting ensemble by a linear quantile regression (QR).
Alternatively, if no ensemble NWP is available, the method proposed in
Ref. [26], which includes the conversion of the deterministic NWP into
power by an ensemble of randomly selected model chains and the
calibration by a QR, is also favorable, with only a 3.5% CRPS increase
compared to the best approach. Alternatively, if the calibration is not
possible due to the lack of at least a one-year-long historical dataset,
ensemble NWP forecasts could still be converted to PV power forecasts
by an optimized model chain, yielding a CRPS 12% higher than the best
case. However, the resulting power forecasts would be underdispersed,
as the reliability of the probabilistic forecasts cannot be ensured without
calibration, even if the uncertainties originated from both the NWP and
the model chains are included.

Since any probabilistic forecasts can be easily turned into deter-
ministic forecasts by summarizing their predictive distributions, the
presented methods are also evaluated for their deterministic forecasting
performance. The results reveal that the method found to be the best for
probabilistic is also the most accurate for deterministic forecasting. An
advantage of creating probabilistic forecasts first, even if the ultimate
goal is deterministic forecasting, is that it does not depend on a directive,
e.g., on whether MAE-optimized or MSE-optimized forecasts are
required. Stated differently, the directive needs not to be known in
advance, but it can be decided in the last step, in which the predictive
distributions are summarized. A clear benefit of this strategy is that the
forecaster does not require to take care of the directives of the users, but
it is possible to disseminate the same probabilistic forecasts to many
different users, who can then convert them to such deterministic fore-
casts that correspond to their own directives.
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