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a b s t r a c t

A surrogate model-based method is proposed for optimising batch distillation processes 

and applied to the recovery of methanol from a five-component azeotropic waste solvent 

mixture, where pollutants are removed in two fore-cuts and an after-cut. The objective 

function is the profit of a single batch, while constraints are for the purity of the main cut 

and composition of the second fore-cut to be recycled. Simulations are performed by a 

flow-sheet simulator in a set of points in the space of optimisation variables (reflux ratios 

of steps, stopping criteria of fore-cuts). Algebraic surrogate models are fitted by ALAMO to 

simulation results to describe the objective function and the constraints. The resulting 

optimisation problem is solved numerically. The profit obtained is by 5% higher than the 

one previously obtained by genetic algorithm (commonly used for optimisation of batch 

distillation), while the number of simulations is reduced to its third. The highest profit, 

previously obtained by the Nelder-Mead simplex method, is approached within 1%. 

Although the simplex method required fewer simulations, the new method proposed here 

is a global one. The process is re-optimised for different prices to investigate their influ-

ence on the profit and optimal values of operational parameters.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical 

Engineers. This is an open access article under the CC BY-NC-ND license (http://creati-

vecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The treatment of waste solvent mixtures is frequently per-
formed by batch distillation (BD) because of their varying 
amount and composition. These mixtures typically contain 
multiple organic components and water, which often form 
azeotropes. Components or azeotropes more volatile than 
the main component to be recovered can be removed in fore- 
cut(s), after which the main component is obtained in high 
purity as main cut. An after-cut can also be taken to remove 
either pollutants or the main component from the still 

residue. The off-cuts are either disposed of by incineration or 
recycled to a next batch to reduce the loss of the main 
component. Waste solvent regeneration is favourable both 
from an economic and an environmental point of view since 
it reduces both the amount of the fresh solvent to be pur-
chased and that of the incinerated material.

By optimization, the profitability of BD processes can be 
increased, their energy demand and environmental impact 
can be decreased. For optimising BD processes, Mujtaba 
(2004) distinguished three optimisation problems: maximum 
distillate, minimum time and maximum profit. Minimising 
the time also decreases the energy demand. Other objective 
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functions (OF) used include the energy demand (Furlonge 
et al., 1999) or the processing capacity (Nemeth et al., 2020) of 
the process, as well as environmental indicators such as CO2 

emissions (Wang et al., 2020), global warming and acidifica-
tion potential (Zhao et al., 2021). As BD is a dynamic process, 
a dynamic optimisation problem must be solved. By the 
commonly used feasible path approach, the objective func-
tion is evaluated by solving the model of the process re-
peatedly at different points in the space of optimisation 
variables. However, simulation of the process is time-con-
suming. If a flow-sheet simulator is applied, the optimisation 
is most frequently performed by an external tool using an 
evolutionary (usually a genetic) algorithm (e.g. Pommier 
et al., 2008). Genetic algorithms are also commonly applied 
for multi-objective optimisation (Parhi et al., 2020). These 
methods require a large number of evaluations of the OF, 
making the optimisation computationally very intensive. 
Hegely and Lang (2016) maximised the profit of a conven-
tional BD and a batch extractive distillation process by ap-
plying a genetic algorithm (GA). By both processes, methanol 
(B) was recovered from an azeotropic waste solvent mixture 
containing acetone (A), tetrahydrofuran (THF, C), water (D) 
and toluene (E), as well. The production campaign consisted 
of the regeneration of six batches with off-cuts recycled to 
the next batch.

As an alternative to computationally intensive evolu-
tionary algorithms, direct search methods such as the 
Nelder-Mead simplex or Box-complex methods can be ap-
plied. Hegely (2023), taking as a case study the optimisation 
of the first batch of the conventional BD process studied by 
Hegely and Lang (2016), demonstrated that by the above- 

mentioned direct search methods, similar or even better OF 
values can be obtained as by GA with a much lower number 
(ca. by 80%) of simulations. A potential disadvantage of the 
Nelder-Mead simplex and Box-complex methods is that, 
being local optimisation methods, they can converge to a 
local optimum.

To make optimisation faster compared to evolutionary 
algorithms but without losing the ability to find a global op-
timum, a new surrogate model-based optimisation (SMBO) 
method is proposed here. Surrogate models (SMs) or meta-
models are reduced models constructed from the inputs and 
outputs of rigorous models, whose evaluation is considerably 
less computationally intensive yet mimic the behaviour of 
the rigorous models. If SMs of OF (and eventually of the 
constraints) are available, an estimation of the real optimum 
can be rapidly obtained by finding the optimum of the sur-
rogate OF. Several surrogate modelling techniques were ap-
plied recently for the optimisation of continuous distillation 
columns, such as kriging (Quirante et al., 2015), support 
vector machines (Jia et al., 2017) or artificial neural networks 
(ANN; Ibrahim et al., 2018). Although there are more and 
more works applying surrogate modelling for BD (e.g. Esche 
et al., 2022), SMBO of BD was only performed very few times. 
For such a dynamic optimisation problem, two different ap-
proaches can be distinguished. In the first one, SMs are used 
to describe the evolution of certain variables (e.g. con-
centration of the desired component in the distillate) in time. 
The optimisation, in this case, is still a dynamic optimisation 
problem, but the dynamic SMs are used to evaluate OF. 
Greaves et al. (2003) developed a dynamic SM to replace the 
rigorous one for the optimisation of a middle-vessel column. 
An ANN was trained with inputs of reflux and reboil ratios, 
distillate and bottom flow rates. The output vector consisted 
of the amount and composition of the distillate and the 
product in the middle vessel. The behaviour of the real plant 
was reproduced with good accuracy. The amount of products 
was maximised using sequential quadratic programming 
(SQP) with low computational effort. Khazraee et al. (2011)
applied an adaptive neuro-fuzzy inference system to de-
scribe the evolution of the amount and composition of the 
distillate of a batch reactive distillation process. Optimisation 
was performed by differential evolution (DE); however, a 
questionable, dimensionally heterogeneous OF was used. 
The optimisation variables were the reflux ratio and the total 
batch time. In the second approach, SMs are fitted to the 
results of a large number of dynamic simulations, and the 
optimum of the surrogate OF is determined without a need 
for dynamic optimisation. Safe et al. (2013) studied a reactive 
distillation process in a batch dividing-wall column. A poly-
nomial response surface was fitted to OF (the amount of 
ethyl acetate obtained in the distillate minus its amount lost 
in a side stream) as a function of the only two optimisation 
variables, the vapour and liquid split ratios. The optimum of 
the surface was then determined by DE. (It is not clear 
whether the presence of the dividing wall is advantageous.).

Additionally, the works of Mujtaba and Macchietto (1997)
and Nemeth et al. (2020) must be mentioned. Nemeth et al. 
(2020) determined the optimal values of the optimisation 
variables and the objective function of a two-column process 
for different charge compositions by a GA. By fitting linear 
response surfaces to the results, it was possible to determine 
the optimum for any charge composition within the domain 
studied. However, this method cannot be truly considered an 
SMBO one since it first required performing the optimisation 

Nomenclature

A acetone.
B methanol.
C THF.
Cr stopping criteria, mass% or mass fraction.
D water.
E toluene.
m mass, kg.
p price, $/kg or $/t.
Q heat duty, MJ/h.
r heat of condensation, MJ/t.
R reflux ratio.
t duration of the process, h.
x concentration, mass% or mass fraction.

Subscripts
1 first step (Fore-cut 1).
2 second step (Fore-cut 2).
3 third step (main cut).
4 fourth step (after-cut).
B methanol.
C THF.
d (instantaneous) distillate.
E toluene.
fc1 Fore-cut 1.
fc2 Fore-cut 2.
inc incineration.
mc main cut.
sr still residue.
st steam.
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using the rigorous model. The method of Mujtaba and 
Macchietto (1997), who solved the maximum profit problem 
for a reactive BD process, is only partially an SMBO one. First, 
the conversion of the limiting reactant was maximised for 
different batch times by SQP. The only optimisation variable 
was the (constant) reflux ratio. On the optimal reflux ratio 
and the calculated distillate amount, polynomial SMs were 
fitted as functions of the batch time. It was then possible to 
calculate the profit from the SMs, resulting in a surrogate 
optimisation problem, which can be solved with negligible 
computational effort. Although a dynamic optimisation 
problem must be solved first, the advantage of this method is 
that economic data only occurs in the profit function; 
therefore, only the surrogate optimisation problem has to be 
solved once again if cost parameters change. This highlights 
another advantage of SMBO: in contrast to conventional op-
timisation methods (such as GA) where the process has to be 
re-optimised if economic data change (Mujtaba and 
Macchietto, 1993), by SMBO, only the surrogate optimisation 
problem has to be solved once again, without any further 
simulation, provided the SMs are chosen appropriately, that 
is, they do not contain economic data. In fact, this is true for 
any parameters that are present in OF but do not affect si-
mulation results.

To the best of our knowledge, the above literature review 
includes all the works on the application of SMs for the op-
timisation of BD processes. As it can be seen, non-dynamic 
SMs were only applied twice and with a very limited number 
(2) of optimisation variables, which constitutes the knowl-
edge gap addressed in the present work.

The goal of this work is to propose a SM-based method for 
the fast optimisation of BD processes. In the space of the op-
timisation variables, a set of points is selected with Latin hy-
percube sampling (LHS). At each point, OF is evaluated by 
dynamic simulation with the professional flow-sheet simulator 
ChemCad, and algebraic SMs are fitted to the results by using 
ALAMO (Automatic Learning of Algebraic MOdel) software 
(Cozad et al., 2014). If necessary, the search space can be nar-
rowed based on the results, and additional sampling can be 
performed. ALAMO is a machine learning tool that constructs 
algebraic models from predefined basis functions without the 
need to specify a function form a priori. The advantages of 
algebraic models are that they can be readily interpreted by 
humans, and their sensitivity to the input parameters is easy to 
calculate. To the best of our knowledge, ALAMO has not been 
previously used for the optimisation of distillation processes, 
although it has multiple advantages over other SM methods, 
according to Williams and Cremaschi (2021), who compared 
multiple methods. It had very good results in the optimisation 
of bowl-shaped functions, showed the most robust perfor-
mance as the number of input dimensions was increased and 
had the lowest average optimisation time among the methods 
studied. The novelties of the present work are: 

• non-dynamic SMs are applied to optimise a multi-
component, multistep BD process by considering all op-
erational parameters for the first time,

• algebraic SMs are fitted to the simulation results of a BD 
process by using the ALAMO machine learning approach; 
the SMs used can provide a better fit than the polynomials 
applied by Safe et al. (2013),

• in order to evaluate the performance of the proposed 
method, its results are compared to those of two other 
methods.

The new optimisation method is applied to the case study 
of the methanol recovery by conventional BD previously 
optimised by a GA (Hegely and Lang, 2016; Hegely, 2023), the 
Nelder-Mead simplex and Box-complex methods (Hegely, 
2023). The profit of the first batch of the campaign studied by 
Hegely and Lang (2016) is maximised. The effects of the price 
of methanol, incineration and heating steam on the optimal 
values of the operational parameters are also studied by 
SMBO. Additionally, different approaches to narrowing the 
search space are investigated.

The paper is structured in the following way. After the 
introduction, Section 2 describes the separation process. 
Section 3 presents the proposed SMBO approach, while the 
results are described in Section 4. Finally, conclusions and 
future research directions are discussed in Section 5.

2. Separation process

The waste solvent mixture to be treated contains 0.07 mass% 
acetone (A), 37.4% methanol (B), 4.89% tetrahydrofuran (C), 
56.34% water (D) and 1.56% toluene (E). B must be recovered 
with a purity of 99.5%. Five minimum-boiling azeotropes are 
formed, in increasing order of boiling points: A-B, B-C, B-E, C- 
D and D-E. The azeotropes (except D-E) and A have lower 
boiling points than B. The recovery of B is hindered by the B- 
C and B-E azeotropes. (The concentration of A is very low, 
while the azeotrope C-D does not present a problem since C 
leaves earlier in a mixture of B and C.) Therefore, C and E 
must be removed in fore-cuts, causing a considerable loss of 
B. VLE calculations were performed by using the UNIQUAC 
model with the same binary interaction parameters used by 
Hegely and Lang (2016) and Hegely (2023) to make the results 
comparable. A more detailed description of the VLE is given 
in Hegely and Lang (2016).

The separation is performed in a distillation column with 
27 theoretical plates (including the reboiler and the total 
condenser) (Hegely and Lang, 2016). The top of the column is 
at atmospheric pressure, while the total pressure drop is 
0.25 bar. The volume of the charge is 25 m3 (at 20 °C). The 
liquid hold-up of the condenser is 0.45 m3, that of the column 
is 0.05 m3/plate. The reboiler is heated with saturated steam 
of 3 bar (its heat of condensation is rst=2263.5 MJ/t); its heat 
duty (Qst) is1800 MJ/h.

The treatment of one batch consists of the following 
steps:

Step 0: heating-up of the column with total reflux in order 
to approach steady-state conditions. The step is finished 
after 360 min. At this point, the condensate contains mainly 
B and C, with a composition close to the azeotropic one.

Step 1: taking of the first fore-cut with a finite reflux ratio 
R1 to remove the bulk C and E with a considerable loss of B. 
Fore-cut 1 is incinerated. Step 1 is finished when xd,C < Cr1 

where xd,C is the instantaneous mass fraction of C in the 
distillate, and Cr1 is the stopping criterion for Step 1.

Step 2: taking of the second fore-cut with reflux ratio R2. 
This cut already contains B in a considerable concentration, 
but its pollutant (C and E) content is still too high. This cut is 
recycled to the next batch to limit the loss of B. This step is 
stopped when xd,C < Cr2.

Step 3: taking of the main cut (B product) with R3. This 
step is finished (because of the increasing xd,D) when 
xmc,B <  0.9952 where xmc,B is the mass fraction of B in the 
main cut. (Since, in the simulation, taking the main cut fin-
ishes only one time step (2 min) after the stopping criterion is 
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fulfilled, the value 0.9952 is used to ensure that xmc,B is ac-
tually close to 0.995.).

Step 4: taking of the after-cut with R4. The aim of the 
after-cut is to remove B from the still residue so that it can be 
sent to biological purification. The after-cut has a consider-
able B content, and it is recycled to the next batch. Taking of 
the cut is finished when the B content of the still residue 
(xsr,B) becomes lower than 0.25%.

A state-task-network is presented in Fig. 1. Rectangular 
boxes (states) represent the steps of the process, while the 
circles (tasks) represent the materials in the process. The 
hold-up of every third batch is sent to biological treatment, 
and the hold-up of other batches is recycled (dashed lines). 
Optimisation variables related to each step are indicated in 
green.

3. Calculation method

The objective function (OF; Eq. 1) is the profit of a single 
batch. It is composed of the price of methanol in the main 
cut, the costs of incineration of the Fore-cut 1 and of steam 
consumption during the process (Hegely and Lang, 2016).

=OF p m p m p
Q
r

tB mc inc fc st
st

st
1

(1) 

where: pB: price of methanol, 0.46 US$/kg, mmc: mass of the 
main cut, kg, pinc: price of incineration, 0.21 $/kg, mfc1: mass 
of Fore-cut 1, kg, pst: price of steam, 57.6 $/t, t: duration of the 
process, h.

The optimization problem is subject to the inequality 
constraints: Constraint 1: xmc,B≥ 0.995, Constraint 2: 

xfc2,C/xfc2,B≤ 0.107, Constraint 3: xfc2,E/xfc2,B≤ 0.12, where xfc2,B, 
xfc2,C and xfc2,E are the concentration of B, C and E in Fore-cut 
2, respectively.

Constraint 1 guarantees the required purity of the pro-
duct. Constraints 2 and 3 are needed to ensure that the or-
ganic pollutants C and E are not accumulated in Fore-cut 2 so 
that it can be recycled to the next batch. The numerical va-
lues in Constraints 2 and 3 are taken from the industrial 
practice. The optimisation variables are: R1, R2, R3, and Cr1, 
Cr2. Since previous calculations showed that the effect of R4 

on OF is negligible, its value is kept constant at 5.41.
It can be assumed that in the optimum Constraints 2 and 

3 are active, meaning that Fore-cut 2 contains the highest 
amount permitted of C and E. This is supported by previous 
results and can be explained by the fact that the part of C and 
E not present in Fore-cut 2 must be removed in Fore-cut 1, 
which would lead to a higher incineration cost. As shown 
later, this assumption proves to be true; however, it was not 
taken into account during the SMBO in order to not restrict 
the generality of the method.

In this work, a SMBO method is proposed (Fig. 2). First, a 
large number of test points are generated in the space of the 
optimisation variables by Latin hypercube sampling (LHS). In 
each point, simulation is performed by using ChemCad, 
whose results are the values of dependent variables neces-
sary to calculate OF and the left-hand side of the constraints. 
If the number of feasible points (that is, where the con-
straints are not violated) is deemed sufficient for model fit-
ting, surrogate models are generated by ALAMO; otherwise, 
the generation of test points is repeated by using a different 
(in this case, narrower) range of the optimisation variables. 

Fig. 1 – The state-task-network of the methanol regeneration process. 

Fig. 2 – Flow chart of the surrogate model-based optimisation method. 
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Optimisation of the surrogate OF is then performed in Maple. 
Finally, a simulation is performed with the values of the 
optimisation variables obtained to evaluate the difference of 
the OF values calculated by the SMs and by rigorous simu-
lation. The smaller the difference, the better the fit of the SMs 
and the more likely that a good approximation of the true 
optimum is obtained. A detailed description of each step is 
given in the followings.

In order to obtain accurate SMs for the whole range of the 
optimisation variables, a more uniform sampling pattern 
than simple random sampling is preferred. In the space of 
the optimisation variables given in Table 1 as the original 
range, 500 points are generated by LHS. These ranges are 
selected based on previous calculation experience by Hegely 
and Lang (2016) and Hegely (2023) as well as on industrial 
practice. By LHS, the range of each variable is divided into 500 
equal levels (intervals), thereby partitioning the space of the 
optimisation variables into 5005 smaller hypercubes. From 
these, 500 are selected so that at each level, there is only one 
hypercube selected (Viana, 2016). Inside the hypercubes se-
lected by LHS, the values of the optimisation variables are 
randomly generated with a uniform distribution.

Simulation is then performed at each point. The batch 
distillation process is modelled in ChemCad Version 7.1 in 
dynamic mode. The column is an SCDS module. The still pot 
and the accumulator tanks are DYNAMIC VESSELs. A 
DIVIDER is used to switch between the accumulators at the 
end of the steps. To automate the calculation, ChemCad is 
coupled to Excel by the DataMap feature of ChemCad. A VBA 
macro is used to control the simulation by detecting the 
fulfilment of termination criteria and updating the value of R 
and the setting of a divider at the end of the steps. The di-
vider is used to switch between the accumulators. At each 
time step, the current values of R and divider setting are 
transferred to ChemCad, which then gives back selected re-
sults. To reduce the time requirement of the simulation, 
several measures are implemented. Since Step 0 has no op-
timisation variables, it is only simulated once; subsequent 
calculation starts from the end of Step 0. If at the end of Step 
2 Constraints 2 or 3 are violated, the simulation is termi-
nated. In Step 3, the B content of the main cut has a max-
imum value (xmc,B,max) in time. If xmc,B,max does not reach 
0.9952, the simulation is also terminated since the purity of 
the product will not be acceptable.

Performing the calculations in the original range results in 
a low number of points with acceptable purity. Model fitting 
to too few points might lead to low accuracy of the models. 
To avoid this, a second set of 500 points are generated by LHS 
on a narrower domain (Table 1) based on the points with 
acceptable purity. All the models are fitted by using the 
narrower domain.

Surrogate models are fitted by ALAMO to the results of the 
simulation necessary to calculate OF and the left-hand sides 
of Constraints 2 and 3: mfc1, mmc, t, xfc2,B, xfc2,C, xfc2,E and 
additionally to xmc,B,max. The latter value shows not only if 
Constraint 1 is violated (the product purity is unacceptable) 

but also the level of the violation. (The value of xmc,B is not 
suitable for this purpose.) Alternatively, it would also be 
possible to fit a SM directly to OF; however, this would reduce 
the level of insight that can be obtained by analysing the 
models and would likely lead to a less accurate model.

The independent (optimisation) variables influencing 
each dependent one are the following ones. mfc1 is a function 
of only R1 and Cr1. The composition of Fore-cut 2 (xfc2,B, xfc2,C 

and xfc2,E) depends on R1, R2, Cr1 and Cr2. mmc, xmc,B,max and t 
can be influenced by all the independent variables (R1, R2, R3, 
and Cr1, Cr2).

ALAMO uses a machine learning-based approach to fit 
algebraic models by optimising a selected criterion de-
scribing the goodness of the fit. The models are generated as 
combinations of previously chosen basis functions, not ne-
cessarily used in the final model. Here, the Bayesian in-
formation criterion is selected as the measure of the 
goodness of the fit, which not only takes the model error into 
account but also penalises the model size to avoid overfitting. 
The basis functions allowed are constant terms, linear, 
logarithmic, and exponential functions, as well as poly-
nomials of the variables and their binary and ternary pro-
ducts with powers shown in Table 2. Note that due to 
technical limitations, the adaptive sampling feature of 
ALAMO is not used here.

Optimisation is performed with SQP by using the 
NLPSolve function of Maple. The function takes as argu-
ments the OF and (optionally) the optimisation constraints. 
Here, the bounds of the ranges of the independent variables 
were also given as constraints to avoid extrapolation. With 
the values of the independent variables obtained from the 
optimisation, a simulation is performed to verify the accu-
racy of SMs at the estimated optimum. Additionally, the 
gradient vector is calculated at the optimum determined by 
SMs. Simulations are performed following the direction of 
the gradient vector in order to verify whether it is possible to 
increase OF further by approaching the constraints more.

By the SMBO, it is possible to re-optimise OF by Maple for 
different price ranges of methanol, incineration and heating 
steam without performing additional simulations. Price 
ranges of these parameters are chosen as pB: 0.40–0.60 $/kg 
(Methanex., 2022), pinc: 0.21–0.51 $/kg and pst: 50–70 $/t. Per-
forming one optimisation calculation takes only a fraction of 
a second. The model accuracy is evaluated by comparing the 
OF value of SMs and the one obtained with simulation at the 
highest pB, pinc and pst values. OF is also calculated for the 
different price values without optimisation in order to assess 
the benefits of re-optimisation.

Additional calculations are made to investigate whether it 
is possible to narrow the original ranges of the optimisation 
variables using a lower number of simulations than the 500 

Table 1 – Ranges of the values of the optimisation 
variables used for Latin hypercube sampling. 

R1 R2 R3 Cr1 Cr2

Original range 1–10 1–10 1–5 0.10–0.30 0.015–0.050
Narrowed range 2–7 2–7 2–4.5 0.13–0.25 0.020–0.035

Table 2 – Powers allowed for the polynomial basis 
functions. 

Dependent 
variable

Univariate Binary 
product

Ternary 
product

mfc1 2–5 1–3 1–2
mmc 2–5 1–3 -
t 2–3 - -
xfc2,B 2–5 - -
xfc2,C 2–3 1–2 -
xfc2,E 2–5 1–3 -
xmc,B,max 2–5 1–3 -
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one used originally. By a 1st approach, simulation is per-
formed at a lower number of points (250, 350 or 400) gener-
ated by LHS within the original ranges. Considering only the 
feasible points (where no constraints are violated), narrowed 
ranges are then proposed based on the minimum and max-
imum values of the parameters. By a 2nd approach, surro-
gate models are fitted to xfc2,B, xfc2,C and xfc2,E. In the 
optimum both Constraints 2 and 3 should be active, and the 
set of points where this is true can be estimated with the 
help of the models fitted. As the models contain four in-
dependent variables, this set is a two-dimensional plane in 
the space of optimisation variable. The narrowing of the 
range is first studied for the original 500 points by using 
Maple, where it is possible to visually assess the R1, Cr1 and 
Cr2 values where Constraint 2 and 3 are active. A three-di-
mensional space corresponds to an active Constraint 3. The 
values of R1 and Cr1 values at each point in this space de-
termine R2. The multicolour surfaces (Fig. 13) are the set of 
places where Constraints 2 is also active. The yellow and 
green surfaces correspond to the lower and upper bound of 
R2. Only points between these surfaces should be taken into 
account to avoid extrapolation of the models. Subsequently, 
the narrowing is also studied for 250 points with a numerical 
method. A system of equations corresponding to active 
Constraints 2 and 3 is solved for R1 and Cr1 by substituting 
different values of R2 and Cr2 within their bounds in order to 
determine whether it is possible to narrow the range of R1 

and Cr1.

4. Results

In this section, first fitting of SMs is presented, then the re-
sults of the SMBO are compared to those obtained by GA 
(Hegely and Lang, 2016) and the Nelder-Mead simplex 
(Hegely, 2023). After this, the process is re-optimised for 
different price values using the SMs, and finally, potential 
alternatives to the narrowing approach used here are dis-
cussed. The results are given with 3–4 valuable digits in order 
to show the sometimes slight differences between the results 
of the different methods, even though less precise values 
would be used in industrial practice.

4.1. Fitting of the surrogate models

From the original range (Table 1), all the data points can be 
used for model fitting for mfc1, xfc2,B, xfc2,C and xfc2,E. How-
ever, only 51 calculations do not violate Constraints 2 or 3 
and thus can be used for fitting a model for xmc,B,max. More 
importantly, there are only 18 feasible points where the 
product purity is acceptable and that can be used for model 
fitting for mmc and t. The highest OF value is 429.6 $ (Table 3), 
which can be considered as the result of using LHS as a 
random search optimisation method. The values of the op-
timisation variables and the simulation results are given for 
all the points in Hegely et al. (2023).

By using the narrowed range, the number of feasible 
points increased from 18 to 46, which is deemed to be suffi-
cient. The number of points that can be used for fitting a 
model for xmc,B,max increased slightly to 56. At the best point, 
OF equals 480.7 $ (Table 3), and the xfc2,C/xfc2,B and xfc2,E/xfc2,B 

ratios are close to their limiting values. The detailed data of 
all points are also given in Hegely et al. (2023). Compared to 
the best point in the original range, Cr1 increased con-
siderably, which decreased the cost of incineration. A 

significant increase in R3 also contributed to the profit, while 
R2 and Cr2 decreased.

The SMs used for optimisation are fitted on the narrowed 
ranges. The size of the models were between 7 (xfc2,B) and 
25 (xfc2,C). Interestingly, Cr2 does not influence the distilla-
tion time:

= + + +
+

t R R R e

e R R Cr

95.93 16.04 78.61 ln 0.89 939.52
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Cr

1 2 2
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By increasing Cr2, the duration of Step 2 decreases (less 
Fore-cut 2 is taken), but that of Step 3 is likely to increase to a 
very similar extent. As it is shown in Fig. 3, the surrogate 
model (surface) was able to predict the mass of Fore-cut 1 
(dots) with good accuracy. On the increase of R1, mfc1 de-
creases at low Cr1 values but increases slightly at higher Cr1 

values. On the increase of Cr1, mfc1 decreases since Step 1 is 
stopped earlier. The rest of the models are given in the 
Supporting information.

4.2. Results of the surrogate model-based optimisation

The results of SMBO are given in Table 4. In the optimum, 
both Constraints 2 and 3 are active, as expected. The results 
of the simulation and the SMs are very close to each other: 
the difference in OF is 2.6 $ (0.53%). The difference is in the 
same order of magnitude (in absolute values) for each ele-
ment of the profit. By the simulation, the constraints are 
fulfilled, but the concentration ratios are also very close to 
the constraints, with the higher deviation being only 0.57% 
for xfc2,E/xfc2,B.

Comparing the simulation result to the optimum found by 
Hegely and Lang (2016) by GA, SMBO gives a 5.0% higher 
profit. Moreover, GA required 3000 simulations instead of 
1000 by the present method. (Note that the total calculation 
time is approximately proportional to the number of simu-
lations.) The suboptimality of the GA result is hinted at by the 
significant distance of xfc2,C/xfc2,B from the limit of Constraint 
2. R1 decreased by 8.7%, whereas R3 and Cr2 changed only 
slightly. R2 decreased by 19%. Cr1 increased by 22%, thereby 
reducing the cost of incineration. The mass of the main cut, 
and thus the income decreased slightly (by 2.5%); however, 
the steam cost also decreased (by 3.1%) due to the lower re-
flux ratios. It must also be noted that, in the narrowed 
ranges, a higher OF value than that of GA is already obtained 
by LHS only.

Table 3 – Results of LHS as a random search 
optimisation method. 

Optimisation variable Original range Narrowed range

R1 5.77 5.80
R2 3.23 2.13
R3 2.62 3.22
Cr1 0.1483 0.2168
Cr2 0.0286 0.0241
Constraints
xfc2,C/xfc2,B 0.0853 0.1026
xfc2,E/xfc2,B 0.0959 0.1170
Profit (OF) and its 

elements
Income, $ 2547 2522
Incineration cost, $ 526 452
Steam cost, $ 1591 1589
Profit (OF), $ 429.6 480.7
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By the SMBO technique, the values of OF and its elements 
are similar to the best one obtained by the Nelder-Mead 
simplex method (Hegely, 2023): OF is only by 0.5% lower. 
However, the number of simulations is higher (1000 instead 
of 236). R2 and Cr2 are lower by 7.4% and 7.3%, respectively, 
while Cr1 is higher by 6.26%. The SMBO method is thus able 
to find the same OF value as the best one previously ob-
tained. Even though the number of simulations of SMBO is 
higher than that of the simplex, the simplex is a local 
method, and it might converge to local optima or stop pre-
maturely when reaching a constraint.

Since SMs are explicitly known, a more detailed analysis 
of the optimization problem is possible. To study the inter-
action between the variables related to Fore-cut 1, a contour 
plot of OF with R1 and Cr1 as independent variables is drawn 
(Fig. 4a; all other variables take their optimal value). Either 
Constraint 2 (green line) or Constraint 3 (blue line) are vio-
lated outside the shaded area. As in the optimum, both 
constraints are active, the corresponding contour line and 
the constraint lines intersect at one point. By increasing R1, 
Cr1 must be decreased (more Fore-cut 1 must be taken) to 
keep OF constant (except at high R1 values for low OF). The 

maximum possible Cr1 value is determined by Constraint 2 
below the optimal R1 and by Constraint 3 above it. On the 
other hand, by increasing R2, Cr2 has a minimum (for a given 
OF value) but changes only slightly (Fig. 4b). The maximum 
Cr2 value is determined by Constraint 3 below the optimal R2 

and by Constraint 2 above. The ranges of acceptable R2 and 
Cr2 values are narrower than those of R1 and Cr1.

Although OF is a five-variable function, visualising the 
optimum is still possible. As mentioned earlier, an active 
Constraint 3 corresponds to the three-dimensional space 
shown in Fig. 5. In each point of this space, R2 is determined 
by the values of R1, Cr1 and Cr2. The set of points where 
Constraint 2 is also active is the multicolour surfaces on 
which the optimum (red dot) is located. At lower R1 values, 
Constraint 2 is violated. Points below the yellow surface 
correspond to R2 values outside the range used for model 
fitting and thus represent an extrapolation of the models that 
should be avoided.

The gradient of the objective function calculated from the 
SMs at the optimum is (17.2, 10.8, −2.3∙10−6, 913, 4017), 
meaning that OF is most sensitive to Cr2 and least sensitive 
to R3. Since, by the simulation, the constraints are not active, 

Fig. 3 – Mass of Fore-cut 1 calculated by simulation (dots) and by the surrogate model fitted (surface). 

Table 4 – Comparison of the results of the surrogate model-based optimisation with those of GA (Hegely and Lang, 2016) 
and simplex (Hegely, 2023). 

Optimisation variable GA Simplex SMBO Difference, %

SMBO to GA SMBO to simplex

R1 6.22 5.55 5.68 -8.68 + 2.34
R2 3.07 2.69 2.49 -18.8 -7.43
R3 3.05 3.17 3.09 + 1.31 -2.52
Cr1 0.175 0.2012 0.2138 + 22.2 + 6.26
Cr2 0.0262 0.0275 0.0255 -2.67 -7.27
Constraints Model Simulation
xfc2,C/xfc2,B 0.0951 0.1058 0.1070 0.1064 + 11.9 + 0.57
xfc2,E/xfc2,B 0.1191 0.1182 0.1200 0.1198 + 0.588 + 1.35
Profit (OF) and its elements Model Simulation
Income, $ 2597 2563 2534 2533 -2.46 -1.17
Incineration cost, $ 492 469 456 454 -7.72 -3.20
Steam cost, $ 1638 1602 1585 1588 -3.05 -0.87
Profit (OF), $ 467 493 493.0 490.4 + 5.01 -0.53
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it is likely that OF can be further increased by approaching 
the constraints better. To follow the direction of the gradient, 
Cr2 must be increased, which decreases the duration of Step 
2. Even if the duration decreases by one time step (2 min), the 
constraints are violated; thus, it was not possible to further 
increase OF.

4.3. Results of the re-optimisation

The influence of methanol price on the OF and the optimal 
values of operational parameters is as follows. On the in-
crease of pB, Cr1 decreases, while R1 hardly changes (Fig. 6). 
More Fore-cut 1 is taken, which increases the cost of in-
cineration. The mass of Fore-cut 2 decreases, to which the 
increase in Cr2 also contributes. R2 shows a considerable in-
crease. R3 and mmc increase slightly. Due to the increase of 
mmc, the profit becomes higher. When pB increases from 0.46 
to 0.60 $/kg, OF increases from 491 to 1277 $, and the duration 
of the process increases from 2080 to 2158 min

In the extreme case pB= 0.60 $/kg, OF obtained from SMs 
and simulation is compared (Fig. 7) to determine the model 
error, which is low (1.6 $). OF is slightly underestimated by 
the SMs. OF is also calculated without optimisation for dif-
ferent pB values. The difference between the OF obtained 

without and with re-optimisation is small, meaning that in 
this case, the operational parameters determined for a cer-
tain methanol price, even if they are not optimal anymore, 
can still be used if the price changes without a significant 
loss of profit.

On the increase of pinc, Cr1 and R1 increase (Fig. 8). Less 
Fore-cut 1 is taken, which decreases the cost of incineration. 
On the other hand, more Fore-cut 2 is taken. R2 decreases 
rapidly, and at pinc= 0.32 $/kg, it reaches the lower bound of 
its range. Above this, the optimal R2 is lower than its lower 
bound, but it is kept constant to avoid extrapolation. De-
creasing R2 is likely necessary in order not to violate Con-
straints 2 and 3 while less C and E are removed with Fore-cut 
1. Cr2 decreases only slightly, while R3 (and thus mmc) is al-
most constant.

Due to the increase of pinc, the profit becomes lower even 
though less Fore-cut 1 is taken. When pinc increases from 
0.21 to 0.51 $/kg, OF decreases from 491 to − 186 $. The 
duration of the process decreases from 2080 to 2040 min. 
Above pinc= 0.44 $/kg, the operation is no longer economical.

The model error at the highest pinc value (Fig. 9) is more 
important (−53.1 $) than in the case of varying pB. OF is 
overestimated by the SMs. Although the difference between 
the OF values obtained without and with re-optimisation is 
slightly higher than in the case of varying pB, re-optimisation 
does not have a significant impact.

On the increase of pst, the decrease of the average reflux 
ratio of the process is expected. R1 hardly changes (Fig. 10). 
The change in R2 is the most important, although it is still not 
very high. R3 (and thus mmc) decreases slightly. Cr1 increases 
slightly, as well, which decreases the amount of Fore-cut 1 
taken. Cr2 is almost constant. OF decreases from 491 to 106 $ 

Fig. 4 – Contour plot of OF (red lines) with a. R1 and Cr1 and b. R2 and Cr2 as independent variables. Constraint 2 is shown as a 
green line, Constraint 3 as a blue one.

Fig. 5 – Plot of the active constraints (multicolour surfaces), 
the limit of surrogate model validity (yellow surface) and 
the optimum obtained from the surrogate models (red dot).

Fig. 6 – Influence of methanol price on the optimal values of 
operational parameters.
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when pst increases from 57.6 to 70 $/t. The duration of the 
process decreases from 2080 to 2034 min

The model error at the highest pst value (−49.8) (Fig. 11) is 
similar to the one in the case of pinc, and it is larger than in 
the case of varying pB. Once again, the difference between 
the OF obtained without and with re-optimisation is small.

4.4. Results of narrowing of the ranges

By the first approach, several ranges are studied for different 
numbers of points (250, 350, 400). The ranges obtained are 

shown in Fig. 12, which includes the potential narrowed 
ranges based on the original 500 points and the narrowed 
ranges finally used for model fitting (“used”). Using less than 
500 points always results in narrower ranges (except for R3), 
but no clear conclusions can be drawn for the number of 
points to be used. The width of the final range is sometimes 
lower (R2, Cr2) but often similar to those obtained for 250–400 
points. The optimum value of Cr1 is outside the narrowed 
range for two out of four cases.

There are two different methods of the 2nd approach, 
where the narrowing of ranges is studied for 250 and 500 

Fig. 7 – Influence of methanol price on the objective function. 

Fig. 8 – Influence of price of incineration on the optimal 
values of operational parameters.

Fig. 9 – Influence of price of incineration on the objective function. 

Fig. 10 – Influence of price of steam on the optimal values of 
operational parameters.
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points. By the visual method (using 500 points), it is possible 
to narrow the range of R1 from 1–10 to 4.5–6.3 (Figs. 12 and 
13). Similarly to Fig. 5, the three-dimensional space depicted 
in Fig. 13 is defined by the active Constraint 3, where the 

values of R1, Cr1, and Cr2 determine that of R2 at each point. 
The multicolour surfaces represent the locations where 
Constraint 2 is also active. If R1 values are low, Constraint 2 is 
not met. The points outside the region limited by the yellow 

Fig. 11 – Influence of price of steam on the objective function. 

Fig. 12 – Narrowing the ranges of optimisation variables (A1: 1st approach A2: 2nd approach). The optimal values are shown 
with horizontal lines.
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and green surfaces correspond to R2 values that fall outside 
the range used for model fitting and should therefore be 
avoided as they represent an extrapolation of the models. 
The lower bound of Cr1 can be increased from 0.10 to 0.17, 
but the upper bound cannot be changed. By the numerical 
method (using 250 points), the range of R1 could be narrowed 
from 1–10 to 4.7-7.3. It is also possible to increase the lower 
bound of Cr1 from 0.10 to 0.13. R2 and Cr2 could not be nar-
rowed by either method of the 2nd approach. By using the 
2nd approach, the optimum of Cr1 is within the narrowed 
range. Therefore, for those variables (R1 and Cr1) where it is 
possible to determine a narrowed range with the 2nd ap-
proach, its use is recommended, while for the other vari-
ables, the 1st approach should be used. 250 points seem to be 
sufficient for the narrowing, meaning that SMBO could have 
been performed with 750 instead of 1000 simulations, pro-
vided the quality of the models does not deteriorate sig-
nificantly.

5. Conclusions

A surrogate model-based method was proposed to reduce 
the computational intensity of the optimisation of batch 
distillation processes. The recovery of methanol from a five- 
component azeotropic waste solvent mixture was optimized. 
The objective function (OF) was the profit of a single batch, 
while constraints were given on the purity of the main cut 
and the composition of the recycled, 2nd fore-cut.

Dynamic simulations were performed by ChemCad in a 
set of points (generated by Latin hypercube sampling) in the 
space of optimisation variables (reflux ratios of the steps, 
stopping criteria of the two fore-cuts). Algebraic SMs were 
then fitted to the simulation results to describe OF and the 
constraints by the ALAMO machine learning technique. The 
resulting optimisation problem was solved very easily 
by SQP.

The surrogate models accurately described the results of 
the simulation. The profit obtained was by 5% higher than 
the one obtained by Hegely and Lang (2016) with a genetic 
algorithm, while the number of simulations was reduced 

from 3000 to 1000. The influence of the prices of methanol, 
incineration of the 1st fore-cut and heating steam on the OF 
and on the optimal values of operational parameters was 
studied by using SMs without new simulation. The difference 
between the profits obtained without and with re-optimisa-
tion was small (max. 3.9% of the total change in profit).

Future research will focus on evaluating the performance 
of the SM-based optimisation method for different distilla-
tion processes. Applying adaptive sampling will also be 
studied.
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