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Abstract—In speech technology, the examination of speaker
dependency is vital – that is, whether methods developed for
one speaker can be adapted to another speaker or not. In the
case of text-to-speech synthesis, well-usable speaker adaptation
methods are already available, but they cannot be used directly
for articulatory data (movement of the tongue, lips, etc, during
speech production). In this research, we investigate the above
question and analyze the speaker dependency of the articulatory
movement, using audio signal and ultrasound tongue imaging
(UTI) recorded in parallel during speech production. For the
comparison, we use the well-known Dynamic Time Warping
(DTW) procedure of speech technology. DTW of the speech signal
has already been successfully applied 1) with UTI, for within-
speaker comparisons, 2) with electromagnetic articulography
(EMA), for the analysis of inter-speaker differences, 3) with
EMA and electrocortocography (ECoG), also for inter-speaker
comparisons. However, there has been no previous research yet
on the application of DTW on speech signals with ultrasound
tongue images for different speakers. In the present research,
we examine the applicability of DTW for comparing speakers’
speech and articulatory data on a few Hungarian and English
examples, and visually analyze them. In the long term, we plan
to use the results for speech-based brain-computer interfaces, so
that we can supplement the brain signal with ultrasound-based
articulation information.

Index Terms—speech technology, dynamic time warping, signal
processing

I. INTRODUCTION

Research on human-computer interaction is important in
the information society. Speech technology research fits into
this process – speech is one of the most complex human
biological signals, but we do not yet understand all the aspects
of speech production and articulation. Digital applications
using speech technology could significantly help the everyday
communication of speech impaired people.

A. The relationship between articulatory movement and
speech signal

The relationship between articulation (the coordinated
movement of the speech production organs) and acoustics
(the speech signal itself) has been a topic of interest to
speech researchers since the 1700s [1]. In order to study the
movement of speech organs (e.g., vocal fold, tongue, lips),
special instruments are needed, as most of these organs are

not visible continuously during speech. Of the articulatory
organs, the tongue is a relatively large and important organ,
but measuring and quantifying its function is challenging, in
part because it is located within the oral cavity [2].

The relationship between the articulatory movement and the
speech signal can be studied in many ways; one example
is Articulatory-to-Acoustic Mapping (AAM); also known as
Silent Speech Interface (SSI) [3]. SSI systems represent a
revolutionary direction in speech technology, where silent
articulatory movements are captured by some device and
from this speech is automatically generated while the orig-
inal speaker does not make a sound [3]. In most previous
research on SSI, only a few speakers have been studied [3]–
[9]. Although the results of these studies are encouraging,
further research is needed to develop session- and speaker-
independent SSI systems [10].

B. Ultrasound tongue imaging

Ultrasound has been used for speech research and articu-
lation since the early 1980s [11]. Depending on the position
(orientation) in which the transducer is placed under the jaw,
the tongue can be examined from several different orientations;
of which the most common is the mid-sagittal orientation. In
mid-sagittal imaging, the transducer is placed under the chin;
thus, the greatest change in the ultrasound signal is caused by
the upper surface of the tongue muscles, ideally resulting in a
clearly visible white line on the ultrasound images. To prevent
the ultrasound transducer from moving during speech, some
form of probe fixing helmet is typically used.

The advantage of ultrasound over other articulatory record-
ing techniques is that it is easy to use, non-invasive, affordable,
and can be used to record at a relatively high resolution (up
to 800 x 600 pixels) and high speed (up to 100–150 frames
per second) [12]. A good spatial resolution is important to
obtain a more accurate picture of the shape of the tongue;
while a good temporal resolution is necessary to study rapid
changes during the production of speech sounds (e.g. stop
bursts; coarticulation). To some extent, the use of ultrasound
has the disadvantage that it only provides information from
the middle part of the tongue; often the root and/or tip of the
tongue is not visible. In addition, if the surface of the tongue

https://doi.org/10.3311/WINS2023-012 65



is nearly parallel to the ultrasound beam, information about
the middle part may be incomplete.

C. Speaker dependence of the articulatory movement and
machine learning models

In speech technology, it is vital to examine speaker depen-
dency – that is, whether or not methods developed for one
speaker can be adapted to another speaker. For example in text-
to-speech synthesis, there are already good speaker adaptation
methods available [13], [14], but they cannot be used directly
with articulatory data.

The image quality of the ultrasound tongue images may
vary between speakers. The quality of the images is influenced
by many factors, such as the anatomy of the speaker or
the condition of the tissues of the articulatory organs (e.g.,
hydration). The variation between speakers may also be due to
the fact that the ultrasound transducer is positioned differently
(in different orientations) for different head sizes. The record-
ing software usually provides the possibility to adjust the
ultrasound hardware parameters (e.g., transducer frequency,
field of view, depth, dynamic range, line density, etc.), but
this may not be a sufficient solution for all speakers.

Due to differences in the size and shape of the speakers’
heads, the ultrasound probe cannot be positioned identically
for different speakers, so the possibility of comparing speakers
is limited due to potentially different orientations. In addition,
recordings of the same speaker taken in different sessions may
not be comparable, as it is not possible to adjust the angle
of the ultrasound head exactly the same for each occasion.
Because of the above speaker and session dependencies, there
is no good method yet in either linguistic or technologi-
cal research for analyzing different UTI recordings together,
so typically recordings with different speakers are analyzed
separately. Also, when machine learning (e.g., deep neural
networks, DNNs) are applied, they are extremely sensitive
to the type of input or target data, and therefore, current
experiments are typically done in a way that DNNs are trained
separately for each individual speaker [15]–[17].

Most previous studies in this area have used point-tracking
tools such as electromagnetic articulography (EMA) [18]. For
example, for speaker adaptation, the articulation data of differ-
ent speakers is investigated by combining a ’Procrustes Match-
ing’ procedure with voice conversion methods [10]. Since
medical imaging methods and point tracking tools produce
a very different type of signal, the above speaker adaptation
results cannot be used directly for ultrasound tongue imaging.

D. Dynamic time warping estimated on speech, used for
articulatory and brain signal analysis

Dynamic Time Warping (DTW) is a long-established
method for comparing speech samples of different
lengths [19]. However, it has only been used sparsely
in the context of articulatory data [20]–[22]. In the work of
Yang and colleagues [20], the aim of DTW was to produce
a 3D reconstruction of the tongue from 2D ultrasound slices.
To do this, the same speakers repeatedly read out given

sentences while recording their articulatory movements in
different orientations with the 2D ultrasound. Using DTW
on the speech signal, they merged recordings from the same
speaker and were able to produce 3D visualizations of the
positions and movements of the tongue during speech [20].
Jayanthi and his colleagues further developed the classical
DTW with a ’divide-and-warp’ strategy for speaker-invariant
articulatory investigations [21]. Point-tracking EMA is used as
articulatory signal, while analyzing data from the MOCHA-
TIMIT database [23]. DTW is computed between speech
samples and then the alignment of articulatory landmark
points (e.g., opening/closing of the lips) is evaluated on the
EMA data. The results measured on four speakers showed
that the addition of ’divide-and-discard’ reduced the unwanted
shift of peaks in the articulatory data from 121 ms to 34 ms
on average [21]. The aim of Le Godais [22] was to analyze
articulatory information in the brain signal (acquired with
ECoG) and speech. Since articulatory movements were not
recorded in parallel with the brain signal, he estimated
indirect articulatory data from other speakers using the
BY2014 database, which also used EMA [24]. Since the
same sentences but different speakers were used to record
the brain signal and the articulatory signals, it is possible
to compute EMA-based indirect articulatory information to
supplement the ECoG data based on the DTW computed
on the speech signal. Thus, ECoG-based speech synthesis
has been successfully extended with derived articulatory
information; although the synthesized speech samples are not
yet intelligible [22].

As mentioned above, DTW of the speech signal has been
successfully applied to 1) UTI and intra-speaker comparisons,
2) EMA for analyzing inter-speaker differences, 3) EMA and
ECoG, also for inter-speaker comparisons. However, there has
been no previous research on the application of DTW for
cross-speaker ultrasound tongue image analysis.

E. Goal of the current study

In this research, we will investigate the above questions
and analyze the speaker dependency of articulatory movement
using ultrasound tongue imaging. For the comparison, we
use the dynamic time warping procedure. We investigate
the applicability of DTW for comparing multiple speakers’
articulatory on Hungarian and English datasets.

II. METHODS

Existing databases were used to investigate the ultrasound
tongue images; recordings were selected from native speakers
of Hungarian and English.

A. Hungarian recordings

The Hungarian recordings were created for the previous
research on articulatory-to-acoustic mapping [15]. The mid-
sagittal movement of the tongue was recorded using the ’Mi-
cro’ system (AAA v220.02 software, Articulate Instruments
Ltd.) with a 2–4 MHz, 64-element, 20-mm radius convex ultra-
sound transducer at 81.67 fps, and a probe fixing metal headset
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speaker: 01fi speaker: 02fe speaker: 03mn

speaker: 04me speaker: 05ms speaker: 06fe

speaker: 07me speaker: 08me speaker: 09fe

speaker: 10me speaker: 11fe speaker: 12me

speaker: 13fs speaker: 14fe speaker: 15fe

Fig. 1: Examples of the differences in the quality of ultrasound
tongue images between speakers from the UltraSuite-Tal80
database.

was also used. Speech was recorded with a Beyerdynamic TG
H56c tan omnidirectional condenser microphone clipped to
the helmet, 20 cm from the mouth. The sound was digitized
at a sampling rate of 22 050 or 44 100 Hz using an M-Audio
- MTRACK PLUS sound card. Synchronization of ultrasound
data and speech signals was performed using a tool provided
by Articulate Instruments Ltd.

B. English recordings

For English data, the UltraSuite-TaL80 database was
used [25], downloaded from https://ultrasuite.github.io/data/
tal corpus/. The recordings were made with the same ’Micro’
system as for the Hungarian data. Lip video was also recorded
in the UltraSuite-TaL80, but this information was not used in
the current study.

An example for the cross-speaker differences in the ultra-
sound tongue image recordings is shown in Fig. 1, presenting
ultrasound images of 15 speakers. It can be clearly seen
that ultrasound can visualize different sections of the tongue
(e.g. ’09fe’ has a shorter tongue, while ’06fe’ has a longer
tongue), and also different visibility of the tongue contour (e.g.
’01fi’ has a blurred image, but ’02fe’ has a clear upper surface
of the tongue).

C. Ultrasound tongue image representations

In our experiments we used articulation features calculated
from the ’raw’ ultrasound data. The ’raw’ data means that the
intensity information from the ultrasound device was saved
directly in binary format (so no data was lost during the image

(64x842) 

Fig. 2: Ultrasond tongue image representations: raw scanlines
during recording (left), array of raw scanline data (middle),
and a wedge-formatted image (right).

conversion) and processed as such. Fig. 2 shows how the
scan is performed with the ”Micro” system: the ultrasound
transducer measures intensity (i.e. grayscale) on 64 radial
lines, with 842 locations on each line, and stores each intensity
value in the raw data in 8 bits. If this is to be converted to
the usual ultrasound image, the data can be represented as a
grayscale image in a polar coordinate system.

D. Preprocessing the articulation data

The ultrasound tongue images were used as 8-bit grayscale
pixels in the raw ultrasound form of the ”Micro” system.
The images, originally 64x842 pixels, were resized to 64x128
pixels as this does not cause significant loss of information [9].
The ultrasound image is relatively redundant and can therefore
be compressed efficiently, which can be an advantage in
subsequent processing, as we only need to work with data
of smaller dimensions.

III. EXPERIMENTS AND RESULTS

A. DTW using UTI, demonstration samples

From two speakers of the Hungarian database (’048’ and
’102’) we selected one sentence for demonstration purposes,
which occurred in both speakers’ recordings. Based on the
speech signal, we computed MFCC (frame shift was chosen to
be 12 ms in line with the ultrasound video) with the librosa
package, and then computed DTW with the dtw tool. Fig. 3
shows the DTW path between the two sentences: it can be seen
that the speech sample took about 400 frames to be uttered by
one speaker and about 520 frames by the other speaker, i.e.
their articulatory speeds are different. The spectrograms of the
speech samples from the two speakers are shown in Fig. 4 a)
and b): here again, the difference in the length of the speech
samples is visible. Fig. 4 c) and d) show a ’kymogram’ [26,
Fig. 8], i.e., a kind of ’articulatory signal over time’: the
middle slices (midline, c.f. Fig. 2) of the ultrasound tongue
images were cut (approximately corresponding to the middle
of the tongue) and plotted as a function of time, similarly to
a spectrogram. The articulatory landmarks / inflexion points
appear at different locations for the two speakers, in subfigures
c) and d). Fig. 4. e) shows the result when the speech of
the two speakers is DTW-aligned and the articulation data is
stretched for the second (lower articulatory speed) speaker.
Thus, Figures 4 c) and e) show that the articulatory data of
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Fig. 3: DTW sample based on the same sentence (,,Az északi
szél nagy vitában volt a Nappal, hogy kettőjük közül melyiknek
van több ereje.”) by two Hungarian speakers, calculated from
speech MFCC.

a)

b)

c)

d)

e)

Time (frame)

Fig. 4: Results: speech spectrogram and temporal change of
the midline of the ultrasound tongue images, based on the
sentence of Fig. 3.

speaker ’048’ and speaker ’102’ were successfully aligned,
and the landmarks / inflection points of tongue movement
are at similar locations in the DTW-aligned Fig. 4 e) as in
Fig. 4 c). For example, the sentence starts with the Hungarian
back vowel ’a’ and continues with a front vowel ’é’, therefore,
back-front movement of the tongue is visible on the c) and e)
subfigures roughly around 50–100th time frames.

Similarly to the above, we have chosen a sentence from
two speakers of the English database (’01fi’ and ’02fe’). The
DTW result, as well as the speech spectrograms and adjusted
articulatory data, are shown in Figs. 5 and 6. In this case, the
DTW-adjusted articulatory data are less consistent with the
reference compared to the example of Hungarian speakers.

Fig. 5: DTW sample based on the same sentence (,,When
sunlight strikes raindrops in the air, they act like a prism and
form a rainbow.”) by two English speakers, calculated from
speech MFCC.

a)

b)

c)

d)

e)

Time (frame)

Fig. 6: Results: speech spectrogram and temporal change of
the midline of the ultrasound tongue images, based on the
sentence of Fig. 5

B. Objective measures

In order to quantify how good the shifts of the DTW-aligned
articulatory data are, it would be useful to first automatically
determine the articulatory inflexion points (e.g. front/back
position change of the tongue). For EMA data, a method for
this has already been developed [21], but is not yet available
for ultrasound tongue image signals. The accuracy of DTW-
aligned ultrasound data is therefore not quantified in this
research; for the time being, we rely on the visual examples
above.

In future work, we plan to align the audio recordings along
the resulted DTW path to examine the acoustic differences, as
an objective quantification of the results.
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IV. DISCUSSION AND CONCLUSIONS

The use of articulatory information in speech technology is
less mature than standard speech recognition or speech syn-
thesis; those methods using articulatory signals are currently
at the basic research level and do not yet have applications
for everyday people. Most related research deals with the way
how articulatory information can be used to extend speech
technology, for example as input or output of the system, like
articulatory-to-acoustic mapping [9], [15], [16] or acoustic-to-
articulatory inversion [17], [27].

The research problem is complicated by the fact that the
mapping between articulation and acoustics is non-linear and
not necessarily unique, i.e. several different articulatory con-
figurations can result in the same speech output [28].

In the present study, we investigated the applicability of
DTW for cross-speaker comparison of articulatory data on
Hungarian and English recordings. According to the visualized
demonstration samples, dynamic time warping seems to be a
reasonable choice for such comparisons (and therefore, the
most probable answer for the question in the title is YES), but
the lack of a more advanced objective quantification of the
accuracy of DTW for UTI is a limitation of the current study,
which we will be happy to discuss at the WINS workshop
with the interested audience of colleagues in speech technol-
ogy, biomedical engineering, linguistics, and/or computational
cognitive neuroscience. For the future, it would be worthwhile
to try to align the audio recordings along the resulted DTW
path to examine the acoustic difference.

We plan to use the results for speech-based brain-computer
interfaces to supplement the brain signal (measured with
EEG, ECoG or sEEG) with ultrasound tongue image based
articulatory information [29]–[31].
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L. Tóth, and A. Markó, “Ultrasound-based Silent Speech Interface Built
on a Continuous Vocoder,” in Proc. Interspeech, Graz, Austria, 2019,
pp. 894–898.
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