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1Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics (BME), Budapest, Hungary

2Department of Measurement and Information Systems, BME, Budapest, Hungary
3Sound and speech perception Research Group, Institute of Cognitive Neuroscience and Psychology,

Research Centre for Natural Sciences, Budapest, Hungary
{csapot,arthur}@tmit.bme.hu, nagy.peter.ssprg@ttk.hu, adam.boncz@gmail.com

Abstract

With the investigation of speech-related biosignals we can en-
hance traditional speech synthesis which might be useful for
future brain-computer interfaces. In a recent previous research,
from the brain signal measured with EEG, we predicted directly
measured articulation, i.e., ultrasound images of the tongue,
with a fully connected deep neural network. The results showed
that there is a weak but noticeable relationship between EEG
and ultrasound tongue images, i.e., the network can differen-
tiate articulated speech and neutral (resting state) tongue po-
sition. In the current study, we extend this with a focus on
acoustic-to-articulatory inversion (AAI), and estimate articula-
tory movement from the speech signal. After that, we analyze
the similarities between AAI-estimated articulation and EEG-
estimated articulation. We compare the original articulatory
data with DNN-predicted ultrasound and show that EEG input
is only suitable to distinguish neutral tongue position and artic-
ulated speech, whereas melspectrogram-to-ultrasound can also
predict articulatory trajectories of the tongue.
Index Terms: ultrasound, EEG, brain-computer interface

1. Introduction
Biosignals recorded during speech production might be useful
to extend speech technologies: for example, trackings of ar-
ticulation can be used for speech-to-articulation mapping, of-
ten called as acoustic-to-articulatory inversion (AAI). AAI has
the aim of estimating articulatory movements from the acous-
tic speech signal [1, 2]. As another example, recordings of
the brain might be useful towards brain-to-speech synthesis. In
a broader sense, Brain-Computer Interfaces (BCIs) can allow
computers to be controlled directly without physical activity. It
is expected that in the future, the use of speech neuroprostheses
may help patients with neurological or speech disorders [3].

1.1. Acoustic-to-articulatory inversion

Acoustic-to-articulatory inversion [1, 2, 4, 5, 6], a subfield of
speech technology, has the goal of estimating ’direct’ articula-
tory movements (e.g. position of the lips, jaw, tongue, velum,
etc.) recorded using articulatory acquisition techniques, from
the acoustic speech signal input. Learning the relationship be-
tween articulation and acoustics could improve the performance
of several tasks such as speech recognition, synthesis [7, 8],
or biofeedback / visualization of speech production [9]. For
recording articulation, several techniques exist, which each
have pros and cons. Most previous works in AAI are based on
Electromagnetic Articulography (EMA) or X-ray Microbeam

(XRMB) data, which can track only several points of the artic-
ulatory organs, and therefore provide limited spatial informa-
tion. For example, EMA typically uses two to six sensor coils
placed on the tongue, and therefore its spatial resolution is lim-
ited. Compared to EMA and XRMB, imaging methods (e.g.
UTI: Ultrasound Tongue Imaging, and MRI: Magnetic Reso-
nance Imaging) have the advantage that the tongue surface is
fully visible, and ultrasound can be recorded in a non-invasive
way [10, 11, 12]. During UTI recordings, usually, when the
subject is speaking, the ultrasound transducer is placed below
the chin, resulting in mid-sagittal images of the tongue move-
ment. The typical result of 2D ultrasound recordings is a series
of gray-scale images in which the tongue surface contour has a
greater brightness than the surrounding tissue and air (for sam-
ples, see Fig. 2 top as ’raw’ data, and Fig. 3 for ’wedge’ orien-
tation). Compared to EMA, XRMB and MRI, ultrasound is a
technique of higher cost-benefit if we take into account equip-
ment cost, portability, safety, spatial and temporal resolution,
and visualized structures, e.g. the tongue surface is visible as a
continuous line [11, 4, 6]. Therefore, for the experiments in the
current paper, UTI has been used as articulatory information.

1.2. Brain-to-speech synthesis

For recording the brain signal, several technologies are avail-
able: e.g., electroencephalography (EEG) [13, 14], stereotac-
tic deep electrodes (sEEG) [15], intracranial electrocorticogra-
phy (ECoG) [16], magnetoencephalography (MEG) [17], Local
Field Potential (LFP) [16]. Among these brain signal recording
methods, EEG may be the most suitable for BCI, as it is af-
fordable, involves significantly less risk than invasive methods,
and can be portable [18]. Initial research has already been car-
ried out to develop EEG and speech-based BCI [19, 14, 15, 20],
but this has not yet resulted in clearly intelligible speech. For
example, Sharon and Murthy show that multi-phasal correla-
tion can enhance imagined speech recognition from EEG, but
the prediction is not fully accurate yet [14]. The reason is that
EEG only measures the brain signal on the scalp; therefore, it is
less accurate than invasive technologies. Using invasive meth-
ods, it has already been possible to create speech-like synthe-
sized speech based on brain signals, e.g. ECoG [21, 22] and
sEEG [23, 15, 24], but due to the above disadvantage (primarily
the invasive nature), the latter are not expected to be widespread.

1.3. Brain-to-articulation mapping

Articulatory movements have only sporadically been studied in
parallel with brain signals during speech production. Lesaja et
al. investigates neural correlates of lip movements, and predicts
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lip-landmark position from ECoG input [25]. Besides, Csapó
et al. [26] recorded non-invasive EEG as the brain signal and
used ultrasound tongue imaging as articulatory representation,
all recorded in parallel during speech production. The aim of
the study was to predict ultrasound images from EEG input;
and the initial results indicate that there is a weak but notice-
able relationship between EEG and ultrasound tongue images,
i.e. a simple DNN can differentiate articulated speech and neu-
tral (resting state) tongue position [26].

Besides, the other related studies all use estimated articu-
latory data, i.e. they take into account the articulatory informa-
tion inferred from the speech signal or from textual contents
(e.g., [27, 22, 28]. Several studies appeared this year which
have the aim to predict articulatory-related information from the
brain signal. Amigó-Vega et al. [29] and Wairagkar et al. [30]
both use invasive EEG for brain representation. The former has
VocalTractLab parameters as the target [29], whereas the lat-
ter aims to predict EMA representation resulting from speaker-
independent AAI with pre-trained models [30].

1.4. Goal of the current study

The conclusion of the above studies is that for patients whose
cortical / neural processing of articulation is still intact, a
speech-based BCI decoder using articulatory information can
be more intuitive or more natural, and easier to learn to use.
However, according to the overview above, there are only a few
methods that examine the brain-related information, articula-
tion, and speech together. In the current paper, we contribute to
this field using EEG and ultrasound tongue imaging, and ex-
tend [26] with acoustic-to-articulatory inversion experiments.
The motivation here was to highlight articulatory movement
prediction patterns that EEG struggles with.

2. Methods
2.1. Recordings: EEG, ultrasound and speech

Our recordings were made in an electromagnetically shielded
quiet room of the ELKH Research Centre for Natural Science,
Budapest, Hungary, for a previous study [26]. The EEG sig-
nal was recorded with a 64-channel Brain Products actiCHamp
type amplifier, using actiCAP active electrodes. Four channels
were used to track horizontal and vertical eye movements. The
electrodes were placed according to the international 10-20 ar-
rangement. The impedance of the electrodes was kept below
15 kOhm. During the recording, the FCz electrode played the
role of the reference electrode. The signal was sampled at a
frequency of 1000 Hz.

The midsagittal movement of the tongue was recorded us-
ing the “Micro” system (AAA v220.02 software, Articulate
Instruments Ltd.) with a 2–4 MHz (penetration depth), 64-
element, 20 mm radius convex ultrasound probe at 81.67 fps,
and we also used a headset for probe fixing. The metal headset
was placed above the EEG sensors so that the devices did not
interfere with each other. Recording arrangement is shown in
Fig. 1 of [26]. The speech was recorded with a Beyerdynamic
TG H56c tan omnidirectional condenser microphone and dig-
itized with an M-Audio M-Track 2x2 / FocusRite Scarlett 2i2
USB external sound card at 44,100 Hz.

The output of the sound card (which contains the synchro-
nizing signal of the ,,Micro” ultrasound, i.e., ’frame sync’, and
the speech signal from the microphone) was connected to the
AUX channel of the EEG – so the brain and articulation signals
were recorded on separate computers, but after the session, we

synchronized the data, as described in [26]. This made sure that
all biosignals are in full synchrony.

As for initial data, we recorded approximately 15 minutes
of EEG, ultrasound, and speech from a single native Hungarian
male speaker (the first author). The Hungarian sentences were
selected from the PPBA database [10].

2.2. Preprocessing the EEG, ultrasound and speech data

The EEG signal was pre-processed based on [15], similarly
to [26]. We calculated the Hilbert envelope for each channel of
the EEG signal (except EEG AUX) in four frequency bands: 1–
50 Hz, 51–100 Hz, 101–150 Hz, and 151–200Hz. Notch filters
were used to filter out the 50 Hz line noise and its harmonics.
The envelope was averaged every 50 ms and offset by 12 ms
to be consistent with the ultrasound tongue images (which were
recorded at 81.67 fps).

Ultrasound tongue images were recorded as 8-bit grayscale
pixels, in the form of raw ultrasound of the ,,Micro” system.
The originally 64x842 pixel images were resized to 64x128 pix-
els (Fig. 3, left), as this does not cause significant information
loss [31], but the amount of data to be processed for the target
of machine learning is less.

For the analysis of speech, we extracted 80-dimensional
mel-spectrograms using the ’librosa’ library, with 12 ms frame
shift, to be in synchrony with the EEG and ultrasound data.

2.3. DNN training and predicting articulatory information
from speech input

The goal of the first experiment was to obtain direct ultrasound
tongue images (being the target, 64x128 pixels) from the spec-
tral features (being the input of the neural network, 80 dimen-
sions), similarly to [4, 6].

We used a neural network structure with 5 hidden layers,
each layer containing 1000 neurons, with ReLU activations, and
a linear output layer (similar to earlier ultrasound-based stud-
ies [6, 10, 26], i.e. a fully connected deep ’rectifier’ neural net-
work, FC-DNN). The input spectral values and the output ul-
trasound pixels were normalized to 0–1 before training. We
trained until up to 100 epochs, but applied early stopping, with
a patience of 3. For training, MSE error was used.

During the prediction step, the corresponding articulatory
trajectories are predicted from the trained network, and the final
result is a raw ultrasound image sequence, in synchrony with the
input speech signal. The raw data is converted back to wedge
orientation for visualization.

2.4. Predicting articulatory information from EEG input

In the next experiment, similarly to [26], we trained a FC-
DNN, during which we predicted the ultrasound tongue images
(64x128 image pixels), from the Hilbert-transformed EEG in-
put that was scaled to the range of [0–1] (being the input of
the DNN, 62 channels x 4 frequency ranges, altogether 248 di-
mensions). The DNN structure and the training details were the
same as in Sec. 2.3, with the only difference of the input.

3. Experiments and results
We performed training from the 155 sentences, using 80%
of the data for training the network, 10% for validation, and
the remaining 10% for testing (31 000 / 3900 / 3900 sample
points). For both melspectrogram-to-ultrasound and EEG-to-
ultrasound, the same train-validation-test split was used.
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Figure 1: Demonstration sample: a) Lower half of 80-
dimensional mel-spectrogram of the original speech sample, b)
original ultrasound kymogram, c) DNN-predicted ultrasound
kymogram from mel-spectrogram input, d) DNN-predicted ul-
trasound kymogram from EEG input.

3.1. Demonstration samples for melspectrogram-to-
ultrasound and EEG-to-ultrasound

After the DNN training, ultrasound tongue image prediction
was performed separately from melspectrogram and EEG input,
on the test set.

First, we show the results as a ’kymogram’ representation:
we cut out the middle vertical line from each ultrasound tongue
image and plotted the change of this line over time – this kind
of visualization has been useful for previous ultrasound-related
studies. ’Kymogram’ [32, Fig. 8], is ’articulatory signal over
time’: the middle slices (midline) of the ultrasound tongue im-
ages are cut (approximately corresponding to the middle of the
tongue) and plotted as a function of time, similarly to a spec-
trogram; thus the tongue movement is roughly visible together
with the speech spectrogram.

Fig. 1 shows the result of this: at the top (a) spectrogram
belonging to speech, lower 40 dimensions (to emphasize the re-
gion of the first and second formants, where the tongue articu-
lation has most effect). Next, (b) is the ultrasound image center
line sequence as a function of time (belonging to the same utter-
ance). After that is the ultrasound tongue center line predicted
by the DNN from mel-spectrogram input (c), and from EEG
input (d). The similarity between (a) mel-spectrogram and (b)
articulatory movement is clearly noticeable: the formant move-
ments in speech and the vertical movement of the tongue can
be roughly observed in the figures. In case of ultrasound-based
AAI (c), we can see that the estimated tongue movement pat-
tern follows a similar trend as the original data, but is somewhat
blurred. On the other hand, in (d) DNN-predicted tongue ultra-
sound, tongue movement is not visible on the midline, i.e., the
FC-DNN could not learn well the relation between EEG and
ultrasound tongue images. At the same time, some information
can still be seen in the DNN-predicated images: at the end of the
240th frame, one sentence ends, and the next begins, which can
be clearly seen in the original ultrasound (b) and also in the esti-
mated ultrasound (c and d). Overall, we can say that according
to this visualization, there is a clear relation ship between mel-
spectrogram of speech and ultrasound tongue images, whereas
we also found a weak but noticeable relationship between EEG
and UTI, i.e. the network can differentiate articulated speech
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Figure 2: Original (top), EEG-predicted (middle) and melspec-
predicted (bottom) ultrasound tongue images, in ’raw’ format.

vs. neutral tongue position.
Fig. 2 shows some original and estimated ultrasound im-

ages from the test data of the speaker, in the ’raw’ represen-
tation of the ultrasound machine. The contour of the tongue
ultrasound is not always visible even in the original images –
this is due to the dependence of the ultrasound tongue images
on the speaker – it seems that this subject has a tongue that is
difficult to acquire.

In case of Acoustic-to-Articulatory Inversion, i.e., mel-
spectrogram-to-ultrasound prediction (Fig. 2 bottom), the
movement of the tongue is roughly in accordance with the orig-
inal ultrasound images (Fig. 2 top). Although the UTI images
are relatively blurred (because the properties of the data for this
particular subject), it is clear that the AAI-estimated images fol-
low the original articulatory patterns to some extent.

In the images estimated from EEG input (i.e., EEG-to-UTI
prediction, Fig. 2 middle), the contour of the tongue is fully
blurred, and the change in the position of the tongue from frame
to frame is also difficult to observe – i.e., the DNN was able to
learn the general shape of the tongue (the average image), but
the fine details of the tongue movement cannot be seen. How-
ever, some general change of brightness is visible as a function
of time: if the original images were darker, then this is also
mapped on the predicted images (e.g., around frames 230–240).

The same series of images are shown in the ’wedge’ repre-
sentation in Fig. 3. Because the data that was used for plotting is
the same, just in different visual representation, a similar trend
can be noticed as in Fig. 3: the upper surface of the tongue
can be roughly seen in the original images (left), and to some
extend on the AAI-estimated images (right) but in the images
estimated based on the EEG (middle), the ultrasound pixels are
blurred, and the contour of the tongue is not visible. However,
between frames 230–240, the change in light intensity can be
noticed in the DNN-predicated case.

3.2. Objective measures

The mean squared error (MSE) values achieved with the above
FC-DNN network are included in Table 1. The values them-
selves are difficult to interpret, but for example, in previous
UTI-based acoustic-to-articulatory inversion experiments (dur-
ing which ultrasound tongue images were predicted from the
speech signal [4, 6]), the obtained NMSE validation error val-
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Figure 3: Original (left), EEG-predicted (middle) and melspec-
predicted (right) ultrasound tongue images, in ’wedge’ format.

Table 1: MSE scores after training.

training validation test
melspec-to-UTI 0.0051 0.0053 0.0051
EEG-to-UTI 0.0051 0.0052 0.0051

ues were in the order of 0.0053–0.0088; and in this case, the ul-
trasound tongue video generated from the speech input approx-
imated the original articulatory movement. Note that because
of the properties of the ultrasound images, this range is slightly
dependent on the actual subject. It can also be seen from Table 1
that the MSE values alone are not sufficient to judge the quality
of the results, and a visual inspection is necessary. In the case
of previous ultrasound research, there have been experiments
examining other error measures, such as Structural Similarity
Index (SSIM) [33] and Complex Wavelet Structural Similarity
(CW-SSIM) [34], on ultrasound tongue images [35, 6], which
might be useful to check on these data.

4. Discussion and conclusions
In Sec. 1, we have shown several previous approaches for brain-
to-speech synthesis with articulatory information included; but
such articulation was always indirectly measured / estimated us-
ing acoustic-to-articulatory inversion, and not recorded in par-
allel with brain-related data [22, 27, 28, 29, 30]. As suggested
by the papers above, an obvious solution for speech BCIs is
the examination of articulation as an intermediate representa-
tion between the brain signal and the resulting final speech,
which we dealt with in [26] and extended in this article with
ultrasound-based acoustic-to-articulatory inversion. We argue
that measuring and analyzing articulation with real equipment
during speech production could result in further advantages and
improvement in the long-term for brain-to-speech synthesis.

In the current research, we have focused on acoustic-to-
articulatory inversion (AAI), and estimated articulatory move-
ment from the speech signal. After that, we have analyzed
the similarities between AAI-estimated articulation and EEG-
estimated articulation. We have compared the direct articulation
(resulting from recordings of ultrasound tongue images) with
DNN-predicted ultrasound and have shown that EEG input is
suitable to distinguish neutral (resting state) tongue position and
articulated speech, i.e. the relationship between EEG and ul-
trasound tongue images was clearly demonstrated, because the
network can differentiate articulated speech and neutral tongue
position, like Voice Activity Detection. Besides, in the AAI
experiments we have shown that melspectrogram-to-ultrasound
can predict articulatory movements of the tongue with higher
accuracy, and we have presented demonstration samples and an-
alyzed the results visually.

Similarly to tongue movement recorded with ultrasound, lip
movement recorded with a camera would be a reasonable infor-
mation to use in the context of the present study. As we have
also recorded lip video in the current setup, it is a reasonable
next step to investigate lip articulation as well, and how this
relates to the brain. Besides of the above FC-DNN, it might
be useful to utilise some pre-trained convolutional neural net-
work (CNN), and then fine-tune it on the present task. In the
future, we plan to contribute to speech-based brain-computer
interfaces, by adding directly recorded speech articulation in-
formation to the processing pipeline.
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