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Abstract Nonholonomic models of automobiles are de-

veloped by utilizing tools of analytical mechanics, in

particular the Appellian approach that allows one to

describe the vehicle dynamics with minimum number

of time-dependent state variables. The models are cat-

egorized based on how they represent the wheel-ground

contact, whether they incorporate the longitudinal dy-

namics, and whether they consider the steering dynam-

ics. It is demonstrated that the developed models can

be used to design low-complexity controllers that en-

able automated vehicles to execute a large variety of

maneuvers with high precision.
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1 Introduction

During the last century, we have seen an unprecedented

evolution of road transportation. This started with Benz’s

invention of the horseless carriage or automobile at the

end of the nineteenth century, which was turned into

mass production by Ford during the early twentieth

century. It was not until the second half of the twen-

tieth century when engineers started to describe the

motion of road vehicles and the subject vehicle dynam-

ics was born, as evidenced by the establishment of the

International Association of Vehicle Systems Dynamics

(IAVSD) and the corresponding journals and symposia.

During the last few decades road vehicles transformed

from mechanical to electro-mechnical systems by tak-

ing advantage of the products of the semiconductor in-

dustry. This essentially led to the birth of the subject

vehicle control which was evidenced by the foundation

of the organization Advanced Vehicle Control (AVEC)

and the corresponding series of symposia. During the

first two decades of the current century, starting with

the DARPA Grand Challenges, the notion of automated

vehicle or self-driving vehicle was established, and this

is expected to dominate the research and development

of vehicle dynamics and control during the next few

decades. The timeline of these events is summarized at

the top of Fig. 1.

The field of vehicle dynamics, control and automa-

tion has been driven by three main factors: the de-

mand for speed, the demand for maneuverability, and

the need for safety. These led to many key inventions

during the second half of the last century, including

cruise control, anti-lock braking system (ABS), elec-

tronic stability control (ESC), adaptive cruise control

(ACC), and lane keeping systems; see Fig. 1. These sys-

tems relieve the human driver from some of the driving
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Fig. 1 Timeline of the life of dynamicists and the development of vehicle dynamics, control, and automation.

tasks, while still keeping him/her in the loop. Recent

efforts, on the other hand, have been mainly dedicated

to handing over all driving tasks to automated sys-

tems whose capabilities supersede those of the human

drivers. This ambitious goal demands for vehicle mod-

els that can describe a large variety of maneuvers and

for low-complexity controllers which enable the vehi-

cle to execute those maneuvers. These controllers need

to achieve high level of maneuverability without large

computational efforts, as the latter would result in time

delays and would compromise safety, especially for high

speed [12,43,44,81].

To move towards higher levels of automation, many

efforts are put forward both in academia and in the

industry. These include the establishment of research

centers and test facilities at universities [67], large in-

vestments made by traditional automakers, and the cre-

ation of many start-up companies which primarily fo-

cus on automated driving. Researchers approach au-

tomation from various perspectives including safety, ef-

ficiency, security, legal, and even ethical considerations.

Vehicle dynamics and control plays a fundamental role

in enhancing these performance measures, and thus,

will have a key role in achieving self-driving functional-

ities.

In order to understand vehicle dynamics, we need

to go back a little more in history. Fig. 1 also displays

a list of eminent scientists who predated the automo-

tive revolution by centuries. As a matter of fact, most

of the current modeling approaches are based on the

works of Isaac Newton [52], which were reformulated

later by Leonhard Euler [21]. This method, which main-

tains knowledge of reaction forces between bodies, still

constitutes the base of vehicle dynamics softwares cur-

rently used in academia and industry; we refer to this

as the Newtonian approach. A method that eliminates

the reaction forces arising from geometric constraints is

due to Joseph-Louis Lagrange (born Giuseppe Luigi La-

grangia) [37]. This can also be used for vehicle systems

and we refer to this as the Lagrangian approach. Kine-

matic constraints, which can describe the dynamics of

rolling wheels, were incorporated in the Lagrangian ap-

proach by Edward Routh [65] and Aurel Voss [80]. Nev-

ertheless, the method developed by Paul Appell [6] and

independently by Josiah Gibbs [25] was necessary to

eliminate the reaction forces arising from the rolling

constraints. We refer to this as the Appellian approach,

though we remark that similar methods were devel-

oped later by Petr Voronets [79], Georg Hamel [30]

and Thomas Kane [33]. Various analytic and geometric

approaches to kinematic constraints and the so-called

nonholonomic systems were later developed and sum-

marized in [11,14,20,24,29,34,36,51,55,58].

The Appellian approach has not yet been utilized

widely in the field of vehicle dynamics. Kinematic con-

straints are often imposed on (potentially complex) ve-

hicle models to form constrained optimization-based

control problems, which are computationally expensive.

In contrast, the Appellian approach eliminates kine-

matic constraints by selecting the minimum number of

dynamic variables that can be used to describe the mo-

tion of the vehicle. It generates a system of first order

differential equations, which is ready-made for control

design without the need of imposing any additional con-

straint. Such simplicity can have tremendous benefit

for motion planning and control of automated vehicles,

which has not yet been exploited so far, except in case

of steering control of kinematic models [19,50].
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The first major contribution of this paper is the in-

troduction of the Appellian approach into the field of

vehicle dynamics. For the first time, nonholonomic dy-

namic models are derived, which incorporate the essen-

tial longitudinal and lateral dynamics of automobiles,

while taking into account the kinematic constraints of

rolling. We assume rigid wheels and skates to model

the wheel-ground contact, and derive the constraining

forces at the contact points which are needed to realize

the kinematic constraints. This approach enables us to

reveal the backbone dynamics of automobiles [4], and

to describe a large variety of maneuvers without signif-

icant increase in model complexity. In particular, the

models remain differentially flat [1, 23, 40, 45, 49], en-

abling the development of low-complexity planners and

controllers with low computational cost.

We remark that in the literature, tire models [56] are

utilized typically to calculate the wheel-ground contact

forces. These involve many empirical parameters and

the corresponding vehicle models are of higher complex-

ity, making it difficult to identify the backbone dynam-

ics [47,72]. We remark that the Appellian approach can

also be used when incorporating tire models of differ-

ent complexity [12,53,75]. The arising high-complexity

vehicle models may be used to test the controllers de-

signed using the nonholonomic models. We also remark

that one may incorporate the elasticity of the suspen-

sion while assuming rigid wheel-ground contact [16,42,

74].

To investigate the developed nonholonomic models,

we study the path-following control problem by utiliz-

ing these models. In their original form, the models de-

scribe the absolute position and orientation of the ve-

hicle in an Earth-fixed frame. For path following, how-

ever, it is beneficial to use the relative position and

orientation with respect to the given path. This can en-

able the design of analytical path-following controllers

for any given path, rather than limiting to straight or

circular paths. Therefore, the second major contribu-

tion of this paper is to derive a nonlinear transforma-

tion analytically, which can be used to transform the

vehicle dynamics from absolute coordinates to relative

coordinates. This transformation can be applied to any

vehicle model (even to those with tires), and here we

apply it to the developed nonholonomic vehicle models.

We use the transformed vehicle models to design

path-following controllers. In the literature, many so-

phisticated, high-complexity controllers are available for

path-following [3,9,10,13,15,18,22,41,64,76,81]. How-

ever, these rarely meet all the expectations of the auto-

motive industry simultaneously, like low computational

cost, high maneuverability, increased comfort, and en-

hanced safety. In particular, controllers based on models

with tires require a great effort in parameter identifica-

tion, whereas the uncertainties and model errors make

them only capable of executing maneuvers in restricted

scenarios. Consequently, automated vehicles, which are

capable of following straight paths and circles, often

perform poorly when the curvature changes abruptly

or when disturbances occur. This can lead to reduced

maneuverability, discomfort, and safety hazards.

The third major contribution of this paper is to

create a novel low-complexity nonlinear path-following

controller based on the backbone dynamics of nonholo-

nomic models derived by the Appellian approach. We

construct a controller by integrating a nonlinear feed-

forward controller revealed by the transformed dynam-

ics and a nonlinear feedback controller that is able to

handle both small and large errors in lateral deviation

and relative yaw angle. We investigate the stability of

the controller analytically, and demonstrate via numer-

ical simulations that it enables vehicles to follow dif-

ferent paths with high precision. Such controllers can

enable automated vehicles to execute a large variety

of maneuvers without compromising comfort or safety,

which will play an essential role as we move toward

higher levels of automation.

We start the rest of the paper by discussing con-

straints in mechanical systems as well as the Newto-

nian, Lagrangian, and Appellian modeling approaches

in Section 2. The latter one is utilized in the subsequent

sections to develop the models for automobiles. Readers

who are familiar with these modeling approaches may

decide to skip this section. In Section 3, we describe our
modeling assumptions used for the single track mod-

els developed in the paper. We categorize the mod-

els based on how the wheel-ground contact is modeled

(rigid wheels vs skates), whether the longitudinal speed

is restricted or the vehicle is driven by forces/torques,

and whether the steering angle is assigned or a steering

torque is applied. The models with skates are described

in detail in Section 4, while the models with rigid wheels

are discussed in Section 5. In both cases the models are

given at the beginning of the sections followed by the

detailed derivations in subsections. These derivations

may be skipped by the reader depending on his/her

interests. In Section 6 we discuss the roles of singu-

larities, the calculation of nonholonomic constraining

forces, and present an analytic method to reformulate

the models using path coordinates. These equations are

used in control design when the vehicle is intended to

follow a given path in Section 7. We conclude the pa-

per in Section 8 where we also point out some future

research directions.
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2 Analytical Mechanics for Nonholonomic

Systems

In this section, we briefly review the concepts involved

in nonholonomic systems and the related modeling tech-

niques. The reader may refer to [11, 14, 20, 24, 29, 34,

36, 51, 55, 58] for more details on dynamics of nonholo-

nomic systems. We start with defining constraints and

degrees of freedom, and then review the Newtonian, the

Lagrangian and the Appellian approaches. For the sake

of simplicity, the derivations are carried out for systems

of particles and we provide the necessary formulas to

allow the reader to generalize the calculations for rigid

bodies.

2.1 Constraints and degrees of freedom

Let us consider a system of N particles of mass mi,

i = 1, . . . , N as shown in Fig. 2. Without constraints

this system has 3N degrees of freedom, that is, it re-

quires 3N scalar coordinates to unambiguously describe

the system. The corresponding Newtonian equations of

motion can be formulated as 3N second order ordinary

differential equations, or equivalently, 6N first order or-

dinary differential equations. In particular, one may use

the position vectors ri, i = 1, . . . , N of the particles to

describe their motion uniquely.

Now consider that the system is subject to g geo-

metric (also called holonomic) constraints of the form

fα(ri, t) = 0 , α = 1, . . . , g , (1)

see the examples f1 and f2 in Fig. 2. Here we use a

simplified notation so that ri stands for r1, . . . , rN rep-

resenting that each constraint may depend on the po-

sition vectors of all particles as well as on the time t

explicitly. This notation is implemented in the rest of

this section in order to keep the complexity of formu-

las manageable. For example, wβ(rj , t) means that lβ
may depend on r1, . . . , rN . Assume that apart from the

geometric constraints, we also have h kinematic (also

called nonholonomic) constraints of the form

gβ(ri, ṙi, t) = 0 , β = 1, . . . , h , (2)

where the dot represents derivative with respect to time

t; see the example g1 in Fig. 2.

We show that the geometric constraints can be elim-

inated using generalized coordinates, while the kine-

matic constrains can be handled using pseudo veloci-

ties, although the equations (2) shall be kept as part of

the equations of motion. Consequently, one can define

the degrees of freedom of the system as 3N − g − h/2
corresponding to the 6N − 2g − h first order ordinary

Fig. 2 Dynamical system of N particles with constraints. A
rod maintains the distance l between particles m1 and m2,
which is described by the constraint f1. The particle mN
is constrained to a surface while its velocity is directed by
the blade of a skate sliding on the surface; the corresponding
constraining equations are given by f2 and g1, respectively.

differential equations that govern the motion of the sys-

tem; see also [32].

In order to simplify the matter, we only consider

kinematic constraints that are affine functions of veloc-

ities ṙi:

N∑
i=1

wβi(rj , t) · ṙi + wβ(rj , t) = 0 , β = 1, . . . , h , (3)

where · denotes the dot product of vectors. In what

follows, all the sliding and/or rolling constraints can be

written in the form (3) which seems to be quite generic

in classical multi-body systems.

Before trying to eliminate the constraints, we list

some definitions. As already indicated above, the ac-

tual velocity of particle i is denoted by ṙi; this will

be the solution of the equations of motion once they

are constructed. The set of velocities that satisfy the

constraints above (but may not satisfy the equations of

motion) are called admissible velocities and they are de-

noted by {ṙ∧i , ṙ∧∧i , ṙ∧∧∧i , . . .}. One of these velocities is,

in fact, the actual velocity. Finally, the virtual velocity

is defined as the difference of two admissible velocities,

e.g., δṙi = ṙ∧i − ṙ∧∧i ; see illustrations in Fig. 3. Notice

that despite δ often refers to variations, the virtual ve-

locities are not infinitesimal quantities.

Using the definitions above, one may reformulate

(3) as follows. Since the admissible velocities satisfy the

constraints (3), the velocities ṙ∧i and ṙ∧∧i may be sub-

stituted there instead of ṙi. Then taking the difference

of the two leads to
N∑
i=1

wβi(rj , t) · δṙi = 0 , β = 1, . . . , h , (4)

that are linear in the virtual velocities δṙi.
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Fig. 3 Actual, admissible and virtual velocities. (a) Skating
on a stationary surface. (b) Skating on a non-stationary sur-
face that translates with velocity u. In both cases the virtual
velocity is tangential to the surface.

2.2 Newton’s 2nd Law and Jourdain’s Principle

The power of the force Fi acting on particle i is defined

as Pi = Fi · ṙi. Based on the definitions above, the

virtual power can also be defined as δPi = Fi · δṙi.
Then, the ideal constraints are defined by requiring the

virtual power of the corresponding constraining forces

Ki to be zero:

N∑
i=1

Ki · δṙi = 0 . (5)

Here we only consider ideal constraints, and the forces

that do not satisfy (5) are called active forces and de-

noted by Fi.

Thus, Newton’s 2nd Law can be written in the form

mir̈i = Fi + Ki , i = 1, . . . , N , (6)

where the active and the constraining forces are sep-

arated. By multiplying this equation with the corre-

sponding virtual velocity δṙi, and summing them for

all particles, we obtain Jourdain’s principle

N∑
i=1

(mir̈i − Fi) · δṙi = 0 , (7)

where (5) is utilized. Similar result is obtained by apply-

ing D’Alembert’s principle with virtual displacements

instead of virtual velocities, which is widely used in

statics [20]. However, since virtual displacements are

infinitesimal quantities, it is challenging to use them in

dynamical problems [5].

2.3 Lagrange Equations of the 2nd Kind

The Lagrangian approach can be used to eliminate the

g geometric constraints (1) and the corresponding ge-

ometric constraining forces from the governing equa-

tions. In order to do this, 3N − g so-called generalized

coordinates qk, k = 1, . . . , 3N − g have to be selected

intuitively. While the chosen definitions

qk := Hk(ri, t) , k = 1, . . . , 3N − g , (8)

are optional, it can be considered appropriate if these

generalized coordinates, together with the geometric

constraints (1), provide an unambiguous description of

the dynamical system. In mathematical terms, this means

that the system of 3N nonlinear algebraic equations

Hk(ri, t) = qk , k = 1, . . . , 3N − g ,
fα(ri, t) = 0 , α = 1, . . . , g ,

(9)

(cf. (1) and (8)) has a unique solution for the 3N un-

known coordinates of the position vectors ri , i = 1, . . . , N .

Consequently, if the generalized coordinate selection is

appropriate, a unique solution

ri(qk, t) , i = 1, . . . , N , (10)

exists, where again, we use the abbreviated notation

that qk represents q1, . . . , q3N−g. We remark that the

explicit time dependence of (8), (9) and (10) originates

in the fact that, in general, the constraints (1), (2) and

(3) can be time dependent.

Taking the time derivative of (10) allows us to ex-

press the velocities ṙi as an affine function of the gen-

eralized velocities q̇k:

ṙi =

3N−g∑
k=1

∂ri(q`, t)

∂qk
q̇k +

∂ri(q`, t)

∂t
, i = 1, . . . , N .

(11)

Similarly to (3) and (4), this can be rewritten for the

virtual velocities δṙi = ṙ∧i − ṙ∧∧i by means of the virtual

generalized velocities δq̇k = q̇∧k − q̇∧∧k as

δṙi =

3N−g∑
k=1

∂ri(q`, t)

∂qk
δq̇k , i = 1, . . . , N . (12)
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Substituting (11) into (3) yields the kinematic con-

straints in the form

3N−g∑
k=1

Aβk(q`, t) q̇k+Aβ(q`, t) = 0 , β = 1, . . . , h , (13)

that are expressed with respect to the generalized ve-

locities as

Aβk(q`, t) =

N∑
i=1

wβi

(
rj(q`, t), t

)
· ∂ri(q`, t)

∂qk
,

Aβ(q`, t) =

N∑
i=1

wβi

(
rj(q`, t), t

)
· ∂ri(q`, t)

∂t

+ wβ
(
rj(q`, t), t

)
.

(14)

Substituting (12) into (4) yields the kinematic con-

straints in the form

3N−g∑
k=1

Aβk(q`, t) δq̇k = 0 , β = 1, . . . , h , (15)

expressed with the virtual generalized velocities.

In order to derive the equations of motion in terms

of the generalized coordinates qk, we substitute (12)

into Jourdain’s principle (7); this leads to

3N−g∑
k=1

(
N∑
i=1

mir̈i ·
∂ri
∂qk
−

N∑
i=1

Fi ·
∂ri
∂qk

)
δq̇k = 0 . (16)

Applying the relationship ∂ṙi/∂q̇k = ∂ri/∂qk (cf. (11))

and the chain rule, one can reformulate (16) as

3N−g∑
k=1

(
d

dt

∂T

∂q̇k
− ∂T

∂qk
−Qk

)
δq̇k = 0 , (17)

where

T =
1

2

N∑
i=1

mi ṙ
2
i

=
1

2

3N−g∑
j, k=1

(
N∑
i=1

mi
∂ri
∂qj
· ∂ri
∂qk

)
q̇j q̇k

+

3N−g∑
k=1

(
N∑
i=1

mi
∂ri
∂qk
· ∂ri
∂t

)
q̇k +

1

2

N∑
i=1

mi

(
∂ri
∂t

)2

,

(18)

is the kinetic energy of the system, while the generalized

forces are introduced by the definition:

Qk :=

N∑
i=1

Fi ·
∂ri
∂qk

, k = 1, . . . , 3N − g . (19)

If the virtual generalized velocities δq̇k were inde-

pendent, one could equate the expression in the bracket

in (17) to zero. Note, however that these quantities can-

not be chosen independently since they must satisfy the

kinematic constraints (15). In order to resolve this issue,

we introduce h Lagrange multipliers λβ , β = 1, . . . , h,

one for each kinematic constraint equation in (15), sum-

marize them and add the sum to (17). This yields

3N−g∑
k=1

 d

dt

∂T

∂q̇k
− ∂T

∂qk
−Qk −

h∑
β=1

λβAβk

 δq̇k = 0 .

(20)

Now, equating the expressions in the parentheses to

zero and recalling the kinematic constraints (15), we

obtain the Lagrange equations of 2nd kind generalized

for nonholonomic systems in the form:

d

dt

∂T

∂q̇k
− ∂T

∂qk
= Qk +

h∑
β=1

λβAβk , k = 1, . . . , 3N − g ,

3N−g∑
k=1

Aβk q̇k +Aβ = 0 , β = 1, . . . , h .

(21)

This is a set of 3N − g + h algebraic differential equa-

tions that needs to be solved for the 3N − g + h un-

known time histories of the generalized coordinates qk(t),

k = 1, . . . , 3N − g and the magnitudes λβ(t), β = 1, . . . , h

of the generalized constraining forces that ensure the

kinematic constraints to be satisfied.

Since the Lagrange multipliers λβ , β = 1, . . . , h ap-

pear linearly in (21), they can be eliminated by alge-

braic manipulations, to obtain 3N − g − h second or-

der ordinary differential equations that are still aug-

mented with h first order ordinary differential equa-

tions (the kinematic constraints). This is equivalent to

having 2(3N − g − h) + h = 6N − 2g − h first order or-

dinary differential equations, that is, 3N − g − h/2 de-

grees of freedom. In this interpretation, each geometric

(holonomic) constraint reduces the number of degrees of

freedom by one, while each kinematic (nonholonomic)

constraint reduces the number of degrees of freedom by

one half.

The generalized forces (19) may be calculated by

noticing that the virtual power of the active forces is

the same as that of the generalized forces, that is, using

(12) yields

δP =

N∑
i=1

Fi ·δṙi =

3N−g∑
k=1

N∑
i=1

Fi ·
∂ri
∂qk

δq̇k =

3N−g∑
k=1

Qkδq̇k .

(22)

Finally, as mentioned above, the theory also works

for rigid bodies. In that case, for each rigid body in the



Nonholonomic dynamics and control of road vehicles: moving toward automation 7

system, the kinetic energy (18) has to be calculated. To

do this, one should sum (integrate) the kinetic energy

of each particle of the rigid body, that is,

T =
1

2

∫
(m)

v2 dm, (23)

where v ≡ ṙ refers to the velocity of a particle of the

rigid body (see Fig. 4), which can be calculated as

v = vG + ω × ρ , (24)

where vG is the velocity of the center of mass G (for

which
∫

(m)
ρdm = 0), ω is the angular velocity vector

of the body. The position vector ρ points from the cen-

ter of gravity G to the particle, and × denotes the cross

product of vectors. Thus,

T =
1

2

∫
(m)

(vG + ω × ρ)2 dm

=
1

2

∫
(m)

v2
G dm+

∫
(m)

vG · (ω × ρ) dm

+
1

2

∫
(m)

(ω × ρ) · (ω × ρ)︸ ︷︷ ︸
=ω·(ρ×(ω×ρ))

dm

=
1

2

∫
(m)

1 dm︸ ︷︷ ︸
=m

v2
G + vG ·

(
ω ×

∫
(m)

ρ dm︸ ︷︷ ︸
=0

)

+
1

2
ω ·
∫

(m)

ρ× (ω × ρ)︸ ︷︷ ︸
=ρ2ω−(ω·ρ)ρ

dm

=
1

2
mv2

G +
1

2
ω ·
∫

(m)

(ρ2I− ρ⊗ ρ) dm︸ ︷︷ ︸
=JG

ω ,

(25)

where m is the mass of the body, ⊗ is the diadic prod-

uct, and JG is the mass moment of inertia tensor about

the center of mass G. Hence, the kinetic energy becomes

T =
1

2
mv2

G +
1

2
ω · JGω . (26)

Moreover, the virtual power (22) of the active force

system acting on each rigid body can be calculated via

the summation of the virtual powers of each active force

Fi that acts on the i-th particle of the rigid body. In

addition, the torques Tj acting on rigid bodies also have

to be considered, namely:

δP =
∑
i

Fi · δvi +
∑
j

Tj · δω

=
∑
i

Fi · δ(vG + ω × ρi) +
∑
j

Tj · δω

=
(∑
i

Fi
)

︸ ︷︷ ︸
=F

·δvG +
(∑
i

ρi × Fi +
∑
j

Tj

)
︸ ︷︷ ︸

=MG

·δω .
(27)

Fig. 4 Derivation of the kinetic energy and the virtual power
of active forces acting on rigid bodies.

So, the virtual power can be calculated

δP = F · δvG + MG · δω , (28)

where F is the resultant force, while MG is the resultant

torque about the center of mass G.

2.4 Appell Equations

The Appellian approach allows one to eliminate the

kinematic (nonholonomic) constraints by selecting in-

tuitively n = 3N − g − h so-called pseudo velocities σj ,

j = 1, . . . , n. These have to be defined appropriately as

the linear combinations of the generalized velocities q̇k,

k = 1, . . . , 3N − g, such that

σj :=

3N−g∑
k=1

Bjk(q`, t) q̇k , j = 1, . . . , n . (29)

Similarly to the requirements for the selection of

the generalized coordinates in (8), the otherwise op-

tional functions Bjk must be selected in a way that the

defined pseudo velocities σj provide an unambiguous

description of the system dynamics. Accordingly, the

definitions of the pseudo velocities (29) together with

the kinematic constraints (13) constitute a (3N − g)-

dimensional system of linear algebraic equations with

respect to the generalized velocities. This can be writ-

ten in the form

A11 . . . A1(3N−g)
...

. . .
...

Ah1 . . . Ah(3N−g)
B11 . . . B1(3N−g)

...
. . .

...

Bn1 . . . Bn(3N−g)


︸ ︷︷ ︸

=:C

 q̇1

...

q̇3N−g

 =



−A1

...

−Ah
σ1

...

σn


, (30)
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which must have a unique solution for the generalized

velocities q̇k. Consequently, the pseudo velocities have

to be defined appropriately, that is, the coefficients Bjk
in (29) must be selected in a way that the coefficient

matrix C in (30) is not singular in the configuration

space of the generalized coordinates q` at any time:

det
(
C(q`, t)

)
6= 0 . (31)

In general, if C is not singular then the generalized

velocities can be expressed as a unique function of the

pseudo velocities, generalized coordinates and time:

q̇k =

n∑
j=1

fkj(q`, t)σj + fk(q`, t) , k = 1, . . . , 3N − g ,

(32)

similarly to the generalized coordinates expressed as

unique functions of the system position vectors in (10).

For the single track vehicle models presented in this

paper, we will discuss different choices of the pseudo ve-

locities and the corresponding possible singular points

of the configuration spaces in Section 6.1.

Substituting (32) into (11), we can express the ve-

locities with the pseudo velocities as

ṙi =

n∑
j=1

dij(q`, t)σj + di(q`, t) , i = 1, . . . , N , (33)

where

dij(q`, t) =

3N−g∑
k=1

∂ri(q`, t)

∂qk
fkj(q`, t) ,

di(q`, t) =

3N−g∑
k=1

∂ri(q`, t)

∂qk
fk(q`, t) +

∂ri(q`, t)

∂t
.

(34)

In a similar way as (12) is derived from (11), one can

obtain

δṙi =

n∑
j=1

dij(q`, t) δσj , i = 1, . . . , N , (35)

from (33). Also, differentiating (33) yields the acceler-

ation

r̈i =

n∑
j=1

dij(q`, t) σ̇j + . . . , i = 1, . . . , N , (36)

where . . . represent terms that contain only generalized

coordinates q`, pseudo velocities σj , and time t, but do

not contain pseudo accelerations σ̇j . Observe that (36)

results in

∂r̈i
∂σ̇j

= dij(q`, t) . (37)

Recall Jourdain’s principle in (7), where the substi-

tution of (35) leads to

n∑
j=1

(
N∑
i=1

mir̈i · dij −
N∑
i=1

Fi · dij
)
δσj = 0 . (38)

Using (37) and the chain rule, one can reformulate (38)

as

n∑
j=1

(
∂S

∂σ̇j
−Πj

)
δσj = 0 , (39)

where

S =
1

2

N∑
i=1

mi r̈
2
i , (40)

is the so-called acceleration energy (or Gibbs function)

of the system, and the pseudo force Πj is defined by

Πj =

N∑
i=1

Fi · dij , j = 1, . . . , n . (41)

Since the virtual pseudo velocities δσj in (39) are

not constrained, the parentheses can be equated to zero.

These, together with (32), constitute the Appell equa-

tions:

∂S

∂σ̇j
= Πj , j = 1, . . . , n ,

q̇k =

n∑
j=1

fkjσj + fk , k = 1, . . . , 3N − g ,
(42)

which is a system of n+ 3N − g = 6N − 2g − h first or-

der ordinary differential equations for the n = 3N − g − h
pseudo velocities σj and the 3N − g generalized coor-

dinates qk corresponding to the 3N − g − h/2 degrees

of freedom of the system.

Similarly to the derivation of (22), the pseudo forces

(41) can be calculated through the virtual power, that

is,

δP =

N∑
i=1

Fi · δṙi =

3N−g∑
k=1

Qkδq̇k =

n∑
j=1

Πjδσj . (43)

When the theory is applied for multi-body systems,

the acceleration energy of each rigid body has to be

calculated as

S =
1

2

∫
(m)

a2 dm, (44)

where a ≡ r̈ refers to the acceleration of a particle of the

rigid body; see Fig. 5. Based on the rigid body kinemat-

ics, the acceleration of any particle can be calculated as

a = aG +α× ρ+ ω × (ω × ρ) , (45)
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where aG is the acceleration of the center of mass G, α

is the angular acceleration vector of the body. Thus,

S =
1

2

∫
(m)

(aG +α× ρ+ ω × (ω × ρ))
2

dm

=
1

2

∫
(m)

a2
G dm+

1

2

∫
(m)

(α× ρ) · (α× ρ)︸ ︷︷ ︸
=α·(ρ×(α×ρ))

dm

+

∫
(m)

aG · (α× ρ) dm

+

∫
(m)

aG · (ω × (ω × ρ)) dm

+

∫
(m)

(α× ρ) · (ω × (ω × ρ))︸ ︷︷ ︸
=α·(ρ×(ω×(ω×ρ)))

dm

+
1

2

∫
(m)

(ω × (ω × ρ))2︸ ︷︷ ︸
does not depend on σ̇j

dm

=
1

2

∫
(m)

1 dm︸ ︷︷ ︸
=m

a2
G +

1

2
α ·
∫

(m)

(ρ2I− ρ⊗ ρ) dm︸ ︷︷ ︸
=JG

α

+ aG ·
(
α×

∫
(m)

ρdm︸ ︷︷ ︸
=0

)

+ aG ·
(
ω ×

(
ω ×

∫
(m)

ρ dm︸ ︷︷ ︸
=0

))

+α ·
(
ω ×

∫
(m)

(ρ2I− ρ⊗ ρ) dm︸ ︷︷ ︸
=JG

ω

)
+ . . . ,

(46)

where the same steps are used to extract the mass mo-

ment of inertia JG as in (25), and there is no need to cal-

culate the additional terms referred to by . . . since they

do not contain accelerations, and consequently, their

derivatives are always zero with respect to the pseudo

accelerations σ̇j in the Appell equations (42).

Finally, the acceleration energy of a rigid body can

be calculated as

S =
1

2
ma2

G +
1

2
α · JGα+α · (ω ×HG) + . . . (47)

where HG = JGω is the angular momentum vector

about the center of mass G, that is, the last term is

a scalar triple product of the angular acceleration, the

angular velocity, and the angular momentum vectors.

To calculate the right hand side of the Appell equa-

tions in case of multi-body system, one can calculate

the virtual power of the active forces acting on the rigid

body using (28) and identify the pseudo forces via (43).

Fig. 5 Derivation of the acceleration energy for rigid bodies.

3 Single Track Models

In this section we describe the fundamental abstractions

that are used to model the dynamics of automobiles.

First, we introduce the so-called single track or bicycle

model. Then we discuss different abstraction levels of

the wheel, namely, rigid wheel and skate. Finally, we

categorize the different models developed in this paper

based on the wheel models and constraints considered.

Note that the dynamics of real bicycles are in fact quite

different and substantially more intricate as discussed,

for example, in [42,46].

In Fig. 6, the dimmed part shows the top view of

a four-wheeled, front-wheel-steered vehicle. By approx-

imating the front wheel pair with a single front wheel

and the rear wheel pair with a single rear wheel, we ob-

tain an abstraction of the vehicle, called the single track

or bicycle model [26, 42, 60, 63, 70, 77] which is empha-
sized by dark gray color. The mass of the vehicle body

is m, the wheel base is l, the distance between the rear

axle and the center of mass G is d, and the moment of

inertia of the vehicle body about the center of mass G

Fig. 6 Single track (also called bicycle) model of an auto-
mobile with geometry and coordinate frames indicated.
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Fig. 7 Models of rigid rolling wheel (a) and skate (b) with
geometry and kinematics indicated.

is JG. Points R and F mark the center of the rear and

front wheels, respectively, and the steering angle is γ.

To derive the constraints and the models, we define

multiple (right-hand) coordinate systems as follows.

1. (x, y, z) is the Earth-fixed frame (denoted as F)

with the origin located at point O;

2. (x0, y0, z0) is the body-fixed frame of the vehicle (de-

noted as F0) with the origin located at the center of

mass G of the vehicle, the x0 and y0 axes pointing

towards the longitudinal and lateral directions;

3. (x1, y1, z1) is the body-fixed frame of the rear wheel

(denoted as F1) with the origin located at the center

of the rear wheel R, the x1 and y1 axes pointing

towards the longitudinal and lateral directions;

4. (x2, y2, z2) is the body-fixed frame of the front wheel

(denoted as F2) with the origin located at the center

of the front wheel F, the x2 and y2 axes pointing

towards the longitudinal and lateral directions of

the front wheel.

The basis of the frames are denoted by ik, jk,kk, where

the subscript k refers to the frame Fk. In the Earth-

fixed frame F , the yaw angle of the vehicle is ψ, while

the position of points G, R and F are (xG, yG), (xR, yR)

and (xF, yF), respectively.

In the bicycle model, different wheel-ground con-

tact models can be used from simple rigid wheel as-

sumptions [19,78] to complex tire models [48,56]. Here,

we consider the first case, namely, we consider a sin-

gle contact point at each wheel with no slip condition.

This approach can be formulated by the consideration

of a rigid wheel or a skate. In the following subsections,

we summarize the main assumptions and the related

kinematic constraints of these two different cases. In

particular, we derive the kinematic constraints for the

rear wheel of the vehicle. Indeed, similar formulas can

be obtained for the front wheel that are also given later

in the paper.

3.1 Modeling Rigid Wheels

Let us consider a rigid wheel of radius r as shown in

Fig. 7(a). In order to describe the rotation about the

wheel’s symmetry axis y1 we introduce the rotational

angle ϕR. Then the angular velocity vector of the rear

wheel is given as

ωR =

 0

ϕ̇R

ψ̇


F1

. (48)

Let us denote the velocity components of the wheel cen-

ter point R in F1 by vx1

R , vy1

R , vz1R . Since the bicycle

model assumes planar motion of the vehicle body, the

vertical velocity of the wheel center point is zero, i.e.,

vz1R ≡ 0. Thus, the velocity of the contact point P can

be calculated as

vP = vR + ωR × rRP

=

vx1

R

vy1

R

0


F1

+

 0

ϕ̇R

ψ̇


F1

×

 0

0

−r


F1

=

vx1

R − r ϕ̇R

vy1

R

0


F1

.

(49)

Then, the kinematic constraint of rolling vP = 0 leads

to

vx1

R − r ϕ̇R = 0 , vy1

R = 0 . (50)

These formulas can be turned into be first order scalar

ordinary differential equations, when the velocity com-
ponents vx1

R and vy1

R are expressed as functions of the

generalized velocities and coordinates. We will manage

these calculations later for both wheels, but here we

rather focus on the physical meaning of (50). Namely,

the kinematic constraints of rolling can be rephrased in

simple statements: the longitudinal speed of the wheel

center point is equal to the wheel radius times the an-

gular velocity component along the symmetry axis; and

the lateral speed of wheel center point is zero.

3.2 Modeling with Skates

When the dynamics of the automobile are analyzed

without considering of the drivetrain dynamics, the ro-

tational angular speed of the wheels may not be of in-

terest. As a consequence, the first equation in (50) is

related to the longitudinal direction of wheel can be

“neglected” and the rotational angle ϕR can be “elimi-

nated” from the mechanical model. More precisely, the
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Table 1 Single track mechanical models of the automobile.

skate model (see Fig. 7(b)) can be considered, which

also simplifies the derivation of the kinematic constraint.

As the skate blade glides ahead, the velocity of its

contact point P is parallel with the longitudinal direc-

tion of the blade, i.e., vP ‖ i1, where i1 indicates the

directions of the x1-axis. In other words, the lateral

speed of the contact point is zero, which also holds for

the point R, that is,

vy1

R = 0 . (51)

This formula is identical to the second equation in (50)

and it eliminates the rotational degree of freedom of the

wheel.

3.3 Model Categorizations

In Sections 4 and 5, we derive multiple single track ve-

hicle models using skates and rigid wheels, respectively.

We apply the kinematic constraints (51) and (50) for

the skates and rigid wheels, respectively, and use the

Appellian formalism to derive the equations of motion

for these nonholonomic vehicle models. In particular,

we derive four different models while using the skate

approach as shown in the first four rows of Table 1.

Here we list the assumptions, number of generalized

coordinates, control inputs, kinematic constraints, and

degrees of freedom for each model. The related sections
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of the paper are also indicated in order to guide the

reader.

We start with the kinematic bicycle model with con-

stant longitudinal speed and assigned steering angle.

This is described by three configuration coordinates

(the position of the center of mass G and the yaw an-

gle) and has three kinematic constraints (zero veloc-

ity components normal to the plane of the rear skate

(51), the equivalent constraint for the front skate, and

constant longitudinal speed assumption). These lead to

3− 3/2 = 1.5 degrees of freedom, that is, three first-

order ordinary differential equations. When the lon-

gitudinal speed is not constrained, we obtain a force-

driven model with two kinematic constraints (zero nor-

mal velocities for both skates) yielding 3− 2/2 = 2 de-

grees of freedom. Keeping the longitudinal speed con-

stant but steering the front wheel by applying a steer-

ing torque requires one more configuration coordinate,

so that with the three kinematic constraints we obtain

4− 3/2 = 2.5 degrees of freedom. Finally, driving the

vehicle with forces and steering it with torque lead to

4− 2/2 = 3 degrees of freedom.

In the last four rows of Table 1, we summarize the

models derived using the rigid wheel approach. When

comparing to the corresponding skate models, one may

observe that the rigid wheel models contain two more

configuration coordinates, the rotational angles of the

wheels, and they also have two more kinematic con-

straints for the rotational speeds of the wheels; cf. (50).

Consequently, the degrees of freedom grow with 2 −
2/2 = 1 compared to the corresponding skate mod-

els, yielding 2.5, 3, 3.5, and 4 degrees of freedom mod-

els, respectively. Another change is that while the skate

models are driven by forces the rigid wheel models are

driven by torques applied to the axles. In Section 5, we

will discuss the equivalence between force and torque

driving.

4 Bicycle Models with Skates

In this section, we derive models with skates listed in

the first four rows of Table 1. The mechanical model is

shown in Fig. 8 where skates are used to model both

the rear and front wheels; see Fig. 7(b). The masses of

the skates are mR and mF while the mass moments of

inertia about the points R and F are JR and JF, re-

spectively. We assume that the driving forces FR and

FF can be applied at the rear and front wheels, respec-

tively, while the internal steering torque is Ts.

Since the vehicle is moving in two-dimensional space,

three generalized coordinates are needed to describe its

position and orientation. Here we choose the position

(xG, yG) of the center of gravity G and the yaw angle

Fig. 8 Bicycle model considering skates at the wheels.

ψ. Alternatively, one may choose the position (xR, yR)

of the center of the rear axle R and the yaw angle ψ.

Without any kinematic constraint these would corre-

spond to three degrees of freedom, i.e., three second or-

der ordinary differential equations. Below we will show

how the number of degrees of freedom, i.e., the number

of ordinary differential equations will be reduced due

to the kinematic constraints. Moreover, the state of the

steering system can be described by an additional gen-

eralized coordinate, the steering angle γ, leading to an

additional degree of freedom. This degree of freedom

can also be removed, however, assuming that the steer-

ing angle can be assigned.

The kinematic constraints of the skates can be for-

mulated based on Section 3.2, namely, the lateral ve-

locity components of the points R and F are zeros:

vy1

R = 0 , vy2

F = 0 . (52)

The velocities of points R and F can be expressed as

vR =

ẋR

ẏR

0


F

=

 ẋR cosψ + ẏR sinψ

−ẋR sinψ + ẏR cosψ

0


F1

,

vF =

ẋF

ẏF

0


F

=

 ẋF cos(ψ + γ) + ẏF sin(ψ + γ)

−ẋF sin(ψ + γ) + ẏF cos(ψ + γ)

0


F2

.

(53)

From geometry, the positions of points R and F are

xR = xG − d cosψ ,

yR = yG − d sinψ ,

xF = xG + (l − d) cosψ ,

yF = yG + (l − d) sinψ .

(54)

After substituting the derivatives of (54) (cf. (179)) into

(53), the formulas in (52) result in the kinematic con-

straining equations:

ẋG sinψ − ẏG cosψ + d ψ̇ = 0 ,

ẋG sin(ψ + γ)− ẏG cos(ψ + γ)− (l − d)ψ̇ cos γ = 0 .

(55)
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Table 2 Mechanical models with skates and their governing equations.

As mentioned before, we consider different levels of

model complexity with skates. Here we describe the four

models listed in Table 2 (cf. the first four rows of Ta-

ble 1) while the detailed derivations are left for the fol-

lowing subsections. Readers who are not interested in

these derivations may skip Sections 4.1-4.4 and continue

with Section 5.

The simplest model is given in the first row of Ta-

ble 2 corresponding to the setup in the first row of Ta-

ble 1. This is often referred to as the kinematic bicy-

cle model as it contains neither mass nor moment of

inertia but simply parameterized by the wheelbase l,

the distance d, and the longitudinal velocity V . Given

these parameters and assigning the steering angle γ,

the position and the orientation of the vehicle can be

determined by integrating the three ordinary differen-

tial equations. The first two equations can be further

simplified when using the position of point R instead

of the position of point G, leaving the last equation in-

tact. Such simplification is also possible for all the other



14 W. B. Qin et al.

models presented in this paper. The kinematic bicycle

model is often used for path planning of automated ve-

hicles due to its simplicity and due to the fact that paths

generated by this model are second order smooth. The

model derivations can be found in Section 4.1.

The model given in the second row of Table 2 uses

the setup in the second row of Table 1 where the longi-

tudinal speed σ1 is not restricted but obtained from the

driving forces. The first three equations are analogous

to those in the kinematic model while the longitudinal

dynamics are given by the last equation that contains

the masses and mass moments of inertia of the rigid

bodies as well as the driving forces FR and FF. Notice

that for small steering angles one may omit the non-

linear terms and obtain σ̇1 = (FR + FF)/m1. This sim-

plified model is often used for trajectory planning of

automated vehicles as it can generate paths of second

order smoothness and also allow the design of the veloc-

ity along the paths; see more details in Section 7. We

remark that the nonlinear terms, that originate from

the nonholonomic constraining forces, may become sig-

nificant as the steering angle and the steering rate in-

crease. Finally, we note that the masses mR, mF and

the mass moments of inertia JR, JF of the wheels may

be neglected as these are much smaller compared to the

other terms in m1, m2. This assumption also makes the

term with γ̈ disappear in the last equation. The model

derivations can be found in Section 4.2.

The model in the third row of Table 2 uses the setup

in the third row of Table 1. Here the longitudinal speed

is restricted and the front wheel is steered by the torque

Ts. Thus, the steering angle γ becomes a configuration

coordinate and the two additional ordinary differential

equations describe the evolution of the steering angle γ

and the steering rate σ2. The last equation contains the

steering torque Ts as well as a self alignment term that

acts as a nonlinear damper in the steering dynamics

(and becomes singular for |γ| = π
2 ). The model deriva-

tions can be found in Section 4.3.

Finally, the model presented in the fourth row of

Table 2 uses the setup in the fourth row of Table 1.

Here neither the longitudinal speed nor the steering an-

gle are assigned but they are derived from the driving

forces FR, FF and the steering torque Ts, leading to

a systems of six ordinary differential equations. Com-

pared to the second model, the equation for σ1 changes

a little but the added terms are small compared to the

others, that is, the longitudinal dynamics of the vehicle

does not change significantly. On the other hand, com-

pared to the third model, the equation for σ2 changes

significantly illustrating that changing the assumptions

about the vehicle dynamics can have a large effects on

the steering dynamics. The model derivations can be

found in Section 4.4.

4.1 Kinematic Model

Again to describe the vehicle we need three configura-

tion coordinates which we choose to be the position of

the center of gravity xG and yG and the yaw angle ψ. In

this model, we assume that steering angle γ is directly

assigned and the longitudinal speed is constant V , that

is, vG · i0 = V which can be expressed as

ẋG cosψ + ẏG sinψ = V . (56)

The three kinematic constraints in (55,56) reduce the

degrees of freedom of the system by 1.5. Solving these

equations for the generalized velocities we obtain the

equation of motion:

ẋG = V
(

cosψ − d

l
sinψ tan γ

)
,

ẏG = V
(

sinψ +
d

l
cosψ tan γ

)
,

ψ̇ =
V

l
tan γ .

(57)

4.2 Force-driven Model with Assigned Steering Angle

Releasing the constraint of constant longitudinal speed,

the driving forces FR and FF are applied at the rear

and front skates (along their moving directions). As-

suming that the steering angle is still directly assigned,

one pseudo-velocity is needed and we choose the longi-

tudinal speed

σ1 := ẋG cosψ + ẏG sinψ . (58)

For different choices of pseudo-velocities we refer to

Section 6.1. Together with the kinematic constraints

in (55), one can express the generalized velocities as

ẋG = σ1

(
cosψ − d

l
sinψ tan γ

)
,

ẏG = σ1

(
sinψ +

d

l
cosψ tan γ

)
,

ψ̇ =
σ1

l
tan γ .

(59)

Taking the second derivative of (54) (cf. (180)) and

utilizing the first derivative of (59) (cf. (181)), one can
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derive the acceleration energy

S =
1

2
m
(
ẍ2

G + ÿ2
G

)
+

1

2
JGψ̈

2

+
1

2
mR

(
ẍ2

R + ÿ2
R

)
+

1

2
JR ψ̈

2

+
1

2
mF

(
ẍ2

F + ÿ2
F

)
+

1

2
JF(ψ̈ + γ̈)2

=
1

2

(
m1 +m2 tan2 γ

)
σ̇2

1

+
(
m2

tan γ

cos2 γ
σ1γ̇ +

JF

l
γ̈ tan γ

)
σ̇1

+ (terms without σ̇1) ,

(60)

where

m1 = m+mR +mF ,

m2 =
1

l2
(JG +md2 + JR + JF +mF l

2) .
(61)

The virtual power consists of the powers of the driv-

ing forces acting on the vehicle body, that is,

δP =
[
FR cosψ FR sinψ 0

]
F

δẋR

δẏR

0


F

+
[
FF cos(ψ + γ) FF sin(ψ + γ) 0

]
F

δẋF

δẏF

0


F

=
(
FR +

FF

cos γ

)
δσ1 ,

(62)

implying that the pseudo force is

Π1 = FR +
FF

cos γ
. (63)

The Appell equation

∂S

∂σ̇1
= Π1 , (64)

leads to(
m1 +m2 tan2 γ

)
σ̇1 +m2

tan γ

cos2 γ
σ1γ̇ +

JF

l
γ̈ tan γ

= FR +
FF

cos γ
.

(65)

Combining (59) and (65), the equation of motion are

ẋG = σ1

(
cosψ − d

l
sinψ tan γ

)
,

ẏG = σ1

(
sinψ +

d

l
cosψ tan γ

)
,

ψ̇ =
σ1

l
tan γ ,

σ̇1 =

(
FR + FF

cos γ

)
−m2

tan γ
cos2 γ σ1γ̇ − JF

l γ̈ tan γ

m1 +m2 tan2 γ
.

(66)

4.3 Model with Constrained Longitudinal Speed and

Steering Torque

Here we consider the steering dynamics of the front

wheel and apply a steering torque Ts, meanwhile we pre-

scribe constant longitudinal speed. Thus, we have four

generalized coordinates, i.e., the position (xG, yG), the

yaw angle ψ, and the steering angle γ. The two kine-

matic constraints in (55) are used to guarantee that

there is no side-slip at the skates, and the kinematic

constraint (56) maintains the constant longitudinal speed

V . Thus, one pseudo-velocity is needed, and we choose

the steering rate

σ2 := γ̇ . (67)

Solving (55,56,67), one can obtain

ẋG = V
(

cosψ − d

l
sinψ tan γ

)
,

ẏG = V
(

sinψ +
d

l
cosψ tan γ

)
,

ψ̇ =
V

l
tan γ ,

γ̇ = σ2 .

(68)

The acceleration energy is

S =
1

2
m
(
ẍ2

G + ÿ2
G

)
+

1

2
JGψ̈

2

+
1

2
mR

(
ẍ2

R + ÿ2
R

)
+

1

2
JRψ̈

2

+
1

2
mF

(
ẍ2

F + ÿ2
F

)
+

1

2
JF(ψ̈ + γ̈)2

=
1

2
JF σ̇

2
2 +

JF V

l cos2 γ
σ2σ̇2

+ (terms without σ̇2) ,

(69)

where we used the second derivative of (54) (cf. (180))

and the first derivative of (68) (cf. (182)).

The virtual power consists of the powers of the steer-

ing torque acting on the vehicle body and the front

wheel, that is,

δP =
[
0 0 Ts

]
F2

 0

δϕ̇F

δψ̇ + δγ̇


F2

+
[
0 0 −Ts

]
F0

 0

0

δψ̇


F0

= Ts δγ̇ = Ts δσ2 ,

(70)

implying that the pseudo-force is

Π2 = Ts . (71)

The Appell equation

∂S

∂σ̇2
= Π2 , (72)
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leads to

JF σ̇2 +
JF V

l cos2 γ
σ2 = Ts . (73)

According to (68) and (73) the equations of motion are

ẋG = V
(

cosψ − d

l
sinψ tan γ

)
,

ẏG = V
(

sinψ +
d

l
cosψ tan γ

)
,

ψ̇ =
V

l
tan γ ,

γ̇ = σ2 ,

σ̇2 =
Ts

JF
− V σ2

l cos2 γ
.

(74)

4.4 Force-driven Model with Steering Torque

Here we consider the steering and longitudinal dynam-

ics together, that is, we apply a steering torque Ts and

the driving forces FR and FF at the rear and front

skates. Again, we need four generalized coordinates, the

position (xG, yG), the heading angle ψ, and the steering

angle γ. As the kinematic constraints (55) for the skates

are still considered, we need two pseudo-velocities, i.e.,

the longitudinal speed and the steering rate:

σ1 := ẋG cosψ + ẏG sinψ,

σ2 := γ̇ .
(75)

Solving (55,75) we can express the generalized velocities

as

ẋG = σ1

(
cosψ − d

l
sinψ tan γ

)
,

ẏG = σ1

(
sinψ +

d

l
cosψ tan γ

)
,

ψ̇ =
σ1

l
tan γ,

γ̇ = σ2.

(76)

The acceleration energy is

S =
1

2
m
(
ẍ2

G + ÿ2
G

)
+

1

2
JGψ̈

2

+
1

2
mR

(
ẍ2

R + ÿ2
R

)
+

1

2
JRψ̈

2

+
1

2
mF

(
ẍ2

F + ÿ2
F

)
+

1

2
JF(ψ̈ + γ̈)2

=
1

2

(
m1 +m2 tan2 γ

)
σ̇2

1 +
1

2
JF σ̇

2
2 +

JF

l
tan γ σ̇1σ̇2

+m2
tan γ

cos2 γ
σ1σ2σ̇1 +

JF

l cos2 γ
σ1σ2σ̇2

+ (terms without σ̇1 and σ̇2) .

(77)

where we used the second derivative of (54) (cf. (180))

and the first derivative of (76) (cf. Appendix A). Here

m1 and m2 are still given by (61). The virtual power

consists of the powers of the driving forces and steering

torque acting on the vehicle body and the front wheel:

δP =
[
FR cosψ FR sinψ 0

]
F

δẋR

δẏR

0


F

+
[
FF cos(ψ + γ) FF sin(ψ + γ) 0

]
F

δẋF

δẏF

0


F

+
[
0 0 Ts

]
F2

 0

δϕ̇F

δψ̇ + δγ̇


F2

+
[
0 0 −Ts

]
F0

 0

0

δψ̇


F0

=
(
FR +

FF

cos γ

)
δσ1 + Ts δσ2 ,

(78)

implying the pseudo forces

Π1 = FR +
FF

cos γ
, Π2 = Ts . (79)

The Appell equations

∂S

∂σ̇1
= Π1 ,

∂S

∂σ̇2
= Π2 , (80)

yield(m1 +m2 tan2 γ
) JF

l
tan γ

JF

l
tan γ JF

[σ̇1

σ̇2

]
+

m2
tan γ

cos2 γ
JF

l cos2 γ

σ1σ2

=

FR +
FF

cos γ
Ts

 .

(81)

Combining (76) and (81) gives the equation of motion

ẋG = σ1

(
cosψ − d

l
sinψ tan γ

)
,

ẏG = σ1

(
sinψ +

d

l
cosψ tan γ

)
,

ψ̇ =
σ1

l
tan γ ,

γ̇ = σ2 ,

σ̇1 =

(
FR + FF

cos γ

)
−
(
m2 − JF

l2

)
tan γ
cos2 γσ1σ2 − Ts

l tan γ

m1 +
(
m2 − JF

l2

)
tan2 γ

,

σ̇2 =
− 1
l

(
FR + FF

cos γ

)
tan γ − m1

l cos2 γσ1σ2

m1 +
(
m2 − JF

l2

)
tan2 γ

. . .

. . .
+ Ts

JF

(
m1 +m2 tan2 γ

)
.

(82)
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5 Bicycle Models with Rigid Wheels

In this section, we derive models with wheels listed in

the last four rows of Table 1. The mechanical model is

depicted in Fig. 9 where both wheels are considered to

be rigid (see Fig. 7(a)) and the rotation angles of the

wheels around the y1 and y2 axes are denoted by ϕR and

ϕF, respectively. These will be added to generalized co-

ordinates xG, yG, ψ to describe the configuration of the

vehicle. In case of torque steering these are augmented

with the steering angle γ. The radii of the wheels are

equal and are denoted by r. The masses of the rear and

front wheels are m0
R and m0

F, respectively, while their

mass moment of inertia tensors about points R and F

are given by

JR =

JR 0 0

0 IR 0

0 0 JR


F1

, JF =

JF 0 0

0 IF 0

0 0 JF


F2

, (83)

respectively. That is, JR and JF denote the mass mo-

ments of inertia with respect to the x and z axes, while

IR and IF are the mass moments of inertia with respect

to the symmetry axes y1 and y2 of the wheels. The driv-

ing torques TR and TF act on the rear wheel and the

front wheel about their symmetry axes, respectively. In

case of torque steering, the front wheel is steered by

the internal steering torque Ts, which acts between the

vehicle body and the wheel about the vertical axis.

Denote the wheel-ground contact points by P and

Q for the rear and front wheels, respectively. We as-

sume rolling without slipping, i.e., the velocities of the

contact points are zeros: vP = 0 and vQ = 0. Based on

Section 3.1, the rolling constraints can be expressed as

vx1

R − r ϕ̇R = 0 , vy1

R = 0 ,

vx2

F − r ϕ̇F = 0 , vy2

F = 0 .
(84)

Substituting the velocity components from (53) into

these formulas, and using the derivatives of (54) (cf. (179)),

the kinematic constraining equations become

ẋG sinψ − ẏG cosψ + d ψ̇ = 0 ,

ẋG sin(ψ + γ)− ẏG cos(ψ + γ)− (l − d)ψ̇ cos γ = 0 ,

ẋG cosψ + ẏG sinψ − r ϕ̇R = 0 ,

ẋG cos(γ + ψ) + ẏG sin(γ + ψ) + (l − d)ψ̇ sin γ − r ϕ̇F = 0 .

(85)

Note that the first two equations in (85) are the same

as those in (55).

Again, we consider different levels of model com-

plexity with rigid wheels. Here we describe the four

models listed in Table 3; cf. the last four rows of Ta-

ble 1. The detailed derivations are left for Sections 5.1-

5.4, which may be skipped if they are outside of the

reader’s interest.

Fig. 9 Bicycle model considering rolling wheels.

The kinematic bicycle model given in the first row

of Table 3 corresponds to the setup given in the fifth

row of Table 1. In order to understand the role of the

wheels, it is worth comparing this model to the one in

the first row of Table 2. A color scheme is added to em-

phasize that the first three equations of the model with

wheels are identical to those of the model with skates.

One may observe that while the wheels increase the de-

grees of freedom with one, the two additional ordinary

differential equations written for the rotation angles ϕR

and ϕF are decoupled from the rest of the system. That

is, someone not interested in these quantities may omit

the last two equations. The model derivations can be

found in Section 5.1.

Similar structure is observed for the torque-driven

model in the second row of Table 3, which corresponds

to the setup given in the sixth row of Table 1. Compar-

ing this model to the one in the second row of Table 2,

two additional ordinary differential equations appear

that are decoupled from the rest of the system. In ad-

dition, the effective masses used for the skates can be

calculated from the masses and mass moments of iner-

tia of the wheels. Finally, the first four equations of the

model with wheels are equivalent to those of the model

with skates considering the relationships

FR =
TR

r
, FF =

TR

r
, (86)

between the driving forces and driving torques. The

model derivations can be found in Section 5.2.

The model in the third row of Table 3 corresponds

to the setup given in the seventh row of Table 1. Com-

paring this to the model in the third row of Table 2 one

may identify the identical parts. The model derivations

can be found in Section 5.3.

Finally, the fourth row of Table 3 corresponds to

the eighth row of Table 1. One may compare this to

the fourth row of Table 2 and identify the equivalent

parts with the help of (86). The model derivations can

be found in Section 5.4.



18 W. B. Qin et al.

Table 3 Mechanical models with wheels and their governing equations.

5.1 Kinematic Model with Wheels

Similar to Section 4.1, we assume that steering angle γ

is directly assigned and the longitudinal velocity V is

constant, i.e., the constraint (56) is considered in addi-

tion to the rolling constraints (85).

In order to describe the system we need five config-

uration coordinates. Here we choose xG, yG, ψ, ϕR, ϕF.
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The five kinematic constraints reduce the degrees of

freedom by 2.5, and the resulting 2.5 degree of freedom

dynamic system is described by five ordinary differen-

tial equations. Solving the constraints (56,85) for the

generalized velocities lead to the equations of motion

ẋG = V
(

cosψ − d

l
sinψ tan γ

)
,

ẏG = V
(

sinψ +
d

l
cosψ tan γ

)
,

ψ̇ =
V

l
tan γ ,

ϕ̇R =
V

r
,

ϕ̇F =
V

r

1

cos γ
.

(87)

We remark that the first three equations are decoupled

from that last two equations and that the first three

equations are identical to those in the skate model (57)

developed in Section 4.1.

5.2 Torque-driven Model with Assigned Steering

Angle

Now, we release the constraint of constant longitudi-

nal speed. Instead, the driving torques TR and TF are

applied on the rear and front axles, respectively. How-

ever, the steering angle is still directly assigned. Thus,

we have four kinematic constraints and five generalized

coordinates, which requires one pseudo-velocity to be

chosen. As formerly, we use the longitudinal speed:

σ1 := ẋG cosψ + ẏG sinψ . (88)

Solving (85,88), one can express the generalized veloc-

ities as functions of the pseudo velocity:

ẋG = σ1

(
cosψ − d

l
sinψ tan γ

)
,

ẏG = σ1

(
sinψ +

d

l
cosψ tan γ

)
,

ψ̇ =
σ1

l
tan γ ,

ϕ̇R =
σ1

r
,

ϕ̇F =
σ1

r cos γ
.

(89)

The acceleration energy of the system reads

S =
1

2
m
(
ẍ2

G + ÿ2
G

)
+

1

2
JGψ̈

2

+
1

2
m0

R

(
ẍ2

R + ÿ2
R

)
+

1

2
αR · JRαR +αR · (ωR ×HR)

+
1

2
m0

F

(
ẍ2

F + ÿ2
F

)
+

1

2
αF · JFαF +αF · (ωF ×HF) ,

(90)

where ωR, αR and HR represent the angular velocity,

angular acceleration and angular momentum vectors of

the rear wheel, while ωF, αF and HF are the angular

velocity, angular acceleration and angular momentum

vectors of the front wheel. Since the moment of inertia

tensors JR and JF are expressed in frames F1 and F2,

respectively (cf. 83), the angular velocities should also

be expressed in the corresponding frames:

ωR =

 0

ϕ̇R

ψ̇


F1

, ωF =

 0

ϕ̇F

ψ̇ + γ̇


F2

. (91)

By taking the derivative of (91), one can obtain

αR =
◦
ωR + ωF1

× ωR

=

 0

ϕ̈R

ψ̈


F1

+

0

0

ψ̇


F1

×

 0

ϕ̇R

ψ̇


F1

=

−ψ̇ϕ̇R

ϕ̈R

ψ̈


F1

,

αF =
�
ωF + ωF2 × ωF

=

 0

ϕ̈F

ψ̈ + γ̈


F2

+

 0

0

ψ̇ + γ̇


F2

×

 0

ϕ̇F

ψ̇ + γ̇


F2

=

−(ψ̇ + γ̇)ϕ̇F

ϕ̈F

ψ̈ + γ̈


F2

,

(92)

where
◦
� and

�
� represent the frame derivatives with re-

spect to the body-fixed frames F1 and F2, respectively,

and ωF1 and ωF2 represent the angular velocities of the

frames F1 and F2, respectively. Moreover, the angular

momentum of the rear wheel and the front wheel are

HR = JR ωR =

 0

IRϕ̇R

JRψ̇


F1

,

HF = JF ωF =

 0

IFϕ̇F

JF(ψ̇ + γ̇)


F2

.

(93)

By taking the second derivative of (54) (cf. (180)) and

then utilizing the first derivative of (89) (cf. (181,183))

along with (91,92,93), the acceleration energy (90) can

be rewritten as

S =
1

2

(
m1 +m2 tan2 γ

)
σ̇2

1

+
(
m2

tan γ

cos2 γ
σ1γ̇ +

JF

l
γ̈ tan γ

)
σ̇1

+ (terms without σ̇1) .

(94)
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Here m1 and m2 are defined in (61), and the effective

mass of the rear and front wheels are

mR = m0
R +

IR
r2

, mF = m0
F +

IF
r2

. (95)

The virtual power consist of the powers of the driv-

ing torques acting between the wheels and the vehicle

body:

δP =
[
0 TR 0

]
F1

 0

δϕ̇R

δψ̇


F1

+
[
0 −TR 0

]
F0

 0

0

δψ̇


F0

+
[
0 TF 0

]
F2

 0

δϕ̇F

δψ̇ + δγ̇


F2

+
[
0 −TF 0

]
F0

 0

0

δψ̇


F0

= TR δϕ̇R + TF δϕ̇F

=

(
TR

r
+

TF

r cos γ

)
δσ1 ,

(96)

yielding the pseudo-force

Π1 =
1

r

(
TR +

TF

cos γ

)
. (97)

Using the Appell equation

∂S

∂σ̇1
= Π1 , (98)

one can obtain(
m1 +m2 tan2 γ

)
σ̇1 +m2

tan γ

cos2 γ
σ1γ̇ +

JF

l
γ̈ tan γ

=
1

r

(
TR +

TF

cos γ

)
.

(99)

Therefore, the equations of motion consist of (89) and

(99):

ẋG = σ1

(
cosψ − d

l
sinψ tan γ

)
,

ẏG = σ1

(
sinψ +

d

l
cosψ tan γ

)
,

ψ̇ =
σ1

l
tan γ ,

σ̇1 =

1
r

(
TR + TF

cos γ

)
−m2

tan γ
cos2 γσ1γ̇ − JF

l γ̈ tan γ

m1 +m2 tan2 γ
,

ϕ̇R =
σ1

r
,

ϕ̇F =
σ1

r

1

cos γ
.

(100)

We remark that the first four equations are decoupled

from the last two equations and that the first four equa-

tions are equivalent to those in the skate model (66)

developed in Section 4.2; cf. (86).

5.3 Wheeled Model with Constrained Longitudinal

Speed and Steering Torque

Considering the steering dynamics and applying the

steering torque Ts, we have six generalized coordinates,

xG, yG, ψ, ϕR, ϕF, γ. The four kinematic constraints (85)

are used to guarantee that there is no slip at the wheel-

ground contact points. Moreover, we consider the kine-

matic constraint (56) to maintain constant longitudinal

speed. Thus, one pseudo-velocity is needed, and as be-

fore we choose the steering rate

σ2 = γ̇ . (101)

Solving (56,85,101), for the generalized velocities lead

to

ẋG = V
(

cosψ − d

l
sinψ tan γ

)
,

ẏG = V
(

sinψ +
d

l
cosψ tan γ

)
,

ψ̇ =
V

l
tan γ ,

γ̇ = σ2 .

ϕ̇R =
V

r
,

ϕ̇F =
V

r cos γ
.

(102)

The general expression of acceleration energy, and

calculation of angular velocity, angular acceleration and

angular momentum are the same as (90,91,92,93), re-

spectively. By taking the second derivative of (54) (cf. (180))

and then utilizing the first derivative of (102) (cf. (182,184))

along with (91,92,93), the acceleration energy (90) can

be rewritten as

S =
1

2
JF σ̇

2
2+

JF V

l cos2 γ
σ2σ̇2+(terms with out σ̇2) . (103)

The virtual power consists of the powers of the steering

torque acting between the front wheel and the vehicle

body, that is,

δP =
[
0 0 Ts

]
F2

 0

δϕ̇F

δψ̇ + δγ̇


F2

+
[
0 0 −Ts

]
F0

 0

0

δψ̇


F0

= Ts δγ̇ = Ts δσ2 ,

(104)

implying that the pseudo-force is

Π2 = Ts . (105)

The Appell equation

∂S

∂σ̇2
= Π2 , (106)
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results in

JF σ̇2 +
JF V

l cos2 γ
σ2 = Ts . (107)

Therefore, the equations of motion are given by (102)

and (107) are

ẋG = V
(

cosψ − d

l
sinψ tan γ

)
,

ẏG = V
(

sinψ +
d

l
cosψ tan γ

)
,

ψ̇ =
V

l
tan γ ,

γ̇ = σ2 ,

σ̇2 =
Ts

JF
− V

l cos2 γ
σ2 ,

ϕ̇R =
V

r
,

ϕ̇F =
V

r

1

cos γ
.

(108)

We remark that the first five equations are decoupled

from the last two equations and that the first five equa-

tions are identical to those in the skate model (74) de-

veloped in Section 4.3.

5.4 Torque-driven Model with Steering Torque

In the most complex model of this paper, we consider

the steering and longitudinal dynamics together. That

is, the steering torque Ts as well as the driving torques

TR and TF are applied. In this case, we have six general

coordinates and four kinematic constraints, therefore

two pseudo-velocities are required. As above, we use

the longitudinal speed and the steering rate:

σ1 := ẋG cosψ + ẏG sinψ ,

σ2 := γ̇ .
(109)

Using these together with the kinematic constraints

(85), one can obtain

ẋG = σ1

(
cosψ − d

l
sinψ tan γ

)
,

ẏG = σ1

(
sinψ +

d

l
cosψ tan γ

)
,

ψ̇ =
σ1

l
tan γ ,

γ̇ = σ2 ,

ϕ̇R =
σ1

r
,

ϕ̇F =
σ1

r

1

cos γ
.

(110)

Similar to the explanation in Section 5.3, the gen-

eral expression of acceleration energy, and calculation

of angular velocity, angular acceleration and angular

momentum are already given in (90,91,92,93). By tak-

ing the second derivative of (54) (cf. (180)) and then

utilizing the first derivative of (110) (cf. Appendix A)

along with (91,92,93), the acceleration energy (90) can

be rewritten as

S =
1

2

(
m1 +m2 tan2 γ

)
σ̇2

1 +
1

2
JF σ̇

2
2 +

JF

l
tan γ σ̇1σ̇2

+m2
tan γ

cos2 γ
σ1σ2σ̇1 +

JF

l cos2 γ
σ1σ2σ̇2

+ (terms without σ̇1 or σ̇2) .

(111)

The virtual power consist of the virtual powers of the

driving and steering torques acting on the wheels and

vehicle body, that is,

δP =
[
0 TR 0

]
F1

 0

δϕ̇R

δψ̇


F1

+
[
0 −TR 0

]
F0

 0

0

δψ̇


F0

+
[
0 TF 0

]
F2

 0

δϕ̇F

δψ̇ + δγ̇


F2

+
[
0 −TF 0

]
F0

 0

0

δψ̇


F0

+
[
0 0 Ts

]
F2

 0

δϕ̇F

δψ̇ + δγ̇


F2

+
[
0 0 −Ts

]
F0

 0

0

δψ̇


F0

= TR δϕ̇R + TF δϕ̇F + Tsδγ̇

=

(
TR

r
+

TF

r cos γ

)
δσ1 + Tsδσ2 ,

(112)

implying that the pseudo-forces are

Π1 =
1

r

(
TR +

TF

cos γ

)
, Π2 = Ts . (113)

The Appell equations

∂S

∂σ̇1
= Π1 ,

∂S

∂σ̇2
= Π2 , (114)

lead to(m1 +m2 tan2 γ
) JF

l
tan γ

JF

l
tan γ JF

[σ̇1

σ̇2

]
+

m2
tan γ

cos2 γ
JF

l cos2 γ

σ1σ2

=

1

r

(
TR +

TF

cos γ

)
Ts

 ,

(115)
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where m1 and m2 are given in (61,95). Combining (110)

with (115) yields the equations of motion

ẋG = σ1

(
cosψ − d

l
sinψ tan γ

)
,

ẏG = σ1

(
sinψ +

d

l
cosψ tan γ

)
,

ψ̇ =
σ1

l
tan γ ,

γ̇ = σ2 ,

σ̇1 =

1
r

(
TR + TF

cos γ

)
−
(
m2 − JF

l2

)
tan γ
cos2 γσ1σ2 − Ts

l tan γ

m1 +
(
m2 − JF

l2

)
tan2 γ

,

σ̇2 =
− 1
l r

(
TR + TF

cos γ

)
tan γ − m1

l cos2 γσ1σ2

m1 +
(
m2 − JF

l2

)
tan2 γ

. . .

. . .
+ Ts

JF

(
m1 +m2 tan2 γ

)
,

ϕ̇R =
σ1

r
,

ϕ̇F =
σ1

r

1

cos γ
.

(116)

We remark that the first six equations are decoupled

from the last two equations and that the first six equa-

tions are equivalent to those in the skate model (82)

developed in Section 4.4; cf. (86).

6 Discussion

In this section, we highlight some of the important

properties of the models and the corresponding equa-

tions of motion developed in Sections 4 and 5. We also
show some possible extensions of our mechanical mod-

els that may be helpful in a practical point of view.

6.1 Pseudo Velocities and Singularities

When introducing the Appellian approach in Section 2.4,

we emphasized that the pseudo velocities were chosen

such that the coefficient matrix C in (30) is not sin-

gular; cf. (31). Then, one may uniquely express the

generalized velocities in terms of the pseudo velocities.

Singularity may occur for certain values of the configu-

ration coordinates due to the inappropriate selection of

pseudo velocities or due to the physical structure of the

mechanical model [78,82]. Here, we focus on the former

case. We remark that in this paper, pseudo velocities

are chosen not simply to avoid singularity, but also to

have velocity components with clear physical meaning.

Let us investigate the models of Sections 4 and 5

in terms of the singularities. In Section 4.2, we chose

the longitudinal velocity of the vehicle as pseudo ve-

locity σ1 (cf. (58)), which together with the kinematic

constraints (55) form the linear system sinψ − cosψ d

sin(ψ + γ) − cos(ψ + γ) −(l − d) cos γ

cosψ sinψ 0


︸ ︷︷ ︸

=C

ẋG

ẏG

ψ̇

 =

 0

0

σ1

 .

(117)

The determinant of the coefficient matrix reads det C =

l cos γ, which is only singular at |γ| = π/2. Since the

steering angle γ does not reach π/2 for conventional

automobiles, σ1 is an appropriate choice.

For the same model, one may also use one of the gen-

eralized velocities ẋG, ẏG or ψ̇ as pseudo velocity. This

generic idea corresponds to the Lagrangian approach in-

troduced in Section 2.3, which naturally chooses pseudo

velocities as generalized velocities. For example, let us

consider the choice

σ1 := ψ̇, (118)

as pseudo velocity. This results in the linear system sinψ − cosψ d

sin(ψ + γ) − cos(ψ + γ) −(l − d) cos γ

0 0 1


︸ ︷︷ ︸

=C

ẋG

ẏG

ψ̇

 =

 0

0

σ1

 ,
(119)

where the determinant of the coefficient matrix is det C =

sin γ, which is singular at γ = 0. This means that the

corresponding equation of motion are singular for the

rectilinear motion of the vehicle, i.e., they cannot de-

scribe the most common maneuver. The choices σ1 :=

ẋG and ̂̂σ1 := ẏG lead to the determinants det C =

l cosψ cos γ − d sinψ sin γ and det
̂̂
C = l sinψ cos γ +

d cosψ sin γ, respectively. That is, moving straight for-

ward along the y-axis (ψ = π/2 and γ = 0) and along

the x-axis (ψ = 0 and γ = 0) lead to singular mod-

els when choosing σ1 and ̂̂σ1, respectively. These sin-

gularities highlight the fundamental limitation of the

Lagrangian approach compared to the Appellian ap-

proach: in Lagrangian case the choice of generalized co-

ordinates predetermines the generalized velocities, while

in the Appellian case the pseudo velocities can be cho-

sen by the modeller.

One may notice that singularities can be completely

eliminated by choosing the velocity of center of the front

wheel along the wheel direction as pseudo velocity, i.e.,

σ̂1 := ẋG cos(ψ+γ)+ẏG sin(ψ+γ)+(l−d) ψ̇ sin γ . (120)
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This yields the linear equation sinψ − cosψ d

sin(ψ + γ) − cos(ψ + γ) −(l − d) cos γ

cos(ψ + γ) sin(ψ + γ) (l − d) sin γ


︸ ︷︷ ︸

=Ĉ

ẋG

ẏG

ψ̇

 =

 0

0

σ̂1

 .
(121)

The determinant of the coefficient matrix becomes det Ĉ =

l, which is not singular for any value of the generalized

coordinates and the steering angle. Consequently, the

equations of motion will change to

ẋG = σ̂1

(
cosψ cos γ − d

l
sinψ sin γ

)
,

ẏG = σ̂1

(
sinψ cos γ +

d

l
cosψ sin γ

)
,

ψ̇ =
σ̂1

l
sin γ ,

˙̂σ1 =
FR cos γ + FF + (m1 −m2) σ̂1γ̇ sin γ cos γ

m1 cos2 γ +m2 sin2 γ

−
JF

l γ̈ sin γ

m1 cos2 γ +m2 sin2 γ

(122)

cf. (66).

We emphasize that when selecting pseudo velocities

there is no “recipe” how to avoid singularity. Only after

the choice is made one may check the determinant of the

coefficient matrix. In addition, eliminating singularity

completely might not be the best choice. Instead, one

may choose pseudo velocities which have clear physi-

cal interpretation, eliminate singularities under normal

working conditions, and provide insights for control de-
sign. Considering these aspects, the longitudinal speed

(58) may be a better choice for pseudo velocity than

the speed (120).

6.2 Constraining Forces

All mechanical models used in this paper consider no-

slip conditions at the wheel-ground contact points. To

investigate the validity of these assumptions, one shall

analyze the nonholonomic constraining forces. Since the

Appellian approach does not provide information about

these forces, one shall revert to the Lagrangian or the

Newtonian approach. As an example, we consider the

model developed in Section 4.2 and derive the lateral

constraining forces acting perpendicular to the skate

blades, which we denote by F̃R and F̃F). If these ex-

ceed some critical limits (determined by the friction

coefficient and the normal force), the wheels start to

slip.

In Appendices B and C, we present the derivation

of the equations of motion for the model presented in

Section 4.2 using the Lagrangian and Newtonian meth-

ods, respectively. The derivations result in the lateral

constraining forces (199) expressed as function of the

accelerations ẍG, ÿG, and ψ̈. These forces exhibit sin-

gularity at γ = 0, corresponding to the discussion in

Section 6.1. However, choosing the pseudo velocity ap-

propriately this singularity can be avoided. In particu-

lar, one can eliminate ẍG, ÿG, and ψ̈ in (199) by plug-

ging in the first derivative of (59) (cf. (181)), and obtain

formulas that depend on the velocities ẋG, ẏG, ψ̇ and

σ̇1. Then, substituting (66), we can obtain the lateral

constraining forces

F̃R = − (m2 −m4) tan γ

m1 +m2 tan2 γ

(
FR +

FF

cos γ

)
+ (m1 −m4)

σ2
1

l
tan γ +

m4σ1γ̇

cos2 γ

− m1 +m4 tan2 γ

m1 +m2 tan2 γ

(
m2σ1γ̇

cos2 γ
+
JF

l
γ̈

)
,

F̃F =
1

m1 +m2 tan2 γ

(
m2FR

tan γ

cos γ
+ (m2 −m1)FF tan γ

+m1
m2σ1γ̇

cos3 γ
+m1

JF

l

γ̈

cos γ

)
+m4

σ2
1

l

tan γ

cos γ
,

(123)

which are singular at |γ| = π/2, corresponding to the

choice of the pseudo velocity σ1; cf. the discussion after

(117). Notations m1, m2 are the same as in (61), and

m4 = mF +
d

l
m . (124)

6.3 Different Types of Drivetrain

The skate models (66) and (82) developed in Sections 4.2

and 4.4 include the driving forces FR and FF at the rear

and front. This enables us to consider different drive-

trains. In case of front wheel drive (FWD) vehicles, the

active driving force at the rear is zero (except for brak-

ing), i.e., FR = 0 shall be used in the equations of mo-

tion. Analogously, for rear wheel drive (RWD) vehicles

one shall substitute FF = 0 into the equations.

For all wheel drive (AWD) vehicles, the driving force

distribution at the rear and front wheels are controlled

by torque vectoring differentials. If the resultant active

driving force on the wheels is Fres and torque split ratio

is 0 ≤ β ≤ 1, then the active forces

FR = β Fres , FF = (1− β)Fres , (125)

shall be substituted into the equations of motion (66)

and (82).
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As mentioned before, the vehicle models developed

in Sections 4.2 and 4.4 with skates and driving forces are

equivalent to the models with rigid wheels and driving

torques developed in Sections 5.2 and 5.4. In particular,

the formulas (66) and (82) can be matched with (100)

and (116) using (86). Consequently, the above explained

drivetrain scenarios can be adapted to these cases.

6.4 Resistance Forces

In the models developed above the resistance forces

were neglected. Nevertheless in many driving scenar-

ios these forces play an important role. Here we in-

clude these in the force driven models with skates (66)

and (82), but analogously one may do the same for the

torque driven models with rigid wheels (100) and (116).

When incorporating the road inclination, rolling re-

sistance, and air drag in the model, the pseudo-force

Π1 given in (63) and (79) changes to

Π1 = FR +
FF

cos γ
− ζ m1g cos θ −m1g sin θ

− ρ(vw + σ1)2,

(126)

where ζ is rolling resistance coefficient, ρ is air drag co-

efficient, g is gravitational constant, θ is the inclination

angle, and vw is the velocity of the headwind. Thus, the

equation for σ1 in (66) and the equations for σ1 and σ2

in (82) change accordingly.

6.5 Path-following Problem

An important utilization of the presented mechanical

models relates to the path planning and path-following

control of automated vehicles [28,35,57]. It will be ben-

eficial to transform the models, which are based on ab-

solute position and orientation in an Earth-fixed frame,

to relative position and orientation with respect to the

given path [27,31,39,66]. Here we present an analytical

method that can be used to execute this transformation

for any planar vehicle model and we apply this to the

nonholonomic models developed above.

Let us consider the scenario shown in Fig. 10(a),

where the vehicle aims to follow a given path depicted

by the black dashed curve. More precisely, our goal is

to ensure the rear axle center point R can follow the

black dashed path. We use the positions (xR, yR) of

the rear axle center point R and the yaw angle ψ as

states to localize the vehicle in the (x, y) plane. Point

C marks the closest point to R along the desired path.

We assume the given path is second-order smooth and

that closest point C is unique. If rCR denotes the vec-

tor pointing from C to R and tC is the unit tangential

Fig. 10 Path-following problem when the information is
about the point at the rear axle center point R (a) and the
center of mass G (b).

vector of the path at point C, then tC ⊥ rCR. The an-

gle ψC indicates the direction of tangential vector tC

while the curvature of the path at point C is denoted

by κC. The path-reference frame (ξ, η) travels along the

path as the vehicle moves forward, and thus, the angle

ψC(sC) and the curvature κC(sC) depends on the ar-

clength coordinate sC of the path. We assume that the

information about the desired path is known, namely,

the tuple (xC, yC, ψC, κC) is given as a function of the

arc length sC.

To follow the desired path, a controller has to cor-

rect the lateral deviation and the relative yaw angle

with respect to the path. The lateral deviation can be

defined as

eC = (tC × rCR) · k , (127)

which is positive/negative when point R is on the left/right

hand side of the path. Then, by expressing the tangen-

tial vector tC with the angle ψC, we can obtain the

lateral deviation as

eC = −(xR − xC) sinψC + (yR − yC) cosψC . (128)

Similarly, one can define the relative yaw angle as

θC = ψ − ψC . (129)
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Table 4 Path-reference frame models with skates and their governing equations.

We remark that to ensure θC ∈ [−π, π), one can

generalize this definition as θC = ψ − ψC − 2π
[
ψ−ψC

2π

]
,

where [·] refers to the round function that rounds to the

nearest integer. We will use this generalized definition

in the simulations presented in Section 7.

To facilitate path-following controller design, we trans-

form the absolute position and orientation (x, y, ψ) ex-

pressed in the Earth-fixed frame to the relative posi-

tion and orientation (sC, eC, ψC) with respect to the

path; see [19,68,69,73]. First, we derive the coordinate

transformation (205) for an arbitrary point in differen-

tial form in Appendix D. Then, we apply this to the

rear axle center point R (see Fig. 10(a)), i.e., substitute

x = xR, y = yR, ξ ≡ 0, η = eC and Ω ≡ C, which leads

to

ṡC =
cosψC

1− κCeC
ẋR +

sinψC

1− κCeC
ẏR ,

ėC = −ẋR sinψC + ẏR cosψC .

(130)
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The evolution of relative yaw angle can be determined

by differentiating (129) with respect to time and using

(204) for Ω ≡ C with (130):

θ̇C = −κC cosψC

1− κCeC
ẋR −

κC sinψC

1− κCeC
ẏR + ψ̇ . (131)

We remark that (130) and (131) define a nonlinear

transformation from absolute state (xR, yR, ψ) to rel-

ative state (sC, eC, θC). The inverse transformation in

differential form is

ẋR = (1− κCeC)ṡC cosψC − ėC sinψC ,

ẏR = (1− κCeC)ṡC sinψC + ėC cosψC ,

ψ̇ = κCṡC + θ̇C .

(132)

One can also obtain the inverse transform in coordinate

form as

xR = xC − eC sinψC ,

yR = yC + eC cosψC ,

ψ = ψC + θC ,

(133)

by solving (202, 129) where x = xR, y = yR, ξ ≡ 0, η = eC

and Ω ≡ C are substituted into (202).

Now, let us use the kinematic model of Section 4.1

as an example. Substituting the governing equations of

the model (see the first row of Table 2) into (130) and

(131), we obtain

ṡC =
V cos θC

1− κCeC
,

ėC = V sin θC ,

θ̇C =
V

l
tan γ − V κC cos θC

1− κCeC
,

(134)

where the first equation characterizes the longitudinal

motion of the point C along the path, while the last

two equations provide the evolution of lateral deviation

and relative yaw angle with respect to the path. Note

again that the curvature κC(sC) depends on the path

coordinate sC, that is, the differential equations in (134)

are all coupled.

The transformation described above can be applied

to all mechanical models presented in this paper. We

summarize the related formulas in Table 4 for the mod-

els of Section 4. In this table, we also present the case

when the relative position and orientation are calcu-

lated at the center of mass G with respect to the path;

see Fig. 10(b). As shown, the transformed formulas are

more complicated for this latter case. Note that the

differential equations in Table 4 can also be used to

describe the dynamics of the mechanical models of Sec-

tion 5 in terms of relative position and orientation. The

remaining governing equations can be collected from

Table 3; see the parts highlighted by dark shading.

In the next section, we study path-following control

design using the transformed nonlinear dynamics (134).

The states are the longitudinal position sC, the lateral

deviation eC, the relative yaw angle θC, and the input is

the steering angle γ. We assume that eC and θC can be

measured in real-time with the help of optical sensors.

Thus, the control objective is to design the input γ

based on the outputs eC and θC to ensure that the

vehicle approaches a path (of second order smoothness),

and then traces it perfectly while keeping both errors

eC and θC zero at the same time. In other words, the

closed-loop system must possess a stable steady-state

motion sC = V t, eC ≡ 0, θC ≡ 0.

Note that such perfect tracking is possible when the

rear axle center point R is used, since the nonlinear

control system is differentially flat [1, 23, 40, 45, 49]. In

other words, one may define flat outputs and a non-

linear transformation such that, in an extended state

space, the system can be described by linear differen-

tial equations. Once using the center of mass G, it is not

possible to keep the errors eD and θD zero simultane-

ously, except when the desired path is straight; see [62].

Indeed, the corresponding control system (see the first

row of Table 4) is not differentially flat. While prov-

ing that a system is not differentially flat is far from

trivial, this means physically that when the vehicle fol-

lows a curve, the center of mass G has nonzero lateral

velocity.

7 Controller Design and Simulations

In this section, we focus on the path-following con-

trol problem of automated vehicles. We acknowledge

that path-following control has a long history start-

ing in the 1950s [71] and that many different sophis-

ticated control techniques have been utilized over the

years including model predictive control [13,15,22,41],

Lyapunov-based control [64, 76], sliding mode control

[18], look-ahead/preview control [3, 81], and machine

learning-based control [9, 10], just to mention a few.

Here we propose a low-complexity nonlinear controller

and demonstrate its high performance on the model de-

veloped above. The controller consists of a feedforward

term and a nonlinear feedback term. In case of small

lateral deviation and relative yaw angle, the latter one

is equivalent to widely used linear controllers; see, for

example, [17].

We start with the kinematic bicycle model devel-

oped in Section 4.1; see the first rows of Table 2 and

Table 4 with the original and path-reference states, re-

spectively. In this model, the steering angle γ is as-
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signed, that is, it can track any desired value perfectly:

γ = γdes . (135)

The desired steering angle γdes is determined by the

path-following controller, the goal of which is to drive

the rear axle point R along a given path while making

the relative yaw angle zero; see Fig. 10(a).

Below we design a controller that rely on feedfor-

ward and feedback actions [7]. In particular, we propose

γdes = γff + γfb , (136)

which consists of the feedforward control

γff = arctan(κC l) , (137)

and the feedback control

γfb = g
(
k1

(
θC + arctan(k2 eC)

))
. (138)

Here k1 and k2 are the tunable control gains, and g(x)

denotes a wrapper function with the following proper-

ties:

• It is continuously differentiable and monotonically

increasing over R.

• It is an odd function, i.e., g(x) = −g(−x) for x ∈ R≥0.

• It is bounded by gsat, i.e., g(x) ≤ gsat for x ∈ R≥0.

• Its derivative decreases monotonically for x ∈ R≥0

such that g′(0) = 1 and limx→∞ g′(x) = 0.

In this section, we use the wrapper function

g(x) =
2 gsat

π
arctan

( π

2 gsat
x
)
, (139)

which is selected from a larger family of wrapper func-

tions as described in Appendix E.

In Sections 7.1 and 7.2, we present the details of

the feedforward control law (137) and feedback control

law (138). Readers, who are not interested in these de-

tails, may choose to jump to Section 7.3 for the stability

analysis or to Section 7.4 for simulation results.

7.1 Feedforward Control Design

The feedforward control given in (137) is similar to

pure pursuit algorithm [3,59,73]. To determine the opti-

mal feedforward term, one can use the governing equa-

tions (134) of the model given in the path-reference

frame. Consider that the center of the rear axle R fol-

lows the path precisely such that the lateral deviation

and relative yaw angle are zeros, i.e., eC ≡ 0, θC ≡ 0;

cf. Fig. 10(a). Substituting these and γ = γff into (134)

leads to

ṡC = V ,

0 = 0 ,

0 =
V

l
tan γff − V κC ,

(140)

where the third equation can be satisfied with the feed-

forward control law (137). We remark that, in case of

path-following with respect to the center of gravity G

(cf. Fig. 10(b)), one should determine the feedforward

control action by finding the steady-state solution of

the governing equations given for point G in the first

row of Table 4; see [62].

The feedforward controller may predict the desired

steering angle perfectly to ensure fast response but can-

not correct the errors caused by the initial state and/or

disturbances. This requires the usage of feedback con-

trol as discussed below.

7.2 Feedback Control Design

The nonlinear feedback control law (138) allows the ve-

hicle to correct the steering angle for both small and

large values of the errors eC and θC. For small errors

one may neglect the nonlinearities and obtain the linear

controller

γ0
fb = k1θC + k1k2eC , (141)

which is widely used in the literature [17]. However, as

demonstrated below, for larger errors this linear feed-

back controller may produce unwanted behaviors.

Substituting the wrapper function with the identity

map in (138) yields

γ1
fb = k1

(
θC + arctan(k2 eC)

)
, (142)

see also [38]. One may interpret this controller as trying

to achieve the desired relative yaw angle

θdes
C = − arctan(k2 eC) , (143)

depending on the lateral deviation eC. Fig. 11(a) de-

picts the desired heading of the vehicle as a function of

the lateral deviation eC where the desired path is given

by the black dashed line. Notice that when the vehicle

is far from the path, the desired heading points toward

the path since eC → ±∞ yields θdes
C → ∓π/2.

Similarly, one may interpret the linear controller

(141) as trying to achieve the desired relative yaw angle

θdes,0
C = −k2 eC , (144)

depending on the lateral deviation eC. The pictographs

of the vehicle depicted in Fig. 11(b) show that this may
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Fig. 11 (a) Desired vehicle heading with nonlinear controller
(142). (b) Desired vehicle heading with linear controller (141).

Fig. 12 (a) The wrapper function (139). (b) Maximum al-
lowable steering angle (146) at different speed.

result in wrong desired headings when the vehicle is far

from the path due to the 2π periodicity of the angle.

For example, the linear controller requires the vehicle to

drive parallel to the path when the error is eC = jπ/k2,

j = ±1,±2, . . ..

Fig. 11 illustrates that the nonlinear controller (142)

is able to provide the appropriate steering effort for

both small and large errors. This is a large improvement

compared to most path-following controllers, which re-

quire the lateral deviation and the relative yaw angle

to be small once the controller is engaged. As it will

be demonstrated below, due to the proper handling of

large errors, our controller can be used to follow a large

variety of paths with varying curvature.

The nonlinear controller (142) uses the same con-

trol gains for small and large errors. However, we pre-

fer larger gains for small errors to ensure good tracking

performance and prefer smaller gains for large errors to

avoid “overreaction” and potential oscillations. Thus,

we apply the wrapper function g(x) defined in (139)

with gsat = γsat yielding the nonlinear controller (138);

see Fig. 12(a). Since the derivative of the wrapper func-

tion decreases with |x|, the effective gains are reduced

as the errors increase. More details about wrapper func-

tions can be found in Appendix E.

When setting the allowable steering angle γsat of

the feedback controller, one can simply choose a value

that is smaller than the physical steering angle limit of

the vehicle. However, this may lead to passenger dis-

comfort and even to roll over hazards for high speed.

In order to avoid this, the allowable steering angle can

be determined from the lateral acceleration. Using the

equations of motion given in the first row of Table 2,

one can obtain the lateral acceleration of the rear axle

center point R as

alat
R = −ẍR sinψ + ÿR cosψ =

V 2

l
tan γ , (145)

which only depends on the longitudinal speed and the

steering angle. Note, that this property still holds when

longitudinal speed is not a constant. Thus, we set the

maximum allowable steering angle as

γsat = min

{
γmax, arctan

(alat
max l

V 2

)}
, (146)

where γmax is the physical steering angle limit, alat
max is

the maximum allowed lateral acceleration. Fig. 12(b)

shows the maximum allowable steering angle as a func-

tion of the longitudinal speed for different lateral accel-

eration limits alat
max when l = 2.57 m and γmax = 30 deg.

7.3 Stability Analysis

In this part, we analyze the linear stability of the pro-

posed controller. We use the governing equations (134)

of the model given in the path-reference frame. By sub-
stituting the controller (136,137,138) with the wrapper

function (139) into (134), we obtain the closed-loop dy-

namics

ṡC =
V cos θC

1− κCeC
,

ėC = V sin θC ,

θ̇C = −V κC cos θC

1− κCeC
+
V

l
tan

(
arctan(κCl)

+
2 γsat

π
arctan

( k1π

2 γsat

(
θC + arctan(k2 eC)

)))
.

(147)

One can verify that (147) possesses the desired steady-

state solution

s∗C = V t , e∗C = 0 , θ∗C = 0 , (148)

which corresponds to the vehicle following the path

perfectly. We assume that the road curvature κ varies
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around a constant value κ∗. By defining the input per-

turbation as

κ̃C = κC − κ∗ , (149)

and the state perturbations as

s̃C = sC− s∗C , ẽC = eC− e∗C , θ̃C = θC− θ∗C , (150)

we can derive the linearized dynamics of (147) as

˙̃sC = V κ∗ẽC ,

˙̃eC = V θ̃C ,

˙̃
θC =

V

l

(
k1k2 + k1k2κ

∗2l2 − κ∗2l
)
ẽC

+
V

l
k1

(
1 + κ∗2l2

)
θ̃C .

(151)

Notice that (151) is free from the input perturbation

κ̃C, implying that the linearized system possesses zero

input-to-output response. In other words, as long as

the system (151) is stable, the controller ensures that

the vehicle can perfectly track given paths with varying

curvatures as well. This is due to the fact that (148)

is always a solution to (147) regardless of the given

path. Observe that the last two equations in (151) are

decoupled from the first one and they can be written as[
˙̃eC
˙̃
θC

]
=

[
0 V

V
l

(
k1k2 + k1k2κ∗2l2 − κ∗2l

)
V
l
k1

(
1 + κ∗2l2

)]︸ ︷︷ ︸
A

[
ẽC
θ̃C

]
.

(152)

The corresponding characteristic equation becomes

det(s I−A) = s2 − V k1

l

(
1 + κ∗2l2

)
s

− V 2

l

(
k1k2 + k1k2κ

∗2l2 − κ∗2l
)

= 0 ,

(153)

where s ∈ C denotes the characteristic root. To ensure

that system (152) is stable, the root of (153) must be

in the left half complex plane. Applying the Routh-

Hurwitz criteria, we obtain the stability condition

k1 < 0 , k1k2 <
κ∗2l

1 + κ∗2l2
. (154)

Notice that

0 ≤ κ∗2l

1 + κ∗2l2
<

1

l
, (155)

leads to the sufficient condition

k1 < 0 , k2 > 0 , (156)

which is independent of the constant path curvature κ∗.

7.4 Simulation Results

Above we showed that by choosing appropriate control

gains the closed-loop system can be stabilized when the

vehicle follows a path of constant curvature κC ≡ κ∗.
Therefore, in this section, we first show the performance

of the controller when the path is either a straight line

(κ∗ = 0) or a circle of radius ρ (κ∗ = 1/ρ). Then we de-

sign a closed path with varying curvature and demon-

strate that the proposed controller is capable of fol-

lowing such path as well. The parameters used for the

simulations in this section are provided in Table 5 and

we use the longitudinal speed V = 20 m/s.

Parameter Value

l [m] 2.57
d [m] 1.54
m [kg] 1770

Original mR [kg] 10
Physical mF [kg] 10

Parameters JG [kg ·m2] 1343
JR [kg ·m2] 0.25
JF [kg ·m2] 0.25
γmax [deg] 30

Derived m1 [kg] 1790
Physical m2 [kg] 848.9

Parameters m4 [kg] 1070.6

k1 [m/s] −0.5
k2 [m−1] 0.02
alat

max [m/s2] 4
ks [N ·m] −6

Control Tsat [N ·m] 1
Parameters V [m/s] 20

ka [s−1] −5

along
max [m/s2] 6
vmax [m/s] 30

Path sT [m] 250
Parameters N 4

κmax [m−1] 0.004π

Table 5 Parameters used in the simulation. The physical
parameters are from a Kia Soul 2016 vehicle [54].

Fig. 13 shows that the controller allows the vehicle

to follow a straight path. In panel (a) the dotted black

line indicates the desired path, while the solid red curve

represents the position of the rear axle center point R.

The green arrows indicate the desired heading given

by (143). Panel (b) shows the time profiles of lateral

deviation and relative yaw angle, indicating that the

vehicle settles down to the path after a few seconds.

Panels (c) and (d) depict the time profiles of the desired

steering angle and the lateral acceleration, respectively.

Notice that despite the relatively large initial lateral

deviation, neither overshoot nor oscillations appear as

the vehicle approaches the desired path. Last but not



30 W. B. Qin et al.

0 200 400
−10

−5

0

x [m]

y
[m]

(a)
0 10 20

−10

−5

0

0

5

10

t [s]

eC
[m]

θC

[deg]

(b)

0 10 20−2

0

2

t [s]

[deg]
γdes

(c)
0 10 20−3

0

3

t [s]

alatR[ m

s2

]

(d)

Fig. 13 (a) Vehicle following a straight path along the x-
axis. The blue cross marks the starting point with errors
eC(0) = −10 m and θC(0) = 0 deg. (b) Lateral deviation eC
and heading angle error θC. (c) Desired steering angle γdes.
(d) Lateral acceleration at the center of rear axle alat

R .

least, the observed lateral acceleration would not cause

passenger discomfort.

Fig. 14 demonstrates that the controller also allows

the vehicle to follow a circular path of radius ρ = 200 m

plotted in panel (a) by the dotted black curve. The rest

of the notation is the same as in Fig. 13. In panels (c)

and (d) one may notice that the feedback term goes to

zero while the steering angle and the lateral acceleration

approach constant values.

In order to demonstrate the performance of the con-

troller we consider a path where the curvature varies as

function of the arclength according to

κ(s) =
κmax

2

(
1− cos

(
2π

sT
s

))
, (157)

where κmax is the maximum curvature along the path,

and sT is the period in arclength. From differential ge-

ometry, by solving the differential equations

dx

ds
= cosψ ,

dy

ds
= sinψ ,

dψ

ds
= κ ,

(158)

one can obtain the path x(s), y(s) and ψ(s). This re-

quires the initial configuration and in the rest of the

paper we use x(0) = 0, y(0) = 0 and ψ(0) = 0. One can

show that setting

κmax sT =
4π

N
, N = 2, 3, . . . , (159)
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Fig. 14 (a) Vehicle following circular path with ra-
dius ρ = 200 m and initial errors eC(0) = −10 m and
θC(0) = 20 deg. (b) Lateral deviation eC and heading an-
gle error θC. (c) Steering angles γdes and γfb. (d) Lateral
acceleration at the center of rear axle alat

R .
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Fig. 15 (a) Curvature (157) with N = 2 and sT = 250 m.
(b) Path corresponding to the curvature in panel (a). (c) Path
corresponding to curvature with N = 3 and sT = 250 m. (d)
Path corresponding to curvature with N = 5 and sT = 250 m.

a closed path with N corners and perimeter NsT is ob-

tained. For point C, these lead to κC = κ(sC), xC = x(sC),

yC = y(sC) and ψC = ψ(sC).

Fig. 15(a,b) show the path described by (157,158,159)

when N = 2 and sT = 250 m. Panel (a) plots curvature

as a function of the arclength, while panel (b) depicts

the path in the (x, y) plane with the origin correspond-

ing to sC = 0. Fig. 15(c,d) shows the paths when N = 3

and N = 5.

In the remainder of this paper, we consider the path

with N = 4 and sT = 250 m which yields the minimum

turning radius 1/κmax ≈ 80 m. This path is used in
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Fig. 16 (a) Vehicle following a closed path of varying cur-
vature, starting with errors eC = −10 m and θC = 0 deg. (b)
Lateral deviation eC and heading angle error θC. (c) Steering
angles γdes, γfb and γff . (d) Lateral acceleration at the center
of rear axle alat

R .

Fig. 16 to showcase the tracking performance of the con-

troller. Here the same notations are used as in Figs. 13

and 14. In panel (c) at initial stage the feedback term

γfb is noticeable but eventually this term converges to

zero and the feedforward term γff becomes dominant. In

panel (d) there are instances when the lateral accelera-

tion exceeds the limit alat
max = 4[m

s ], since alat
max is used to

bound the feedback term γfb, but here the feedforward

term γff dominates the lateral acceleration.

7.5 Including Steering Dynamics

The path-following concepts above were explained us-

ing the kinematic bicycle model for simplicity, but these

are indeed applicable to other models too. Here we

extend the controller to the model developed in Sec-

tion 4.3, where the steering dynamics was considered.

We add a lower-level controller on steering torque to

make the steering angle track the desired steering an-

gle, that is,

Ts = g
(
ks(γ − γdes)

)
. (160)

Here γdes is given by (136,137,138), ks represent the

steering gain, and in the wrapper function g(x), given

by (139), we set gsat = Tsat to represent the maximum

allowable steering torque.

Following the same procedure as in Section 7.3, one

can find that the closed-loop system possesses the de-

sired steady-state solution, that is,

s∗C = V t , e∗C = 0 , θ∗C = 0 ,

γ∗ = arctan(lκ∗) , σ∗2 = 0,
(161)

when the nominal value of road curvature is κ∗. We re-

mark that (161) is not a solution to the closed-loop sys-

tem when the road curvature varies, unlike (148) that is

always a solution to (147). This implies that variations

on road curvature lead to variations on tracking errors.

By defining the perturbations

s̃C = sC − s∗C , ẽC = eC − e∗C , θ̃C = θC − θ∗C ,

γ̃ = γ − γ∗ , σ̃2 = σ2 − σ∗2 , κ̃C = κC − κ∗ ,
(162)

we obtain the linearized dynamics

˙̃sC = V κ∗ẽC ,

˙̃eC = V θ̃C ,

˙̃
θC = −V κ∗2ẽC +

V

l

(
1 + κ∗2l2

)
γ̃ − V κ̃C ,

˙̃γ = σ̃2 ,

˙̃σ2 = −ksk1k2

JF
ẽC −

ksk1

JF
θ̃C +

ks

JF
γ̃ − V

l

(
1 + κ∗2l2

)
σ̃2

− ksl

JF

(
1 + κ∗2l2

) κ̃C ,

(163)

where κ̃C serves as the disturbance input. Note that

the first equation characterizes the longitudinal motion,

while the latter four equations govern the lateral mo-

tion, which is decoupled from the first one. By calculat-

ing the characteristic equation of the linearized system

(163), one can derive stability conditions. Also, calcu-

lating the transfer function from the disturbance input

κ̃C to lateral deviation ẽC (or relative yaw angle error

θ̃C), one can analyze the performance of this controller

while following paths with varying curvatures; see [62].

We skip these details here, but instead, we run simula-

tions using a set of gains that can stabilize the system

and achieve good tracking performance when road cur-

vature varies.

Fig. 17 shows the simulation results when the vehi-

cle follows the closed path (157,158,159) with varying

curvature. The same parameter values are used as in

Fig. 16, and the additional parameters can be found

in Table 5. After transients decay, fluctuations in the

tracking error can be observed on panel (b). This can

be explained by the feedforward and feedback terms on

panel (c): the feedforward term γff varies along with

the path while the feedback term γfb makes efforts to

correct the tracking errors and it does not converge to

zero. This is due to the steering dynamics: the actual

steering angle γ is tracking the desired steering angle

γdes with some phase lag.

One can compensate the phase lags caused by the

steering dynamics using the concept of look-ahead con-

trol. Namely, instead of using the curvature κC of the
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Fig. 17 (a) Vehicle following a closed path of varying curva-
ture, starting with errors eC = −10 m and θC = 0 deg when
including the steering dynamics. (b) Lateral deviation eC and
heading angle error θC. (c) Steering angles γ, γdes, γfb and
γff . (d) Lateral acceleration at the center of rear axle alat

R .

closest point C along the path in the feedforward con-

troller we can use the curvature κL of the look-ahead

point L; see Fig. 10(a). That is, instead of (137) we

define the feedforward term

γff = arctan (κL l) , (164)

where κL = κ(sL), the look-ahead distance is given by

sL = sC + V tL , (165)

and tL is called the look-ahead time. One may verify

that the equilibrium (161) remains unchanged. Using

the same definitions of perturbations as (162), one can

obtain almost the same linearized dynamics as (163)

except that the last equation changes to

˙̃σ2 = −ksk1k2

JF
ẽC −

ksk1

JF
θ̃C +

ks

JF
γ̃ − V

l

(
1 + κ∗2l2

)
σ̃2

− ksl

JF

(
1 + κ∗2l2

) (κ̃C + V tL κ̃
′
C) ,

(166)

where κ̃′C :=
dκ

ds
(s∗C). One can analyze the system with

the aforementioned approaches.

Fig. 18 shows the responses for different values of

the look-ahead times tL; cf. Fig. 17(b) where tL = 0 s.

Notice that as tL is increased the tracking error first

decreases and then increases. The tracking error is min-

imal around 0.3 seconds which is close to the phase lag

in the steering dynamics.
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Fig. 18 Lateral deviation eC and relative yaw angle θC when
including the steering dynamics for different values of the
look-ahead time: (a) tL = 0.1 s, (b) tL = 0.3 s, (c) tL = 0.5 s,
(d) tL = 0.7 s.

7.6 Including Longitudinal Dynamics

In this section we extend the use of the path-following

controller to the model developed in Section 4.2 that in-

cludes the longitudinal dynamics. We demonstrate that

this model allows one to integrate the path-following

control with longitudinal control. We apply the path-

following controller (136,137,138), while changing the

speed from V to σ1 in (146), and construct a longitu-

dinal controller that adjusts σ1 to a desired speed that

depends on the road curvature ahead.

We consider a rear wheel drive vehicle, that is, FF = 0.

We apply feedback linearization to the longitudinal dy-
namics given in the second row of Table 2 with the orig-

inal configuration coordinates and in the second row of

Table 4 in the path-reference frame. This results in the

differential equations

ẋR = σ1 cosψ ,

ẏR = σ1 sinψ ,

ψ̇ =
σ1

l
tan γ ,

σ̇1 = ades ,

(167)

or alternatively

ṡC =
σ1 cos θC

1− κCeC
,

ėC = σ1 sin θC ,

θ̇C =
σ1

l
tan γ − σ1κC cos θC

1− κCeC
,

σ̇1 = ades ,

(168)
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Fig. 19 (a) Ratio ι as a function of the steering angle γ. (b)
Target speed vdes as a function of the road curvature κm.

where γ = γdes is given by the path-following controller

(136,137,138), and ades is given by the longitudinal con-

troller described below.

The longitudinal driving force is given by

FR =
(
m1+m2 tan2 γ

)
ades+m2

tan γ

cos2 γ
γ̇ σ1+

JF

l
γ̈ tan γ ,

(169)

which we can rewrite as

FR = m1

(
(1 + ι)ades + a1 + a2

)
, (170)

where

ι =
m2

m1
tan2 γ ,

a1 =
m2

m1

sin γ

cos3 γ
γ̇ σ1 ,

a2 =
JF

m1l
γ̈ tan γ .

(171)

The constant ι is plotted in Fig. 19 as a function of

the steering angle γ. Notice that this only becomes sig-

nificant for larger values of the steering angle. Below

we also show the constants a1 and a2 for the numerical

simulations and the derivatives γ̇ and γ̈ are calculated

in Appendix F.

The lateral constraining forces F̃R and F̃F given in

(123) can be used to define the force-to-weight ratios

µR =
F̃Rl

m1g(l − d)
, µF =

F̃Fl

m1gd
. (172)

These correspond to the friction coefficients needed to

ensure that the kinematic constraints hold, assuming

static weight distribution, i.e., no load transfer. Note

that these expressions also contain the derivatives γ̇

and γ̈ given in Appendix F.

In order to assign the longitudinal acceleration we

propose the controller

ades = g
(
ka(σ1 − vdes)

)
, (173)

where ka is the feedback gain and the wrapper function

g(x) is given by (139) with gsat = along
max. Moreover, we

assign the target speed vdes according to

vdes = min

vmax,

√
alat

max

κm

 , (174)

where vmax is the maximum speed set, alat
max is the max-

imum lateral acceleration allowed, and κm is the max-

imum curvature of the path between the closest point

C and the look-ahead point L, i.e.,

κm = max
s∈[sC,sL]

|κ(s)| . (175)

For simplicity, here we use the constant preview dis-

tance sL − sC = 50 m as opposed to using the look-

ahead time as in (165). In Fig. 19 the desired velocity

(174) is plotted as a function of the curvature for dif-

ferent lateral acceleration limits alat
max. This is in corre-

spondence with the maximum allowable steering angle

shown in Fig. 12(b).

Considering a path of larger curvature such that vdes

does not saturate, the closed-loop system (136,137,138,

168,173,174) possesses the equilibrium

s∗C =

√
alat

max

|κ∗| t , e∗C = 0 , θ∗C = 0 , σ∗1 =

√
alat

max

|κ∗| ,

(176)

when the nominal value of road curvature is κ∗. By

defining the state and input perturbations as

s̃C = sC − s∗C , ẽC = eC − e∗C , θ̃C = θC − θ∗C ,

σ̃1 = σ1 − σ∗1 , κ̃m = κm − κ∗ ,
(177)

we obtain the linearized dynamics

˙̃sC = σ∗1κ
∗ẽC + σ̃1 ,

˙̃eC = σ∗1 θ̃C ,

˙̃
θC =

σ∗1
l

(
k1k2 + k1k2κ

∗2l2 − κ∗2l
)
ẽC

+
σ∗1
l
k1

(
1 + κ∗2l2

)
θ̃C ,

˙̃σ1 = ka σ̃1 +
ka

|κ∗|

√
alat

max

|κ∗| κ̃m .

(178)

Again, one may follow the aforementioned approach to

derive stability conditions and analyze performance in

the presence of curvature disturbances κ̃m.

We simulate the vehicle model (168) with the path-

following controller (136,137,138) and the longitudinal

controller (173,174) using the parameters in Table 5.

Fig. 20(a-d) show the path-following performance, which
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Fig. 20 (a) Vehicle following a closed path of varying cur-
vature, with initial errors eC = −10 m and θC = 0 deg and
speed σ1(0) = 20 m/s. (b) Lateral deviation eC and relative
yaw angle θC. (c) Steering angles γdes, γfb and γff . (d) Lat-
eral acceleration at the center of rear axle alat

R and desired
longitudinal acceleration ades. (e) Desired speed vdes, longi-
tudinal velocity σ1, and road curvature κC. (f) The ratio ι.
(g) Acceleration terms a1 and a2. (h) Lateral force-to-weight
ratios µR and µF.

is similar to that in Fig. 16, except that in panel (d)

the peak lateral acceleration is smaller as the longitu-

dinal controller reduces the speed at the corners. This

panel also shows that the desired longitudinal accelera-

tion is bounded by along
max = 6 m/s2. Panel (e) shows the

time profile of the desired speed tracked by the actual

speed as well as the changes of road curvature. Notice

that the speed decreases once the curvature increases

according to our design. Panels (f) and (g) show the

coefficients defined in (171) and one may observe ι� 1

and a1, a2 � ades. That is, for the driving scenario con-

sidered in Fig. 20, one may omit these in (170) and use

FR ≈ m1ades when commanding the driving force. Fi-

nally, panel (h) depicts the lateral force-to-weight ratios

given in (172). These suggest that, in normal driving
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Fig. 21 Vehicle following a closed path of varying curvature,
with initial errors eC = −10 m and θC = 0 deg and speed
σ1(0) = 20 m/s. To create sharp turns we use the reduced
value sT = 50 m and we also allow the lateral acceleration
alat

max = 12 m/s2. (b) Lateral deviation eC and heading angle
error θC. (c) Steering angles γdes, γfb and γff . (d) Lateral
acceleration at the center of rear axle alat

R and desired longi-
tudinal acceleration ades. (e) Desired speed vdes, longitudinal
velocity σ1, and road curvature κC. (f) The ratio ι. (g) Ac-
celeration terms a1 and a2. (h) Lateral force-to-weight ratios
µR and µF.

conditions (i.e., dry asphalt), there is sufficient friction

to maintain the motion of the automobile. Also while

in the transient phase the coefficients differ a little, we

have µR ≈ µF once the vehicle closely follows the path.

This implies that the two wheels would reach the sliding

limit simultaneously if the friction becomes smaller.

In order to investigate a more aggressive driving sce-

nario we reduce the parameter sT from 250 meters to

50 meters which results in the minimum turning radius

1/κmax ≈ 16 m. Correspondingly, we increase the lat-

eral acceleration limit to alat
max = 12 m/s2. Recall that

this parameter influences both the largest allowed steer-

ing angle feedback (146) as well as the desired speed

(174). The simulation results are shown in Fig. 21 where
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panels (a-c) show qualitatively similar behavior as seen

in Fig. 20(a-c), but the steering angle reaches much

larger values since the path has much sharper corners.

Panel (d) shows that the lateral acceleration also gets

much higher compared to Fig. 20(d), while the longi-

tudinal acceleration approaches zero. The latter is ex-

plained by the speed profiles in panel (e), where the

longitudinal velocity approaches the (constant) desired

speed. Panels (f) and (g) show that ι� 1 and a2 � ades

still hold, but a1 becomes comparable with ades. This

coefficient is expected to grow further for maneuvers

where rapid change of the steering angle is needed (i.e.,

γ̇ becomes large) like sudden lane changes. Finally, the

lateral force-to-weight ratios in panel (h) show qualita-

tively similar behavior to those in Fig. 20(d), but they

reach much higher values, which can make it challeng-

ing for the automobile to stay on track. Once the kine-

matic constraints are violated the vehicle model needs

to be changed to accommodate the sliding, but devel-

oping those models is beyond the scope of this paper.

8 Conclusion

The Appellian approach was utilized to derive single

track models that can describe the versatile maneuver-

ing capabilities of automated vehicles. The models were

categorized based on the modeling assumptions regard-

ing the wheel-ground contact, the longitudinal dynam-

ics, and the steering dynamics. It was shown that when

the vehicle was driven by force/torque, the Lagrangian

approach led to singularities in the equations of mo-

tion, while using the Appellian approach, we were able

to obtain non-singular equations. The Lagrangian ap-

proach was used to derive nonholonomic constraining

forces that ensure that the vehicle stays on track.

By re-writing the equations of motion using path

coordinates, low-complexity nonlinear controllers were

constructed that enable automated vehicles to execute

a large variety of complex maneuvers. The correspond-

ing motion planning and control algorithms are of low

complexity and can be evaluated in a fast manner. This

allows one to minimize time delays in the control loops,

which is particularly important in safety critical sce-

narios. Such property is becoming more important as

vehicles are moving towards higher levels of automa-

tion, requiring more and more complex perception al-

gorithms with larger and larger computational needs.

There are many technological, economical and legal

challenges to overcome if one wants to make highly au-

tomated vehicles deployable on public roads. Here we

highlight four challenges related to vehicle dynamics

and control.

The first challenge concerns modeling. The Appel-

lian models we presented in this paper are built to

capture the backbone dynamics of automobiles. They

assume rigid skates and wheels with point contact to

the ground. Nevertheless, the Appellian approach can

also be utilized to build higher fidelity models which

take into account that flexibility of pneumatic tires [12].

Such models may be used to test the performance of the

low-complexity nonlinear controllers developed through

the backbone models and to evaluate the performance

limits of automated vehicles.

The second challenge is related to the performance,

adaptability and robustness of controllers. Automated

vehicles are expected to perform as good as human

drivers in a versatile set of conditions in terms of weather,

road surface and behavior of neighboring vehicles. Pa-

rameterizing controllers so that they can automatically

adapt to changing environments is a challenging task.

Rather than hand tuning the low-complexity controllers

developed in this paper, one may complement them

with controllers learned from the behavior of human

drivers [9, 61]. Maintaining safety under varying condi-

tions also requires robustness to disturbances. This may

be achieved by extending the theory of control barrier

functions and synthesizing robust safety critical con-

trollers [2].

The third challenge lies in having a gap between

control theory and its practical applications. During

the research phase, attention is mostly attracted to the

study on stability, robustness and adaptability in or-

der to ensure the eventual settlement to desired steady

states. In contrast, in dynamic traffic environments, au-

tomated vehicles frequently deal with transient events,

such as cut-ins, cut-outs, lane changes, take-offs, stop-

ping at traffic lights, etc. Controllers neglecting tran-

sient response may generate “overreaction”, jerky be-

haviors (sway and surge motions), and oscillations in

such scenarios, which can make human occupants very

uncomfortable. Controllers that can handle transient

responses well without using large computational re-

sources are urgently needed in the automotive industry.

Finally, a significant challenge is related to how to

integrate automated vehicles to transportation systems

so that they do not only benefit their passengers but

also positively influence the safety and efficiency of the

overall transportation network. One way to achieve this

is to utilize wireless vehicle-to-everything (V2X) com-

munication which can enable vehicles to collect high-

quality motion information about the traffic environ-

ment they are embedded in. Integrating such informa-

tion into vehicle controllers may lead to large benefits

even for lean penetration of automation and connectiv-

ity [8].
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delay on vehicle stability control (2021). Submitted

45. Martin, P., Murray, R.M., Rouchon, P.: Flat sys-
tems, equivalence and trajectory generation. Tech.
rep. (2003). http://www.cds.caltech.edu/~murray/

preprints/mmr03-cds.pdf

46. Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab,
A.L.: Linearized dynamics equations for the balance and
steer of a bicycle: a benchmark and review. Proceedings
of the Royal Society A 463(2084), 1955–1982 (2007)
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A Derivations

The first derivatives of (54) with respect to time are given by

ẋR = ẋG + d ψ̇ sinψ ,

ẏR = ẏG − d ψ̇ cosψ ,

ẋF = ẋG − (l − d) ψ̇ sinψ ,

ẏF = ẏG + (l − d) ψ̇ cosψ ,

(179)

while the second derivatives of (54) read

ẍR = ẍG + d ψ̈ sinψ + d ψ̇2 cosψ ,

ÿR = ÿG − d ψ̈ cosψ + d ψ̇2 sinψ ,

ẍF = ẍG − (l − d) ψ̈ sinψ − (l − d) ψ̇2 cosψ ,

ÿF = ÿG + (l − d) ψ̈ cosψ − (l − d) ψ̇2 sinψ .

(180)

The first derivatives of (59) are

ẍG = σ̇1

(
cosψ −

d

l
sinψ tan γ

)
−
d

l
σ1γ̇

sinψ

cos2 γ

−
σ2

1

l
tan γ

(
sinψ +

d

l
cosψ tan γ

)
,

ÿG = σ̇1

(
sinψ +

d

l
cosψ tan γ

)
+
d

l
σ1γ̇

cosψ

cos2 γ

+
σ2

1

l
tan γ

(
cosψ −

d

l
sinψ tan γ

)
,

ψ̈ =
σ̇1

l
tan γ +

σ1γ̇

l cos2 γ
.

(181)

The first derivatives of (68) are

ẍG = −
V 2

l
tan γ

(
sinψ +

d

l
cosψ tan γ

)
−
d

l
V σ2

sinψ

cos2 γ
,

ÿG =
V 2

l
tan γ

(
cosψ −

d

l
sinψ tan γ

)
+
d

l
V σ2

cosψ

cos2 γ
,

ψ̈ =
V σ2

l cos2 γ
,

γ̈ = σ̇2 .

(182)

Taking the first derivative of (76), one can see that ẍG, ÿG
and ψ̈ are the same as those given in (181), and γ̈ is the same
as that given in (182).

Taking the first derivative of (89), one can see that ẍG,

ÿG and ψ̈ are the same as those given in (181), and

ϕ̈R =
σ̇1

r
,

ϕ̈F =
σ̇1

r cos γ
+

sin γ

r cos2 γ
σ1γ̇ .

(183)

Taking the first derivative of (102), one can see that ẍG,

ÿG and ψ̈ are the same as those given in (182), and

ϕ̈R = 0 ,

ϕ̈F =
sin γ

r cos2 γ
V γ̇ .

(184)

Taking the first derivative of (110), one can see that ẍG,

ÿG and ψ̈ are the same as given in (181), γ̈ is the same as
given in (182), and ϕ̈R and ϕ̈F are the same as given in (183).
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B Lagrangian Approach

Here we apply the Lagrangian approach for the model pre-
sented in Section 4.2 as an example. The generalized coor-
dinates are chosen as xG, yG, and ψ, and the corresponding
Lagrange equation of second kind (21) become

d

d t

∂ T

∂ ẋG

−
∂ T

∂ xG

= Q1 + λ1A11 + λ2A21 ,

d

d t

∂ T

∂ ẏG
−

∂ T

∂ yG
= Q2 + λ1A12 + λ2A22 ,

d

d t

∂ T

∂ ψ̇
−
∂ T

∂ ψ
= Q3 + λ1A13 + λ2A23 ,

(185)

where T is the kinetic energy of the system, Q1, Q2 and Q3

are the generalized forces corresponding to generalized coor-
dinates xG, yG and ψ, respectively. The Lagrange multipliers
λ1 and λ2 are related to the two kinematic constraints in (55).
Moreover, A11, A12 and A13 are the coefficients of ẋG, ẏG
and ψ̇ in the first equation in (55), while A21, A22 and A23

are the coefficients of ẋG, ẏG and ψ̇ in the second equation
in (55). Those coefficients are

A11 = sinψ , A21 = sin(ψ + γ) ,

A12 = − cosψ , A22 = − cos(ψ + γ) , (186)

A13 = d , A23 = −(l − d) cos γ .

The kinetic energy is given by

T =
1

2
m (ẋ2

G + ẏ2
G) +

1

2
JGψ̇

2

+
1

2
mR (ẋ2

R + ẏ2
R) +

1

2
JR ψ̇

2

+
1

2
mF (ẋ2

F + ẏ2
F) +

1

2
JF (ψ̇ + γ̇)2 .

(187)

By substituting the derivative of (54), one can get

T =
1

2
m (ẋ2

G + ẏ2
G) +

1

2
JG ψ̇2 +

1

2
JR ψ̇

2 +
1

2
JF (ψ̇ + γ̇)2

+
1

2
mR

(
(ẏG − d ψ̇ cosψ)2 + (ẋG + d ψ̇ sinψ)2

)
+

1

2
mF

((
ẏG + (l − d)ψ̇ cosψ

)2
+ (ẋG − (l − d)ψ̇ sinψ)2

)
.

(188)

To obtain the generalized forces, we calculate the virtual
power of the active forces

δP =
[
FR cosψ FR sinψ 0

]
F

δẋR

δẏR
0


F

+
[
FF cos(ψ + γ) FF sin(ψ + γ) 0

]
F

δẋF

δẏF
0


F

=
(
FR cosψ + FF cos(ψ + γ)

)
δẋG

+
(
FR sinψ + FF sin(ψ + γ)

)
δẏG

+ FF(l − d) sin γ δψ̇ ,

(189)

implying that

Q1 = FR cosψ + FF cos(ψ + γ) ,

Q2 = FR sinψ + FF sin(ψ + γ) ,

Q3 = FF(l − d) sin γ .

(190)

Substituting (186,188,190) into (185), the Lagrangian equa-
tions become(
(mR +mF)d−mFl

)
ψ̇2 cosψ + (m+mR +mF)ẍG

+
(
(mR +mF)d−mFl

)
ψ̈ sinψ

= FR cosψ + FF cos(ψ + γ) + λ1 sinψ + λ2 sin(ψ + γ) ,(
(mR +mF)d−mFl

)
ψ̇2 sinψ + (m+mR +mF)ÿG

−
(
(mR +mF)d−mFl

)
ψ̈ cosψ

= FR sinψ + FF sin(ψ + γ)− λ1 cosψ − λ2 cos(ψ + γ) ,(
(mR +mF)d−mFl

)
ẍG sinψ

−
(
(mR +mF)d−mFl

)
ÿG cosψ

+
(
JR + JF + JG +mR d

2 +mF(l − d)2
)
ψ̈ + JF γ̈

= FF(l − d) sin γ + λ1 d− λ2(l − d) cos γ .

(191)

The first two equations result in the Lagrange multipliers

λ1 =
1

sin γ

(
FR cos γ + FF +m3dψ̈ sin γ −m3dψ̇

2 cos γ

−m1

(
ẍG cos(ψ + γ) + ÿG sin(ψ + γ)

))
,

λ2 =
1

sin γ

(
− FR − FF cos γ +m3dψ̇

2

+m1

(
ẍG cosψ + ÿG sinψ

))
,

(192)

where m1 and m2 are given in (61), and

m3 = mR −
l − d
d

mF . (193)

Substituting (192) into the third equation in (191) yields(
− (m1 −m3)d sinψ sin γ +m1l cosψ cos γ

)
ẍG

+
(

(m1 −m3)d cosψ sin γ +m1l sinψ cos γ
)
ÿG

+
(
JG + JR + JF +mFl(l − d)

)
ψ̈ sin γ + JFγ̈ sin γ

+m3dlψ̇
2 cos γ − FRl cos γ − FFl = 0 .

(194)

Combining this equation with the first derivatives of (55), one

can obtain three linear equations on ẍG, ÿG, and ψ̈. Note that
the solutions for ẍG, ÿG, and ψ̈ are not independent, one can
choose the solution for any of ẍG, ÿG, and ψ̈. Here, we choose
to solve for

ψ̈ =

(
FR + FF

cos γ

)
tan γ
l

+m1
1

sin γ cos γ
γ̇ ψ̇ − JF

l2
γ̈ tan2 γ

m1 +m2 tan2 γ
,

(195)

where m1 and m2 are given in (61). By solving ẋG and ẏG
from (55) in terms of ψ̇, we obtain the governing equations

ẋG = (l cosψ cot γ − d sinψ)σ1 ,

ẏG = (l sinψ cot γ + d cosψ)σ1 ,

ψ̇ = σ1 ,

σ̇1 =

(
FR + FF

cos γ

)
tan γ
l

+m1
γ̇ σ1

sin γ cos γ
− JF

l2
γ̈ tan2 γ

m1 +m2 tan2 γ
.

(196)
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These equations are singular at γ = 0, that is, they can-
not describe the rectilinear motion. This singularity can be
solved by using Appellian approach that results in (66). As
mentioned in Section 6.2, one can substitute the first deriva-
tive of (59) (cf. (181)) into (192) to eliminate ẍG, ÿG, and

ψ̈.
This results in formulas that depend on the velocities ẋG,

ẏG, ψ̇ and σ̇1 that are given by (66) and lead to

λ1 =
(m2 −m4) tan γ

m1 +m2 tan2 γ

(
FR +

FF

cos γ

)
− (m1 −m4)

σ2
1

l
tan γ

−
m4σ1γ̇

cos2 γ
+
m1 +m4 tan2 γ

m1 +m2 tan2 γ

(
m2σ1γ̇

cos2 γ
+
JF

l
γ̈

)
,

λ2 = −
1

m1 +m2 tan2 γ

(
m2FR

tan γ

cos γ
+ (m2 −m1)FF tan γ

+m1
m2σ1γ̇

cos3 γ
+m1

JF

l

γ̈

cos γ

)
−m4

σ2
1

l

tan γ

cos γ
,

(197)

which are singular at |γ| = π/2. Below we show that these
multipliers are indeed related to the lateral constraining forces
that keep the skates on track.

C Using Newton’s Law

Here we derive the governing equations for the mechanical
model studied in Section 4.2 using the Newtonian approach.
The mechanical model with the lateral constraining forces F̃R

and F̃F acting on the skates are shown in Fig. 22. We relate
these to Lagrange multipliers (197).

In order to derive the Newton equation we separate the
three bodies that constitute the system, namely, the vehicle
body, the skate at the rear, and the skate at the front. The
corresponding free body diagrams are illustrated in Fig 23.
The components of the internal forces between the skates and
the vehicle body are denoted by Kx0

R , Ky0

R , Kx0

F and Ky0

F .
The torques acting between the skates and the vehicle body
are referred to as MR and MF. For the sake of simplicity,
the same notations are used for the counter forces, but their
directions are opposite in the figures according to Newton’s
third law. Thus, one can apply Newton’s second law for the
skates, and for the vehicle body. The resulting equations are
given in the F0 frame:

mR(ẍR cosψ + ÿR sinψ) = Kx0

R + FR ,

mF(ẍF cosψ + ÿF sinψ) = Kx0

F + FF cos γ − F̃F sin γ ,

m(ẍG cosψ + ÿG sinψ) = −Kx0

R −K
x0

F ,

mR(−ẍR sinψ + ÿR cosψ) = Ky0

R + F̃R ,

mF(−ẍF sinψ + ÿF cosψ) = Ky0

F + FF sin γ + F̃F cos γ ,

m(−ẍG sinψ + ÿG cosψ) = −Ky0

R −K
y0

F ,

JRψ̈ = MR ,

JF(ψ̈ + γ̈) = MF ,

JGψ̈ = Ky0

R d−Ky0

F (l − d)−MR −MF .

(198)

Based on the first eight equations in (198), one can de-
termine all constraining forces and torques. We are interested
in the lateral constraining forces acting on the skates, which

Fig. 22 The constraining forces acting in the lateral direc-
tions of the rear and front wheels.

Fig. 23 Free-body-diagrams of the vehicle body and the
skates.

read

F̃R =
1

sin γ

(
− FR cos γ − FF −m3dψ̈ sin γ +m3dψ̇

2 cos γ

+m1

(
ẍG cos(ψ + γ) + ÿG sin(ψ + γ)

))
,

F̃F =
1

sin γ

(
FR + FF cos γ −m3dψ̇

2

−m1(ẍG cosψ + ÿG sinψ)
)
,

(199)

where we used the derivatives of (54) (cf. (180)), m1 and m2

are given in (61), and m3 is given in (193).
After substituting all the constraining forces and torques

into the last equation of (198), one can obtain(
− (m1 −m3)d sinψ sin γ +m1l cosψ cos γ

)
ẍG

+
(

(m1 −m3)d cosψ sin γ +m1l sinψ cos γ
)
ÿG

+
(
JG + JR + JF +mFl(l − d)

)
ψ̈ sin γ + JFγ̈ sin γ

+m3dlψ̇
2 cos γ − FRl cos γ − FFl = 0 ,

(200)

which is the same as (194). Then, following the same steps
as in Section B, one can obtain the dynamics as given in
(196). We point out again the singularity at γ = 0. Moreover,
comparing (199) to (192) one may notice that

F̃R = −λ1 , F̃F = −λ2 , (201)
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that is, the lateral forces F̃R and F̃F are identical to the
Lagrange multipliers λ1 and λ2 (except the negative signs).
These forces prevent the skates from side slips given suffi-
ciently large friction coefficients and normal forces. Again fol-
lowing the same steps as in Section 2.3, one can obtain the
form (123) that is identical with (197) (except the negative
signs).

D Coordinate Transformation

In this part, we discuss the transformation between the Earth-
fixed frame (x, y) and the path-reference frame (ξ, η); see
Fig. 24. We make the following assumptions
1. (x, y, z) is the Earth-fixed frame (denoted as F) already

used in Section 4 and 5.
2. (ξ, η, ζ) is the path-reference frame (denoted as FΩ) with

the origin located at Ω, where ξ and η are along the tan-
gential and normal directions of the path at point Ω, re-
spectively. Note that the frame FΩ is translating and ro-
tating as Ω moves along the path.

3. The position of Ω is referred to (xΩ, yΩ) when expressed
in frame F , and the heading angle and curvature at point
Ω are ψΩ and κΩ, respectively. Note that xΩ, yΩ, ψΩ and
κΩ are all changing in time.
Let us consider a arbitrary point whose position are given

by (x, y) and (ξ, η) in F and FΩ, respectively. Based on co-
ordinates transformation (cf. Fig. 24), we have

ξ = (x− xΩ) cosψΩ + (y − yΩ) sinψΩ ,

η = −(x− xΩ) sinψΩ + (y − yΩ) cosψΩ ,
(202)

from which the derivatives read

ξ̇ = (ẋ− ẋΩ) cosψΩ + (ẏ − ẏΩ) sinψΩ + ηψ̇Ω ,

η̇ = −(ẋ− ẋΩ) sinψΩ + (ẏ − ẏΩ) cosψΩ − ξψ̇Ω .
(203)

Using the arclength sΩ(t) along the path of the point Ω, we
obtain

ẋΩ =
dxΩ

dt
=

dxΩ

dsΩ

dsΩ

dt
= cosψΩṡΩ ,

ẏΩ =
dyΩ

dt
=

dyΩ

dsΩ

dsΩ

dt
= sinψΩṡΩ ,

ψ̇Ω =
dψΩ

dt
=

dψΩ

dsΩ

dsΩ

dt
= κΩṡΩ .

(204)

Substituting these formulas into (203) yields

ξ̇ = ẋ cosψΩ + ẏ sinψΩ − (1− κΩη)ṡΩ ,

η̇ = −ẋ sinψΩ + ẏ cosψΩ − ξκΩṡΩ .
(205)

Fig. 24 Coordinate transformation between the Earth-fixed
frame and a frame traveling along a given path.

E Nonlinear Wrapper Functions

In Section 7, we used the wrapper function (139) to improve
the performance of the controller. One may notice that this
belongs to a larger class of wrapper functions defined by

G =

{
gn(x)

∣∣∣ g′n(x) =
1(

1 + (c x)2
) n

2

, n = 2, 3, . . .

}
, (206)

where c is a constant. Utilizing the requirements that gn(x)
is a bounded odd function, one can solve (206) and obtain

g2(x) =
1

c
arctan(cx) , c =

π

2gsat
,

g3(x) =
x√

1 + (c x)2
, c =

1

gsat
,

gn(x) =
n− 3

n− 2
gn−2(x) +

1

n− 2

x(
1 + (c x)2

) n
2
−1

,

c =


(n− 3)(n− 5) · · · 1
(n− 2)(n− 4) · · · 2

π

2gsat
, n = 4, 6, 8, . . . ,

(n− 3)(n− 5) · · · 2
(n− 2)(n− 4) · · · 3

1

gsat
, n = 5, 7, 9, . . . .

(207)

Indeed the wrapper function (139) is the second element of
the series while n→∞ yields

g∞(x) = min
{

max{x,−gsat}, gsat

}
. (208)

Fig. 25(a) shows the wrapper functions gn(x) while Fig. 25(b)
depicts derivatives g′n(x) for n = 2, 3, 5, 1000. The later illus-
trates how much the gains downscale as |x| increases. Such
downscaling allows the usage of larger linear gains yielding
better tracking performance for small errors and less over-
shoot for larger errors. When n is larger the downscaling oc-
curs faster.

0

−gsat

0

gsat g2

g3

g5

g1000

g∞

x
(a)

0

0

1 g′
2

g′
3

g′
5

g′
1000

x
(b)

Fig. 25 (a) Wrapper function gn(x). (b) Downscale factor
g′n(x).
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F Derivatives of Steering Angle

Using (137,138,139,142) the steering controller (136) reads as

γ = γff + γfb = arctan(κC l) +
2 γsat

π
arctan

( π

2 γsat
γ1
fb

)
,

(209)

Taking the time derivative yields

γ̇ = γ̇ff + γ̇fb =
lκ̇C

1 + l2κ2
C

+
γ̇1
fb

1 +
(

π
2γsat

γ1
fb

)2 . (210)

The derivatives κ̇C and γ̇1
fb can be calculated by differen-

tiating (157) and (142) with respect to time:

κ̇C =
πṡC

sT
κmax sin

(
2π

sT
sC

)
,

γ̇1
fb = k1

(
θ̇C +

k2 ėC

1 + k2
2 e

2
C

)
,

(211)

where ṡC, ėC, and θ̇C are given by (134).
The derivative of (210) becomes

γ̈ = γ̈ff + γ̈fb =
lκ̈C(1 + l2κ2

C)− 2l3κCκ̇2
C

(1 + l2κ2
C)2

,

+
γ̈1
fb

(
1+
(
π

2γsat
γ1
fb

)2)− π
γsat

γ1
fb(γ̇1

fb)2(
1+
(
π

2γsat
γ1
fb

)2)2 ,

(212)

which contain the derivatives of (211):

κ̈C =
πs̈C

sT
κmax sin

(
2π

sT
sC

)
+ 2

(
πṡC

sT

)2

κmax cos

(
2π

sT
sC

)
,

γ̈1
fb = k1

(
θ̈C +

k2 ëC(1 + k2
2 e

2
C)− 2k3

2 eCė
2
C

(1 + k2
2 e

2
C)2

)
,

(213)

and

s̈C =
σ̇1 cos θC − σ1θ̇C sin θC

1− κCeC
+
σ1 cos θC(ėCκC + eCκ̇C)

(1− κCeC)2
,

ëC = σ̇1 sin θC + σ1θ̇C cos θC ,

θ̈C =
σ̇1 tan γ

l
+

σ1γ̇

l cos2 γ
−
σ1κC cos θC(ėCκC + eCκ̇C)

(1− κCeC)2
,

−
σ̇1κC cos θC + σ1κ̇C cos θC − σ1κCθ̇C sin θC

1− κCeC
,

(214)

that are the derivatives of (134).


