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Abstract
With the continuous progress of cloud computing, many microservices and com-
plex multi-component applications arise for which resource planning is a great chal-
lenge. For example, when it comes to data-intensive cloud-native applications, the 
tenant might be eager to provision cloud resources in an economical manner while 
ensuring that the application performance meets the requirements in terms of data 
throughput. However, due to the complexity of the interplay between the building 
blocks, adequately setting resource limits of the components separately for various 
data rates is nearly impossible. In this paper, we propose a comprehensive approach 
that consists of measuring the resource footprint and data throughput performance 
of such a microservices-based application, analyzing the measurement results by 
data mining techniques, and finally formulating an optimization problem that aims 
to minimize the allocated resources given the performance constraints. We illustrate 
the benefits of the proposed approach on Cortex, an extension to Prometheus for 
storing monitored metrics data. The data-intensive nature of this illustrative example 
stems from real-time monitoring of metrics exposed by a multitude of applications 
running in a data center and the continuous analysis performed on the collected data 
that can be fetched from Cortex. We present Cortex’s performance vs resource foot-
print trade-off, and then we build regression models to predict the microservices’ 
resource consumption and draw a mathematical programming formulation to opti-
mize the most important configuration parameters. Our most important finding is 
the linear relationship between resource consumption and application performance, 
which allows for applying linear regression and linear programming models. After 
the optimization, we compare our results to Cortex’s recommendation, leading to a 
CPU reservation reduced by 50–80%.
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1  Introduction

Cloud computing is widely used in the digital industry as a technology that ena-
bles cheap and easy deployment not only for online web services but also for big 
data processing, machine learning, and storing data for the long term. The cloud 
is backed by physical data centers worldwide that host virtual machines offered 
to customers and users. The cloud concept empowers users to replace their hard-
ware with cloud server instances and creates a new economic model where the 
customer pays only for the usage and not for the entire hardware itself. How-
ever, decision-making in cloud environments can be complex due to the diver-
sity in pricing models and service offerings. There are no rules of thumb as each 
customer could have a specific set of constraints and requirements of their cloud 
application when it comes to selecting the perfect cloud environment [1].

Microservices have recently gained striking popularity due to being highly main-
tainable and easy to develop. Microservices-based applications allow the deploy-
ment of each microservice (or component) to be in physically separated virtual 
machines if needed. Microservices, being separately manageable, have a massive 
advantage in scaling, which is one of the most critical features of the cloud context. 
Instead of launching multiple instances of a whole application, there is a possibility 
to only scale in or scale out a specific microservice component [2]. Hence creat-
ing microservices with the help of container technologies can result in robust and 
easy deployment with a small footprint. However, the goal is not only to create a 
small footprint application, but also to match the Quality of Service (QoS) of the 
original monolith performance-wise. When it comes to data-intensive applications, 
data throughput is the most crucial aspect. The components of the application com-
municate with each other via APIs. Wrongly configuring a microservice component 
where the data throughput is consequently low can result in a bottleneck in terms of 
the whole application’s performance. Scaling the bottleneck components until the 
QoS is met will mitigate the issue. The problem we tackle is how to correctly con-
figure the resource provisioning of each and every microservice component so that 
the overall application performs as required.

To create a resource-efficient microservice, the most critical settings to tune 
are the CPU and memory limits that control the resource usage of a microservice 
instance. These limits can prevent components from using more resources than 
needed, and with the help of these limits, the app provider or operator makes sure in 
a private cloud that concurrent applications use the cluster as efficiently as possible, 
whereas, in a public cloud, limits help to pre-estimate costs. Setting the limits for 
several components at once raises a complex optimization problem when it comes 
to microservices. Application components have their tasks while working closely 
with other components, and if one of the components lags, the whole microservices-
based application will suffer. On the other hand, resource provisioning must con-
sider the shared resources: over-provisioning one component can cause starvation 
at other components. Furthermore, each component may have several configuration 
parameters which need to be tested in terms of resource usage to find the optimal 
limit values making the specific component work as efficiently as possible.
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In this paper, we tackle this exact challenge: we propose an optimization frame-
work that estimates resource usage vs performance of microservices-based, data-
intensive applications with the help of machine learning, then minimizes the allo-
cated resources given the QoS constraints. In our prior work [3] we tackled the 
optimization of CPU provisioning. The current manuscript has been extended with 
our approach for memory optimization, which is of paramount importance when it 
comes to cloud cost estimation.

The rest of the paper is organized as follows. Section 2 presents the related work, 
and in Sect. 3 we propose the methodology to solve the problem at hand. In Sect. 4 
we introduce an illustrative example for microservice-based applications, Cortex, 
then we train regression models on the performance and resource consumption 
measurements data and create a linear programming formula for resource optimiza-
tion, completed with numerical analysis. Section 5 concludes our findings.

2 � Related Work

Performance modeling of microservices-based applications allows us to determine 
the capacity distribution among each microservice. This enables planning for appli-
cations and the detection of the bottleneck in microservices. [4] proposes to apply 
statistical models, e.g., Theil-Sen estimator or Support Vector Regression, for this 
purpose. After analyzing the data acquired by their approach on the example appli-
cations, it was identified that the microservices follow a typical performance versus 
workload relationship pattern, which suggests the performance degrading with the 
increase of workload up until a certain point when all the virtual resources are used. 
In all tests, the CPU utilization increased linearly with the number of requests sent 
to the microservices. The approach was tested on several test applications, includ-
ing a compute-intensive application, a database accessing an application, and a web 
accessing application. Similarly to [4] we also want to create a model to detect and 
avoid bottlenecks; however, we want to provision the resources individually for each 
microservice using as minimal resources as possible.

Zhang et al. [5] presented Sinan, a machine learning- driven resource manager for 
microservice-based applications. Sinan presents the challenges of managing com-
plex microservices and leverages a set of scalable and validated models to reduce 
resource usage while meeting the end-to-end QoS. Sinan trains two models with the 
traces: a CNN (Convolutional Neural Network) model for short-term performance 
prediction and a Boosted Trees model to evaluate long-term performance evolu-
tion. Combining the two models allows Sinan to be effective in both near-future 
and distant future resource management. Similarly to [5], our goal is to meet the 
QoS requirements with an analytical model which can predict the expected average 
resource usage.

The detection of a bottleneck component is important if we want to increase the 
performance of a complex application deployed in the cloud. [6] presents an ana-
lytical model that can detect bottlenecks and predict the performance of a multi-
tier application. The suggested approach consists of two resource provisioning 
steps: a predictive one for long-term scales and a reactive one for short timescales. 
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Long-term prediction is useful when the load can be predicted, e.g., a typical daily 
pattern, but only reactive provisioning can handle unexpected high workloads. 
Using both and combining them can create an effective provisioning scheme. With 
this approach in a scenario where the workload of a three-tier application has been 
doubled, the technique showcased in [6] was able to double the application capacity 
within five minutes while maintaining the QoS targets. Unlike [6], our focus is to 
predict and create resource limits for the average resource usage of microservices of 
any cloud-native application.

Our model shows similarities to CostHat [7], an approach to model the deploy-
ment costs, including compute and IO costs. CostHat is a graph-based model of 
the deployment costs and can be used for applications implemented on top of AWS 
Lambda. Just like our results, [7] demonstrates that between the used features, there 
are linear dependencies. Similarly to [7] we focus on reducing costs if the model is 
used in a public cloud environment. However, our model calculates CPU and mem-
ory usage as output, which is extremely useful for private clouds.

Leitner et al. [7] presented a cost model to calculate and optimize the deployment 
cost of microservices. Their model takes into account several characteristics, e.g., 
the connection between services, the processing capacity and expected load. Results 
show that the proposed algorithm can calculate the cost in real-time, however the 
cost model does not consider the adaptation of the application: it is designed only for 
static application analysis. Ma et al. in [8] introduced a task scheduling cost optimi-
zation framework for cloud IoT applications, where they consider cost and deadline 
parameters. Their algorithm achieves state-of-the-art performance in simulations, on 
the other hand the main focus of the paper is on scheduling tasks to a given infra-
structure, and does not consider scaling of the application. Authors of [9] proposed 
a reinforcement learning (RL)-based solution for horizontal and vertical resource 
provisioning. They use a cost function which considers the cost of scaling, running 
the application and violating SLA, and the agents choose their actions to minimize 
this cost. With enough training data and time, RL agents are able to find the optimal 
resource provisioning action in a given state. However, the state on which the agents 
are trained contains only the current resource and system information, therefore the 
agent can hardly understand the long-term effect of its actions. Authors of [10–12] 
developed cost models and used them for cost-aware resource provisioning in edge-
cloud environment [10] and for optimizing network functions in a telco environment 
[11, 12]. The model in [10] also considers the load prediction for the next time inter-
val, however the applicability of the models for long-term traffic or resource alloca-
tion are not discussed. Indeed, workload prediction is being widely explored to solve 
issues such as resource under-utilization, load balancing and power consumption, 
using time series analysis regression and neural networks based models. The time 
series analysis based models are unable to capture the dynamics in the workload 
behavior whereas neural network based models offer better accuracy on the cost 
of high training time. [13] presents a workload prediction model based on extreme 
learning machines whose learning time is very low and forecasts the workload more 
accurately. The performance of the model is evaluated over two real world cloud 
server workloads i.e. CPU and Memory demand traces of Google cluster and com-
pared with predictive models based on state-of-art techniques. It is observed that the 
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proposed model outperforms the state-of-art techniques by reducing the mean pre-
diction error up to 100% and 99% on CPU and memory request traces respectively. 
Comparing with the aforementioned works, our method achieves both short-term 
and long-term resource optimization considering the cost of running and scaling the 
cloud native application according to the load.

3 � Methodology and Model

Our goal is to minimize the CPU limit provisioned for each component in a micros-
ervice-based application for a static load. To this end, we formulate mathematical 
programming problems with user-defined constraints. Then the result of the opti-
mization yields the expected CPU usage based on which the resource limits of each 
microservice can be appropriately set. In order to formulate the optimization model, 
first, we need to find the most important features of the operation of the micros-
ervices, as well as their coefficients. Our approach is to build a regression model 
from a measurement dataset that incorporates the inference between configuration 
settings, application performance and resource footprint. Figure 1 shows the steps of 
our proposed approach.

The measurement dataset contains the monitored microservices’ resource 
usage. Assuming a data-intensive application at hand, there are typically two paths 
that must be monitored: the writing path (data ingestion) and the reading path 
(data retrieval). The cloud-native application is typically constituted by various 

Fig. 1   Methodology diagram for the thought process
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microservices which are closely coupled together. These microservices (or compo-
nents) can be customized with configuration parameters and settings. While meas-
uring the effects of these settings and scaling in and out the components, a data 
collector pipeline stores the microservices’ resource usage and performance indica-
tors. The important features that are later used in the data mining step can be, for 
example, the replica number of each component, the number of incoming service 
requests, or the number of served queries per second. After measuring several sce-
narios with various settings and analyzing the key differences between each setup, 
we propose to train a regression model.

We create a separate regression model for every main component of the applica-
tion. Feature selection is important for keeping the model simple. Most of the poten-
tial features show linear dependencies with the resource usage, as pointed out in 
[4] and [7], therefore in this paper, we make a case for linear relationships so that 
we can later formulate the optimization with linear programming. By keeping only 
the highly correlating features, the linear programming solvers can find the solution 
quickly even if some variables are integers, turning the problem into non-determin-
istic polynomial-time (NP) complexity [14]. After training the regression model on 
the measurement dataset, given the coefficients of the regression, we can continue 
with linear programming. Note that in case the features exhibit a non-linear effect 
on the resource usage or on the application performance, then polynomial regres-
sion might be used, but then the respective optimization problem will not be a linear 
programming instance.

The decision variables are the important features from the regression model. 
Using these variables, one must create the algebraic expression which describes the 
target function; in our case, we strive to minimize the CPU resource usage. As the 
regression model is trained for precisely that dependent variable, the target func-
tion is produced by the regression formula: features as variables, their coefficients 
and the intercept. Based on the measurement data, one can create constraints on 
the features to be taken into account in the optimization problem. Typical con-
straints include but are not limited to high availability requirements on microservice 
instances, maximal memory consumption, application performance in terms of data 
throughput or rate of requests served. In general, it is beneficial to minimize the 
search space as much as possible, resulting in faster optimization. Non-negativity 
constraints can be applied for most of the features.

With the optimization model formulated, any solver can optimize the problem 
with the given user inputs and suggest the best possible setup for all the features. In 
the next section, we illustrate how this approach can save resources for the operation 
of a cloud-native microservices-based application.

4 � Illustrative Example of Cortex

Cortex [15] is a horizontally scalable, multi-tenant, long term storage for Pro-
metheus [16] written in Go. It is a Cloud Native Computing Foundation (CNCF) 
project [17]. Cortex can receive metrics from multiple Prometheus servers and 
serve aggregated queries across all data in a single place which is useful when 
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the cloud application operator wants to get an overview of all the metrics and data 
collected by these Prometheus servers. Our long-term storage choice was MinIO 
[18]. Figure 2 illustrates our setup with Cortex components.

Cortex consists of multiple horizontally scalable microservices from which we 
introduce the most important ones in terms of performance and resource foot-
print in this section. Figure 2 contains most of Cortex’s components, including 
the external applications that vary on the use case. Writing path is the microser-
vice’s data ingestion process where the collected and gathered data gets stored in 
the long-term storage following pre-processing. On the other hand, the reading 
path is the process when the data gets retrieved from long-term storage. Some 
components are vital components for both paths. When it comes to the writing 
path, the key components are the Distributor and Ingester. The Ingesters have a 
similarly important role regarding the reading path. In addition to the Ingester 
and Distributor, we introduce the Querier, Query frontend (optional in deploy-
ment), Ingester, and the Store-gateway.

The Distributor microservice is responsible for handling the incoming sam-
ples of Prometheus. It is the first step in the writing path. When the Distributor 
receives samples from the Prometheus servers, each piece is checked and vali-
dated for correctness and to make sure that it is within the preconfigured tenant 
limits and falling back to preconfigured ones in case limits have not been overrid-
den for the specific tenant. The valid samples are then split into batches and sent 
to multiple Ingesters in parallel by the Distributor.

The Ingester microservice is responsible for writing incoming time series to 
a long-term storage backend (in our case, into MinIO) on the writing path and 
returning samples stored in-memory for queries on the reading path.

The Querier microservice handles queries using the PromQL query lan-
guage. The Queriers fetch samples both from the Ingesters and long-term storage 

Fig. 2   Cortex’s architecture including the external applications [15]
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solution: the Ingesters hold the in-memory series which have not yet been written 
to the long-term storage.

The Query frontend is an optional microservice implementing Querier’s API end-
points and used to accelerate the reading path. If the Query frontend is deployed, 
incoming query requests should be directed to a Query frontend rather than straight 
to the Queriers. The Querier microservice will still be required within the cluster for 
executing the queries. The Frontend does not query the necessary data. The Query 
frontend internally performs query adjustments and holds queries in an internal 
queue similarly to a database. The Store-gateway is the Cortex microservice respon-
sible for query series from blocks; each block is composed of chunk files containing 
the timestamp-value pairs for multiple series and an index, which indexes the metric 
names and the labels.

4.1 � Cortex Measurements

We deployed Cortex in a Kubernetes [19] cluster and monitored the CPU usage of 
each component. We ran data writing measurement experiments for various con-
figuration scenarios for a couple of hours each in order to measure the whole pipe-
line’s CPU usage. Some components are only active at the beginning or at the very 
end of the pipeline. Also, we tested query performance multiple times and created 
a data retrieval application to perform different queries to avoid serving data from 
the cache. Based on our experiments, we selected the most important parameters 
of the Cortex microservices in order to find the features which accurately infer total 
resource usage. Our target function is the overall CPU usage, including every com-
ponent of Cortex and Prometheus.

During our data ingestion experiments, we wrote several blocks into MinIO to 
make sure we tested the whole data write pipeline numerous times for all tested set-
tings. We generated 60,000–300,000 time series to be ingested and deployed 1–5 
replicas of each microservice on the write path of Cortex. We found the number of 
time series continuously written into Cortex and the number of Nginx [20], Distrib-
utor and Ingester components to be the most important features affecting CPU con-
sumption. These components contribute majorly to the write path performance of 
Cortex; scaling out other components does not change the CPU usage or the inges-
tion capacity. Figure 3 shows the relationship between the CPU usage and the num-
ber of Ingesters used, while the coloring indicates the number of time series ingested 
by Cortex. The histogram of measurements, distinguished again by colors for vari-
ous numbers of time series ingested by Cortex, against the average CPU usage, can 
be seen in Fig. 4.

For testing the query performance, we fetched 60,000–300,000 time series with 
various time aggregation levels (between 10  s and 1  h) from Cortex. With every 
test, we queried the last 4 h of data from Cortex while continuously writing data 
to ensure we always have data both in the long term storage and in the Ingesters’ 
memory. The requests were sent to Nginx ingress; it forwarded those to the Query 
frontend, which could optionally transform a query into smaller queryset batches 
and send it to the Querier that performed the data retrieval and aggregation. From 
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the read (query) path, we found the number of time series queried in Cortex and the 
aggregation (or step as in Prometheus’ nomenclature) to be the important features. 
Figure 5 presents the measured CPU usage of the microservices and the level of data 
aggregation in seconds.

The correlation matrix shown in Fig. 6 shows the most dominant features of both 
paths. The write path model includes the number of ingested time series and the 
number of required components of Nginx, Distributors and Ingesters. The read path 
model uses the number of time series and the aggregation used while querying the 
data stored in MinIO. The conclusion from the measurements is that the resource 
footprint of the data ingestion pipeline of Cortex is mainly affected by the number 
of time series stored and later queried. Using several Ingester instances increases 
the capacity of the write path but also induces higher resource consumption: this 

Fig. 3   Write path CPU usage vs. number of Ingesters used with the various numbers of time series stored 
by Cortex

Fig. 4   Histogram of measurements for the average CPU used. The number of time series ingested by 
Cortex is illustrated by coloring
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component stores the metrics and time series before those get written into the long 
term storage, e.g., MinIO. On the read path, higher data aggregation leads to less 
CPU usage.

4.2 � Linear Regression Models

After the measurements had been performed, we created different regression mod-
els for the CPU usage of each component and trained them. We used linear regres-
sion models because the chosen features showed linear dependencies with the 
target-dependent variable, i.e., CPU consumption. The models are trained on data 
from the two paths: write path and read (query) path for each microservice, as a 

Fig. 5   Read path CPU usage vs. level of data aggregation in seconds

Fig. 6   The two paths’ correlation matrix
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component might be used continuously by both paths, so creating an aggregate 
model which takes features and information about the different paths at the same 
time is important.

Table 1 shows the coefficients of the features used in the model. The performance 
of the regression model is best reflected by R2—the coefficient of determination—
which was around 0.75. The Mean Absolute Error (MAE) is around 58.2 [milli-
cores]. For bringing the coefficients to the same order of magnitude, we divided the 
number of time series by 10,000. With this data transforming step, the coefficient 
(9.28) is for every 10,000 time series used. Figure 7 shows all the data points used 
for this model: the overall CPU consumption against the stored and queried number 
of time series.

4.3 � Integer Linear Programming for CPU Optimization

With a complex regression model including both the read and write paths in 
our hand, we created an integer linear programming (ILP) optimization for the 

Table 1   Regression coefficients Features Coefficients

Number of time series 9.28
Number of distributors 32.54
Number of ingesters 24.21
Number of Nginx 1.91
Query aggregation − 0.182
Intercept 129.3

Fig. 7   The two paths combined CPU usage by the number of time series used by Cortex
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application with specific constraints. Finally, we configured the microservices based 
on the results of the optimization.

We minimize CPU usage for the user inputs, i.e., the number of time series used 
in the system, the available memory for the microservices, and the data aggrega-
tion given in seconds for the query part. The output is the average CPU utilization 
expected by components, the number of Ingesters, Nginx, and Distributors sug-
gested to use, and whether the given memory is enough for the microservices.

We use the following notation:

•	 T = number of time series used [10,000]
•	 I = number of ingester instances
•	 D = number of distributor instances
•	 N = number of Nginx instances
•	 Q = level of data aggregation [s]
•	 M = memory resource available [MB]

The ILP minimization target is:

subject to

The objective function (1) stands to minimize the CPU resource given by the user’s 
input and the regression coefficients. We use (2), (3), (4) constraints for high avail-
ability of the components: multiple replicas are helpful for load balancing on th e 
write path but are also important for providing reliability, e.g., a Distributor failure 
may result in a temporary halt on the write path. It can potentially lead to data loss 
if not handled correctly. As for (5) and (6), we assume that T ,Q are provided by the 
user, currently set to be non-negative. We also assume that the memory limit M is 
also provided by the user. From the measurements, we managed to formalize the 
main Cortex components’ memory consumption, and we formalized it in Constraint 
(7). For the components which are not incorporated in the model, the total memory 

(1)9.28T + 32.54D + 24.21I + 1.91N − 0.182Q,

(2)I > 1

(3)D > 1

(4)N > 1

(5)T > 0

(6)Q > 0

(7)1500 + 128N + 512D + 1500I + 1000T∕10 < M

(8)I − T∕10 > 0.
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need is approximately 1500 MB, not significantly varied by the load on the appli-
cation. As for the three components used in the model, an Ingester needs approxi-
mately 1500 MB memory when used by both paths parallel, an Nginx only needs 
128 MB memory, while the Distributor needs approximately 512 MB. Furthermore, 
from the tests, we can confirm that not only the CPU usage is being influenced by 
the number of time series but also the memory usage: for every 100,000 metrics, 
there is a need for another 1000 MB by the microservices in total. Constraint (8) 
stands to ensure high availability: from the measurements, we found that launching 
an additional Ingester replica for every 100,000 time series provides a safe operation 
with the load balance applied.

When the optimization yields the minimal CPU usage results with the optimal I, D, 
N replica numbers, one must translate the results to resource limits for every microser-
vice instance. In the Cortex case, Table 2 indicates the fraction of the total CPU usage 
among the respective microservices.

4.4 � Integer Linear Programming for Memory Optimization

We also build on the previously proposed regression model in this section but this time 
we use the memory constraint as the target function to create a minimization problem 
for the memory to be allocated. As we examine the same microservices, most con-
straints can be applied without any modification.

We again use the following notation:

•	 T = number of time series used [10,000]
•	 I = number of ingester instances
•	 D = number of distributor instances
•	 N = number of Nginx instances
•	 Q = level of data aggregation [s]
•	 C = CPU resource available [millicore]

The constraints are nearly the same; our user input will be the number of time series 
used, the level of aggregation, and this time the CPU resource available to use.

(9)128N + 512D + 1500I + 1000T∕10

Table 2   The components’ CPU 
consumption shares

Component % of total 
CPU usage

Ingester 32
Distributor 26
Querier 14
Query frontend 13
Store gateway 9
Nginx 6
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subject to

Our objective function is (1), where we want to minimize the memory resource 
given by the user’s input. We still use constraints (2), (3), (4) for high availabil-
ity between the components. (5) and (6) are the constraints for non-negativity, con-
straint (7) in this case the CPU constraint which was previously used as a target 
function. Constraint (8) is for the high availability of the Ingesters while increasing 
the number of time series.

4.5 � Illustrative User Input Examples and Optimization Results

In order to demonstrate the applicability of the suggested optimization, we created 
a few user input examples and calculated the respective results. We used PuLP [21] 
for the ILP optimization. We used the COIN-OR Branch and Cut Solver (CBC), 
which is an open-source mixed-integer linear programming solver written in C++. 
Other available solvers include GNU Linear Programming Kit (GLPK), LP Solve, 
Coin-or linear programming (Clp). Given the size of the problem space and the 
carefully crafted constraints, the ILP examples were solved in seconds.

Although Cortex’s documentation recommends capacity planning [22], those 
resource figures are not optimal when we strive to reduce and keep the resource 
usage as low as possible. Along with the illustrative examples, in Table 3 we also 
show the recommended CPU provisions based on Cortex’s documentation and the 
relative saving which we managed to achieve with the regression and optimization 
models. In the examples, this saving ranges from 54 to 82%. If we translate these 
numbers to cost, i.e., we deploy these microservices in a public cloud and pay for 
the reserved resources, then we can save significant amounts by applying the pro-
posed method.

With the first example, the inputs are 300,000 time series with 12 GB (gigabyte) 
memory, and the aggregation should be 10  s. This test shows that the expected 
memory usage will be around our available amount. The model suggests using 3 

(10)I > 1

(11)D > 1

(12)N > 1

(13)T > 0

(14)Q > 0

(15)9.28T + 32.53D + 24.21I + 1.91N − 0.182Q < C

(16)T∕100 − I > 0.
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Ingesters and 2–2 Distributors and Nginx. Our expected average CPU usage will be 
around 1300 millicores, and the memory usage should be around 11.8 GB.

With the second example, the inputs are 400,000 time series with 16 GB (giga-
byte) memory available, and our aggregation should be 60  s. The model suggests 
using 4 Ingesters and 2–2 Distributors and Nginx. Our expected average CPU con-
sumption will be around 1405 millicores, and the memory usage should be around 
14.8 GB. This test shows that the expected memory usage will be enough, and the 
microservice will still have some available amount of memory if needed.

With the third example, the inputs are 120,000 time series with 9 GB (gigabyte) 
memory available, and the aggregation should be 15 s. The model suggests using 2 
Ingesters and 2–2 Distributors and Nginx. The expected average CPU usage will be 
around 1105 millicores, and the memory usage should be around 8 GB. This test 
shows that the expected memory usage will be around the available amount, just like 
the first example.

With the fourth example, the inputs are 250,000 time series with 8 GB (gigabyte) 
memory available, and the aggregation should be 120 s. The model suggests using 2 
Ingesters and 2–2 Distributors and Nginx. The expected average CPU consumption 
will be around 1205 millicores, and the memory usage should be around 11.3 GB. 
Here the model shows that using 8 GB memory will not be enough, so we should 
solve the problem by using more memory or reducing the number of time series 
used.

Table 3 shows the illustrative examples to demonstrate the model’s capability for 
resource savings. The inputs are the number of time series used, the memory avail-
able for use, and the aggregation level of the data. Our outputs are the number of 
Ingesters, Nginx, Distributors, and the predicted CPU usage. We omitted the rep-
lica numbers for Nginx and Distributors in the table as these numbers are constantly 
2–2. The reason for this is because we only have a high availability constraint for 
these microservices so that the model will use at least 2, but because there is no real 
impact when scaling these components, the replica numbers remain 2.

Using the other ILP model introduced in Sect. 4.4, we can also calculate the pre-
cise memory usage we expect. The results we get are lower than the input values 
we applied in Table  3, and in most cases lower than the official recommendation 
for Cortex. For the first test, the model had 12 GB of memory; the expected average 

Table 3   Illustrative CPU optimization examples with Cortex’s recommendation

Time series 
used (1000)

Memory 
available 
(GB)

Aggregation 
(s)

Ingester 
replica 
number

Predicted 
CPU usage 
(millicores)

Cortex 
planned CPU 
(millicores) 
[22]

Relative saving

300 12 10 3 1300 6000 78
400 16 60 4 1405 8000 82
120 9 15 2 1105 2400 54
250 8 120 Infeasible 5000 –
250 12 120 3 1218 5000 76
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usage will be around 11.8 GB. The second example has 16 GB available; the results 
should be around after the calculations 14.8 GB. For the third example, the model 
can use up to 10 GB of memory; the output was 7.8 GB of memory usage. Fur-
thermore, for the last example, our initial 8 GB was not enough, as we can see the 
optimization is infeasible. The problem was that our memory reservation input was 
too low. After giving 12 GB of spare memory, the model returned with an expected 
usage of 10.3 GB.

We summarize the memory optimization results in Table 4. The Cortex planned 
memory column contains memory allocation figures based on the recommendation 
“Each million series in an ingester takes 15 GB of RAM”. The rightmost column 
of Table 4 shows slight relative savings compared to this baseline for all illustrative 
cases but one: when the number of ingested time series is relatively low, this rule of 
thumb at [22] underestimates the necessary amount of memory Cortex consumes.

5 � Conclusion

In this paper we argued that resource provisioning is essential and, in fact, possible 
to perform scientifically when using cloud-native microservices. We proposed an 
approach that we demonstrated on a data ingestion and storage cloud-native applica-
tion, Cortex. After measuring the performance vs resource footprint trade-offs with 
several configuration settings and creating a regression model for resource usage, 
we showed the most critical features and their quantitative effects on CPU utiliza-
tion, which proved to be linear. Then we introduced an integer linear programming 
formulation that can be solved to minimize the expected CPU usage for given user 
inputs. With some illustrative examples, we showed that a prudent resource reser-
vation might halve the costs paid for cloud resources while meeting the QoS con-
straints set for the application.
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