LSSO: Long Short-term Scaling Optimizer

Baldzs Fodor!2, L4szlé Toka?3, Baldzs Sonkoly!?3
YHSNLab, TMIT, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics,
2MTA-BME Network Softwarization Research Group, 3ELKH-BME Cloud Applications Research Group

Abstract

Demand forecast-based resource allocation is a key element of both application and network service management and resource
cost optimization in cloud environments. A central mechanism called scaling or auto-scaling is responsible for adjusting the
allocated resources dynamically to current or predicted demands. Most of today’s solutions support short-term optimization,
where the long-term effect of scaling actions is not considered, therefore the overall operational cost can be sub-optimal. In this
paper, we address this issue and provide a long and short-term scaling optimization method called LSSO. Our contribution is
threefold. First, we introduce the formal description of the LSSO scaling problem motivated by real cloud native applications.
Second, we transform the problem into a tractable graph representation and show that the optimal solution of the original problem
emerges as a shortest path problem in the graph. As a result, the transformation and the optimal solution can be computed in
polynomial time. Third, we evaluate and validate the proposed algorithm by numerical analysis on multiple datasets using a cost
model which considers the running and scaling costs. Results suggest that if the dynamics of the traffic is fairly predictable and
the scaling cost is not negligible, LSSO is able to reduce the operation costs significantly. The exact cost gain depends on the
ratio of the running and scaling costs, but in realistic operation regimes it can reach even 18% and the method can also tolerate
some inaccuracies in the forecast.

Index Terms

cloud computing, scaling optimization

I. INTRODUCTION

Private and public cloud systems are the leading execution environments of applications and network services due to their
configurability, robustness and elasticity. Providers are able to set and change the resources needed for their application
dynamically thereby optimizing the operating cost. Indeed, one of the most important aspects of resource management in cloud
environment is scaling, i.e., how one can change the amount of resources allocated to the application. Horizontal scaling changes
the number of instances (pods, virtual machines, etc.) in scale out/in events, while vertical scaling modifies the resources under
a given instance (e.g. CPU) by scale up/down actions. Several cloud systems provide auto-scaling functionality out of the box
(e.g. Kubernetes’ HPA, AWS Auto Scaling, Azure Autoscale or Google Cloud’s Autoscaling groups).

For the past few years there has been a growing interest in more sophisticated scaling solutions based on predicted future
resource usage or traffic. Several research papers focus on optimizing the resource allocation and thereby the application
operation cost based on these forecasts. Research shows that predictive scaling can increase application performance and / or
reduce operating costs, however previous works have mainly focused on short-term optimization of the resource allocation or
have not dealt with the costs of scaling actions.

Cloud native application development has become a leading software development paradigm [1]. The key concept is to build
the application directly for public or private cloud systems using services made available natively by the provider. Often the
microservices architecture is followed making use of multiple loosely coupled components. Cloud native telecommunication
(telco) applications pose new challenges in terms of scaling because the characteristics of the telco realm must also be taken
into account, e.g., strict requirements on response time and on service downtime, non-negligible start-up time or redistribution
of traffic during scaling events. These requirements support the idea of using more general cost models during the scaling
optimization. Furthermore, in telecommunication systems the user traffic shows predictable trends, thus accurate prediction
models can be built for long-term forecasts and the resource allocation can be optimized for the total traffic prediction. Similar
considerations can be made for smart city applications, e.g., managing autonomous vehicles in smart city environments, where
the vehicle is in constant communication with its surroundings while clear patterns can be observed in the city’s traffic.

In this paper we define the long short-term scaling optimization problem (LSSOP) which considers long-term predictions on
instance numbers and takes a predefined cost model into account for the overall optimization. The solution is the optimal resource
allocation for any given time period. Our main contributions are the following. First, we introduce the LSSO problem capturing
the preferences of the application provider and the cloud application in terms of resource allocation. Second, we propose an
optimizer method solving the problem which is based on a transformation to a shortest path problem and provides the optimal
solution in polynomial time. Third, the proposed algorithm is evaluated on multiple datasets with different configurations to
showcase the operational cost gains for different cloud native scenarios where the scaling and running costs are considered.

The rest of the paper is organized as follows. Section II gives an overview on the related work. We present the LSSO
problem and its solution in Section III. Section IV provides the numerical evaluation of the proposed algorithm. Finally, our
conclusions are drawn in Section V.

II. RELATED WORK

In this section we highlight the research works closely related to the resource scaling optimization we are addressing.

A. Demand prediction and short-term resource scaling

Demand forecast-based scaling techniques combined with short-term resource allocation are widely adapted to manage
cloud native applications. Authors of [2]-[7] introduced machine learning based forecasting and scaling solutions for cloud
applications. The algorithm proposed in [2] is able to predict the response time of the application for a short period ahead and
select the best scaling action. An adaptive Virtual Network Function (VNF) scaling approach is described in [3], which uses
an online learning approach to predict the traffic demand, and calculates the requested instances considering the processing
capacities of the different VNF types. In [4], a classifier is presented, which is trained on historical data to predict the number
of VNF instances for the next time period. Authors of [5] presented an auto-scaling system that automatically detects Service
Level Agreement (SLA) violations, determines the services requiring scaling, and evaluates how much resource those need.
Authors of [6] proposed a solution used by Google to configure the resources for tasks in a job using both horizontal and
vertical scaling. In [7] a scaling engine is introduced that utilizes multiple machine learning forecast methods in order to always
give the lead to the method that suits best the actual request dynamics. Scaling decisions are made based on the predictions
of the best model.

These solutions apply short-term predictions to optimize the resource allocation for the next short time period based on
historical data. Although, they can achieve improvement in resource scaling, the long-term effect of the scaling action is not
considered which can lead to sub-optimal costs.

B. Long-term predictions and resource scaling

There is a considerable amount of literature on utilizing long-term predictions in resource scaling and application man-
agement. Authors of [8]-[11] proposed long-term traffic prediction schemes to improve cloud application management using
AutoRegressive Integrated Moving Average (ARIMA) and exponential smoothing [8] or Holt-Winters Model [9]. Authors
of [10] proposed a combined solution for cloud native telco microservices, long-term forecast and a threshold based approach
are used to create a resource plan and short-term prediction is applied to correct peaks. Duggan et al. [11] utilized recurrent
neural networks to predict resource usage multiple steps ahead in time. These methods do not consider complex cost models
and not seek for optimal scaling decisions in the long run, however they can be an initial point for our optimization which
then will adjust the resource allocation to the predicted traffic.

C. Cost optimization in resource scaling

Authors of [12] proposed a reinforcement learning (RL)-based solution for horizontal and vertical resource provisioning.
They use a cost function which considers the cost of scaling, running the application and violating SLA, and the agents choose
their actions to minimize this cost. However, the state on which the agents are trained contains only the current resource
and system information, therefore the agent can hardly understand the long-term effect of its actions. Authors of [13]-[15]
developed cost models and used them for cost-aware resource provisioning in edge cloud environment [13] and for optimizing
network functions in a telco environment [14], [15]. The model in [13] also considers the load prediction for the next time
interval, however the applicability of the models for long-term traffic or resource predictions are not discussed. A complex
VNF scaling solution is described in [16], which models the traffic, and the resource provisioning problem as a non-stationary
fractional Brownian motion and considers the long-term effect of load balancing, migration cost and resource overloading
penalty. This work mainly focuses on detecting and handling change points in the traffic, whereas our work relies on long-term
prediction and the optimization of resource allocation, and enables a wide range of cost models. Authors of [17] proposed
FOX, which is a mediator between the auto-scaler and the charging model to avoid scaling if it impacts the costs negatively.
FOX delays or omits scale-in if the resource is required in the future. They address a similar problem to LSSO, however, the
algorithm which modifies the scaling decisions to lower the costs is based on a simple heuristic. In contrast, our proposed
solution is able to find the optimal scaling decisions in case of one cloud service. Furthermore, in that work only two simple
cost models are considered, while LSSO supports a wide range of cost functions. Nevertheless, the framework proposed in [17]
which provides the input for the heuristic of FOX can be applied for LSSO too. Despite its simplicity, FOX outperforms the
other examined scaling algorithms according to their results, therefore LSSO and FOX are compared in this work.

III. LSSO: LONG SHORT-TERM SCALING OPTIMIZER

In this section, the long short-term scaling optimization problem (LSSOP) is introduced formally along with its required inputs
and constraints. Thereafter, the long short-term scaling optimizer (LSSO) is presented, which solves LSSOP in polynomial
time. Finally we show how LSSO fits into the MAPE-K control loop [18].

Fig. 1. Graph representation of the LSSO problem

A. Problem formulation - LSSOP

LSSOP assumes that resource scaling suggestions are given for k consecutive time intervals (s = (s1, s2,...,5k), ;i € N
1 €{l...k}), ie., the short-term optimal resource values for each of the next k time intervals. s; indicates the number of
instances to be provisioned in the ¢th time period for a given cloud service. In case of a real life application, the instance
can be a virtual machine, container, VNF or other scaling unit, which is the base of scaling during the horizontal resource
provisioning. It is assumed that during the calculation of s;, the instance number is only optimized for that particular time
period. As a minimum value, at least the short-term optimal resource values must be provisioned, as allocating less resources
would violate the provider or application policies used for the short-term optimization (e.g. in case of telco systems this could
lead to violating SLA). Let us denote the number of instances actually provisioned in the ¢th time period with d;, d; > s;. We
further assume an arbitrary f(i,d;,d;—1), @ € {1,...,k} cost function which takes three parameters: ¢ denotes the interval,
while d; and d;_; denote the decisions in the current and previous intervals, respectively. The output is the execution cost of
the application for the ith interval given the current and the previous decisions. We assume that evaluating the function can be
done efficiently (polynomial in k). The goal is to minimize the overall cost of the application for that k£ time intervals so that
in each time interval ¢, the actual number of instances has to be at least s;. The execution cost of a given d = (dy,ds, ..., dx)
decision can be formulated as:

k

Cr(d) = f(i,di,di_v), (1)

i=2
The description of our problem can be formalized as follows.
Problem 1 (LSSOP). LSSOP is a long short-term scaling optimization problem given in the following form:

Input:
s=(s1,...,8k), $s €ENie{l,2,...,k}

Smax — Maximum value in s 2)

f = cost function

Optimization:
k
min Cy(d) = min » _ f(i, d;, d;_1) (3)
i=2
Constraints:
8; < di < Smax
4)
d; €N
Output:
d=(dy,...,dx) 5)

The output of LSSOP is a d vector containing the d; actual instance numbers minimizing the execution cost of the application.
A specific problem of LSSOP can be described with two parameters s and f as LSSOP(f,s).

Cloud
Service

o0
optimization Execute
Plan J
Knowledge
Cost model Storage
parameters Scaling decisions

I Monitor

Analyze
[Traffic/resource prediction]

{

Fig. 2. MAPE-K control loop with LSSO

B. Solving LSSOP in polynomial time: LSSO

The key idea to solve the problem is the transformation of LSSOP into a classical shortest path problem, which can be
solved in polynomial time (e.g. with Dijkstra’s algorithm [19]). Our algorithm, which takes an LSSOP(f,s), calculates the
graph transformation and solves the shortest path problem, is referred to as LSSO (Long Short-term Scaling Optimizer).

Let L = LSSOP(f,s) be an arbitrary LSSOP and s,,;, the minimum value in s. We introduce a graph representation
of L, called the LSSOP graph of L, denoted by Gr. Let G, = G(N,E,W) be a weighted directed graph, where N =
{no,ne,mij | i € {1,...,k}, 5 € {Smins---,Smax} contains the nodes of the graph. Each node represents the number
of instances (j) running at time period ¢. E.g. ns 3 indicates that in the second period there are three instances running. Let
E={e(nij,nit1y) |t €{l,...,(k=1)} 4,1 € {Smin, - - Smax}} U {e(n0,11,:) |7 € {Smin, -, Smax}} U {e(nri,ne) |1 €
{Smin;, - - - , Smax } } be the set of edges, where e(n,, n,) indicates that n is connected to n,. The structure of G, can be seen
in Fig. 1, where for the sake of simplicity, max and min denote syax and Spi, respectively. There is a starting node ng and
a termination node n;, between them there are k& columns, each column contains Sy ax — Smin + 1 nodes. ng is connected to
all nodes in the first column, and the nodes of the kth column are connected to n;. In columns 1,2, ..., (k — 1), each node
is connected to all nodes in the next column. The weights can be formulated as follows: w(n,,n,) will denote the weight of
the edge e(ng,ny),

W = {w(ng, ny) | e(ny,ny) € E}, where

0, if Ny = No

and Ny = N1

and 7 > s
fl,4,1), ifng=mn_1, ©)
w(ng,ny) = and ny, = ny
and j > s;
0, if n, =ny

and n, = ny;

0, else

The weights describe the cost of moving from one node to another using the edge. We can conclude that the solution to the
original problem L is equivalent to finding the shortest path from ng to n; in Gp. The size of G, = G(N, E, W) LSSOP
graph depends on the original L = LSSOP(f,s):

IN| = k(Smax — Smin + 1) + 2
|E‘ - 2(Smax — Smin + 1) + k(smax — Smin + 1)27
nevertheless, Smax — Smin + 1 1S @ constant, f can be calculated efficiently, therefore both the generation of GG, and the shortest

path problem on G, can be solved in polynomial time. This proves that the optimal solution of LSSOP can be found in
polynomial time, too.

)

C. LSSO in the MAPE-K loop

MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) is a control method which is widely adopted for elastic application
resource management. The basic steps it executes are the monitoring of the application, analysis of the data, planning the
actions, decisions which need to be taken and executing them. Fig. 2 shows the necessary elements required for our solution
to work in a MAPE-K loop. The monitor shall collect resource usage and/or traffic metrics, which can be used during the
analysis to provide long-term resource/traffic predictions. During planning, these predictions are utilized to create an initial

telco kaggle azure

0 Foriginal =~~~ '] 10 Foriginal ' '] sy Loriginal]
C sL]
3 - 40 []
b _. | IR B .J_: . W, v, |
telco2 kaggle?2 azure2
IS For o 1 T Iz rr 1T - UL
3 E'E:O‘S,stepzl 1 10 :_8=0.5,Step=1 1 50 __s:ﬂ)j,stepzl .
g 10 | B C
2 i] 2 X]
= sE 1 3 40]
i k| cl I | i
telco3 kaggle3 azure3
és':ofs,s'tep':z' "] 10 _ €=05step=2 | R E_la:b.Sjste'p:'z '
10 F . ;] C
> L 40
0 ke 4 0 Bl [
Time

Fig. 3. Different datasets with apparent daily pattern

scaling plan. This scaling plan can be fine-tuned by LSSO and provide the optimal scaling plan to be executed. Furthermore,
it can be seen, that LSSO can use the common knowledge to obtain the parameters of the cost model. In [17] authors give a
detailed description about how to implement the MAPE-K loop to provide this type of scaling decisions for further optimization,
therefore our current focus is on calculating the optimal scaling plan efficiently.

IV. NUMERICAL EVALUATION

LSSO algorithm is analyzed and evaluated via several simulations with different configurations on multiple datasets. The
evaluation covers the analysis with perfect predictions; the comparison with a heuristic algorithm called FOX [17]; and the
performance evaluation using imperfect predictions.

A. Datasets

We collected CPU utilization data from three sources, converted them into instance numbers using a threshold based approach.
In addition, we generated randomized versions of them (superposing artificial noise on the original data series), which yields
datasets with weaker trends.

1) telco: A dataset from a deployed telco service provided by a network operator. The dataset consists of four days of CPU
consumption data of a virtualized CSCF (Call Session Control Function) network element of a deployed IMS (IP Multimedia
Subsystem) application [20], the time granularity is 15 minutes. It shows that the traffic and the trends are predictable.
Unfortunately, the dataset cannot be shared publicly.

2) kaggle: Another dataset is collected from kaggle.com [21], that contains one and a half days of CPU utilization, and the
time granularity is 1 minute. Predictable trends can be observed, however there is a little anomaly at the end of the dataset.

3) azure: The third dataset consists of CPU utilization measurements from Microsoft Azure [22] and contains one month
of data with clear daily trends, sampled every 5 minutes.

The datasets hereinafter are referred to as telco, kaggle and azure, respectively. In order to make the optimization results
comparable, the datasets have to be harmonized in time interval and scale. Therefore, each input is converted into a four
days long data series with a sampling period of 15 minutes. The randomized versions are generated with a simple function
which takes the instance numbers, a random factor (e), and a step value as input variables, and follows the original instance
numbers with 1 — e probability, or generates a random integer around the previous instance value (in [—step, +step| range)
with probability e. The larger the €, the more noisy the data. For each original dataset, two randomized versions are created
with e = 0.5 and step € {1,2}. The datasets can be seen in Fig. 3, where the first row displays the three original sources, and
below them the randomized versions are displayed. The identifiers of the datasets that will be used later are placed above the
graphs.

TABLE I
SIMULATION CONFIGURATIONS AND RESULTS FOR ¢,, = 0.00575$

Setupl | Setup2 | Setup3 | Setup4 | Setup5 | Setup6
cs[10738] 2.875 3.833 5.75 57.5 115 287.5
cs/cu 0.5 0.66 1 10 20 50

Cost gain[%] in case of different datasets

telco 0 0 0.2 9 18 46
telco2 0 0.6 1.8 33 49 71
telco3 0 1 2.9 42 58 77
kaggle 0 04 1.3 28 47 71
kaggle2 0 0.8 2.2 41 60 80
kaggle3 0 14 4 51 69 85
azure 0 0.1 0.2 5 11 28
azure?2 0 0.1 0.3 10 20 41
azure3 0 0.2 0.5 15 27 51

B. Cost model

Although LSSO supports a wide range of cost models, for demonstration purposes we evaluate a telco specific one, where
the necessary re-configurations during scaling shall be included in the model. Therefore the cost model presented by eq. (8)
considers the cost of running (eq. (9)) and scaling (eq. (10)) the application.

f,didi—1) = fu(i,di, dizq) + fo(i,ds, dizq) N

fu(Z7 di?di—l) — Cu(difl + dz) if1 = 27 (9)
Cudi else

Folisdisdi 1) = ol — di | 10

Eq. (9) shows the resource usage cost and c¢,, identifies the cost of running one instance for one period (running cost). Because
of the operation of LSSO d; is only considered in f(2,ds,d;), therefore f,(2,ds,d;) has to contain the running cost of the
first interval. Eq. (10) denotes the cost of scaling from d;_; instance to d; and c; is the cost of adding or removing one
instance (scaling cost).

C. Results

1) Analysis of LSSO with perfect predictions: In the first part of our analysis we assume perfect predictions. With this
approach, the maximum performance of LSSO can be examined without the negative effect of inaccurate forecast.We analyze
the nine presented datasets with different cost parameters. Our intention was to show a possible application of our proposed
optimization framework with several real-world datasets with realistic configurations. The first part of Table I contains the
value of ¢, in the different setups, along with the ratio of ¢g and c¢,. ¢, is calculated from the hourly running price of an
Amazon t2.small instance [23], which is considered as a typical baseline. Our goal is to present scenarios where the scaling
cost is smaller than the running cost (Setup 1, 2 and 3) and vice versa (Setup 4, 5 and 6). Let us introduce cost gain as a
metric quantifying the impact of the optimization:

cost,

Y

gain =1 — ,
costg
where cost, and cost, are calculated by applying the C' cost function to the optimized (d) and to the short-term optimal
resource allocation (s). The cost gain describes the part of the short-term optimal cost, which was spared by our solution. The
second part of Table I shows the cost gains of the experiments of the six configurations with the nine datasets. As we see, in
case of Setup 1, LSSO cannot further optimize the scaling plan because the scaling cost component in that scenarios is not
significant enough to make it worth preventing scale-in. In other setups, improvement can be observed, moreover in Setup 4,
5 and 6 the cost gain is significant (between 5% and 85% depending on the dataset). It can also be observed that the noisier
the dataset, the larger the cost gain. This is reasonable because the small scaling actions triggered by the random fluctuation
can be eliminated by LSSO.

Fig. 4 presents Setup 4, 5 and 6 combined with the felco original instance numbers. The different setups are indicated
by different line styles, and the name of the setup is displayed in the legend along with the corresponding cost gain. In
these scenarios, there is a significant improvement in the final cost gain. These results are in line with the nature of the cost
function. As the scaling cost becomes more prominent, the optimization seeks to avoid unnecessary scaling actions and the
optimal resource allocation gets closer to the constant maximal allocation. It can be observed that in case of Setup 6, scaling
is needless, however with this approach the cost could be reduced by 46% in case of the felco scenario. Setup 5 results 18%

—— short-term seees Setup 5 (gain : 18%)

=== Setup 4 (gain : 9%) — = Setup 6 (gain : 46%)
10 FTe=l=T o e [n ol & T, A == p=— ==X =L =
o) L
g L
S SF F4 0000 Leewnsed basaaad 0 e, -
b
Time
Fig. 4. Simulation results on telco original dataset for Setup 4, 5 and 6
telco kaggle azure
100 [-original ' . ! F original | . ' [original ' . !
L . F . 1 F - 1]
N 1 1]
50 I 1F 1 1 F 1
5 b L b
0 L] i E
telco2 kaggle?2 azure2
S 100 Fe=0.5stdp=1 ! F £=0.5.stdp=1 ' E £=0.5,stdp=1 !
AN AR I VAN
% 50 F 1 1F 1 1 F]
2 : [1] 1]
© 0 I | |
telco3 kaggle3 azure3
100 [-£=0.5.stdp=2 '] Ee=05stdp=2 L1 Ee=05stdp=2 !
i : 1F : (S : [
t I I [
50 & 11 F [1]
: b b b
0 | 4 | 4 | 4
107! 103 107! 103 10! 103
¢ __ scaling cost
¢y ~ running cost

Fig. 5. LSSO limitations of optimization on the test datasets and cost function

cost improvement, where the scaling cost is 20 times higher than the running cost, and even in case of Setup 3, where the
two cost parameters are the same, the improvement is noticeable (3% in case of felco3 dataset). These characteristics may be
valid for complex telco applications, where the scaling cost is high due to the longer start-up time of the virtualized network
elements and the additional steps needed to be taken during scaling, e.g., load-balancing.

Several additional simulations were executed with different scaling and running costs to analyze the optimization algorithm
on a wide range of possible configurations. The results are summarized in Fig. 5. It presents the cost gain as a function of the
ratio of the costs: scaling cost vs. running cost. The graph reveals the main characteristics of the cost function the optimization
is working with, i.e., when the scaling cost is low compared to the running cost, it is worth executing the suggested scaling
actions, and therefore the optimization can only slightly improve the short-term optimal resource allocation. However, as the
scaling cost becomes higher than the running cost, the cost gain rises until the upper limit is reached, where the optimization
suggests a constant amount of resources without scaling. In the subplots, we marked with a blue dotted line the point from which
it is not the short-term optimal resource allocation that gives the lowest cost: by applying LSSO optimization, improvement
can be made. We found that this value is around c¢,/c, = 0.5 for every test dataset. The red dashed line indicates the point
from which the constant allocation is the optimal decision. According to our measurements, this value is somewhere between
100 and 1000 in case of our datasets. These results suggest that LSSO can be applied in a wide range of configurations to
achieve the optimal operation.

2) Comparison of LSSO and FOX: Next, we compare LSSO with a recently proposed related mechanism called FOX [17].
FOX applies a heuristic algorithm to prevent scale-in actions based on a long-term forecast which is able to optimize the
short-term resource suggestions when the next decision would be scale-in. It examines the next suggested instance numbers in
a predefined look-ahead window, and selects the largest value which is less or equal to the current instance number. Although,

FOX - 8h === FOX-12h
—— LSSO-8h r=e:= LSSO-12h
kaggle

Cost gain [%]

telco3
[TTT L 60 FTT
40 F
20
0 [
123 45 6
¢s __ scaling cost

= Wgcost (label: Setup ID)

Fig. 6. Performance comparision of LSSO and FOX

TABLE I
MEAN ABSOLUTE ERROR OF THE DIFFERENT PREDICTION METHODS

telco/telco2/telco3

kaggle/kaggle2/kaggle3

azure/azure2/azure3

Pl

0.23/0.94 /1.57

1.27/1.39/1.82

1.32/1.64/2.16

P2

1.08 /1.45/1.99

1.72 7 1.79/ 2.34

1.86/1.96 /2.44

this approach is originally designed to optimize scaling decisions using hourly instance based pricing, the scale-in preventing
approach is applicable to our cost function as well, when the scaling cost is considerable. Here, we also assume perfect
predictions, however, a forecasting window of 8 and 12 hours is used, to prevent the algorithms to optimize over the whole
dataset.

The result of the comparison can be seen in Fig. 6. In the legend, the applied forecast window length is displayed next
to the name of the algorithm. The x-axis labels help identify the previously defined 6 setups for which the simulations were
performed. For Setup 1,2 and 3 LSSO outperforms FOX as it is able to apply only the short-term suggested values, when no
further optimization can be made. However FOX’s heuristic has strict rules, and it is not able to adapt. On the other hand, when
the scaling cost is considerable (Setup 4,5 and 6), FOX comes close to the cost gain of LSSO. According to our simulations,
only a few percent differences can be observed in favor of LSSO in most cases. However in case of telco, kaggle and the
datasets in the last row, it can be seen, that in case of Setup 6, and when the scaling cost, running cost ratio is larger than 50,
LSSO outperform FOX significantly.

It can be concluded that LSSO can achieve larger cost gain in general than FOX, however in certain scenarios, FOX gives
similar results. The advantage of LSSO besides the better performance is that it supports a wide range of cost functions and
therefore a wide set of use cases and configurations are enabled.

3) Evaluation of LSSO using imperfect predictions: In the last part of the evaluation, we consider the case of inaccurate
predictions. To achieve this, two forecast methods are used. The first one uses the previous day’s traffic for the current day, the
other one uses the same with some added noise, to make the prediction accuracy weaker. Table II contains the mean absolute
error of the two prediction algorithm, where P1 stands for the forecast using the previous day, and P2 is the noisy version.
The result is shown in Fig. 7, where as a reference, the simulation with perfect prediction is also displayed indicating the
maximum achievable cost gain. In the legend, the name of the prediction and the applied forecast window are displayed. These
simulations are considered as the most realistic ones, as they assume imperfect prediction and limited forecast window size.

Perfect prediction —_—

Noisy prev. day - 8h

= Prev. day - 8h === Noisy prev. day - 12h
+=e-= Prev. day - 12h
telco kaggle azure
T F
75 F
50 F

25S

telco2

azure2

Cost gain [%]

kaggle3
60 F T T
40 F
2 [
0k 1 I
100 10! 102 100 10! 102
¢y __ scaling cost
cy ~ running cost

Fig. 7. LSSO performance with imperfect predictions

The range of the x-axes is from 0.5 to 100 presenting the most interesting operating regime. It can be seen, that the maximum
cost gain can never be reached while the scaling cost is low. Moreover, the cost gain can also be negative compared to the
short-term optimal allocation. The reason is that the short-term resource suggestion is preferred when the scaling cost is small,
and the optimization using inaccurate values might execute unnecessary scaling actions which will increase the cost. As the
scaling cost gets higher, the effect of inaccurate predictions becomes less and less noticeable, as the optimized allocation uses
more instances than suggested to prevent scaling actions, and a small inaccuracy in instance number will not take effect. As
a result, the cost gain fairly approximates the cost gain of the perfect prediction.

To sum up, with the increase of scaling cost, the prediction accuracy becomes less prominent, and near maximal cost gain
can be achieved, which shows that the examined extent of inaccuracy is tolerable by LSSO.

V. CONCLUSION

Making use of advanced time-series forecasting methods and models, we have the opportunity to optimize the operation of
cloud applications and cloud native telco services, thereby reducing the overall operating costs. We have proposed a formal
description of a scaling optimization problem (LSSOP) and provided an algorithm to solve it in polynomial time (LSSO), which
includes the transformation of the problem into a shortest path graph theory problem. The method supports a wide range of cost
models, where the cost can be formulated as a function of the current and previous scaling decisions. Our LSSO algorithm was
evaluated with multiple illustrative examples from different application realms with different configurations. For the evaluation
we presented a cost model, which considers the running cost and scaling cost. We found that if the traffic dynamics of a given
application is fairly predictable (e.g., in case of telco applications), LSSO can be invoked to significantly reduce the operation
costs. Furthermore, we compared LSSO to a heuristic approach (FOX) which optimizes resource allocation based on long-term
suggestions. Results show that in some cases FOX approximates the cost gain of LSSO, but LSSO supports a wider set of
use cases and it outperforms FOX in each scenario. The effect of imperfect predictions is also considered, and it can be stated
that with the increase of scaling cost, the negative effect of imperfect prediction on the cost gain decreases, and the cost gain
closes the maximum which is achievable by perfect prediction.

In conclusion, our results suggest, that LSSO is applicable in real-world scenarios, and outperforms both the short-term
allocation and the selected baseline long-term suggestion based algorithm.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund
through projects) no. 135074 under the FK_20 funding scheme, 7) 2019-2.1.13-TET_IN-2020-00021 under the 2019-2.1.13-TET-IN funding scheme, and
1i7) 2019-2.1.11-TET-2020-00183 under the 2019-2.1.11-TET funding scheme. L. Toka was supported by the Janos Bolyai Research Scholarship of the
Hungarian Academy of Sciences. Supported by the UNKP-22-5-BME-317 New National Excellence Program of the Ministry for Culture and Innovation from
the source of the National Research, Development and Innovation Fund.

REFERENCES

[1] “Cloud Native Computing Foundation,” https://www.cncf.io/, (Accessed on 11/13/2021).
[2] M. Wajahat et al., “Using machine learning for black-box autoscaling,” in /[EEE IGSC, 2016.
[3] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow routing with proactive demand prediction,” in JEEE INFOCOM 2018-1EEE Conference
on Computer Communications. 1EEE, 2018, pp. 486—494.
[4] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee, “Auto-scaling vnfs using machine learning to improve qos and reduce cost,” in
2018 IEEE International Conference on Communications (ICC). 1EEE, 2018, pp. 1-6.
[5] G. Yu et al., “Microscaler: Automatic scaling for microservices with an online learning approach,” in JEEE ICWS, 2019.
[6] K. Rzadca et al., “Autopilot: workload autoscaling at Google,” in EuroSys, 2020.
[7]1 L. Toka et al., “Machine learning-based scaling management for kubernetes edge clusters,” TNSM, vol. 18, no. 1, pp. 958-972, 2021.
[8] M. Carvalho et al., “Long-term SLOs for reclaimed cloud computing resources,” in ACM SOCC, 2014.
[9] S. Subramanian and A. Kannammal, “Real time non-linear cloud workload forecasting using the Holt-Winter model,” in JEEE ICCCNT, 2019.
[10] D.-H. Loung et al., “Predictive autoscaling orchestration for cloud-native telecom microservices,” in IEEE SGWF, 2018.
[11] M. Duggan et al., “Predicting host CPU utilization in cloud computing using recurrent neural networks,” in ICITST. 1EEE, 2017, pp. 67-72.
[12] F. Rossi et al., “Horizontal and vertical scaling of container-based applications using reinforcement learning,” in JEEE CLOUD, 2019.
[13] C. Li et al., “Cost-aware automatic scaling and workload-aware replica management for edge-cloud environment,” Journal of Network and Computer
Applications, vol. 180, p. 103017, 2021.
[14] V. Eramo et al., “Proposal and investigation of a reconfiguration cost aware policy for resource allocation in multi-provider NFV infrastructures
interconnected by elastic optical networks,” Journal of Lightwave Technology, vol. 37, no. 16, pp. 4098—4114, 2019.
[15] C.-H. Wang et al., “Dynamic cloud network control under reconfiguration delay and cost,” IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp.
491-504, 2019.
[16] K. Qu, W. Zhuang, X. Shen, X. Li, and J. Rao, “Dynamic resource scaling for vnf over nonstationary traffic: A learning approach,” IEEE Transactions
on Cognitive Communications and Networking, vol. 7, no. 2, pp. 648662, 2020.
[17] V. Lesch et al., “Fox: Cost-awareness for autonomic resource management in public clouds,” in ACM/SPEC International Conference on Performance
Engineering, 2018, pp. 4-15.
[18] J. O. Kephart et al., “The vision of autonomic computing,” Computer, vol. 36, no. 1, pp. 41-50, 2003.
[19] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

[20] “ETSI TS 123 228 V16.5.0 - technical specification,” https://www.etsi.org/deliver/etsi_ts/123200_123299/123228/
16.05.00_60/ts_123228v160500p.pdf, (Accessed on 04/01/2022).
[21] “CPU utilization — Kaggle,” https://www.kaggle.com/datasets/

gauravduttakiit/cpu-utilization, (Accessed on 03/30/2022).
[22] “Predicting-cloud-CPU-usage-on-Azure-data,” https://github.com/amcs1729/Predicting-cloud-CPU-usage-on-Azure-data, (Accessed on 03/30/2022).
[23] “EC2 On-Demand Instance Pricing — Amazon Web Services,” https://aws.amazon.com/ec2/pricing/on-demand/, (Accessed on 03/31/2022).

