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A B S T R A C T

Microbial electrosynthesis cells (MES) are devices with demonstrated capability to treat CO2-containing gaseous
streams and alongside, generate certain valuable chemical products, particularly methane gas, carboxylic acids,
alcohols, etc. Although there are many varieties of MES with their own individual characteristics, all systems
have a lot in common, starting from their design and operational features to the underlying microbiological phe-
nomena. With the support of literature publications and related numerical data, this paper reviews and analyses
the most important features of MES to identify general tendencies and practical recommendations pertaining to
their design (electrodes, membranes), operation (cathode potential, CO2 feeding, temperature, pH) and biocata-
lysts ensuring an enhanced performance. As a result, several key-issues are provided to (i) successfully imple-
ment MES setups as well as to (ii) outline the perspectives of the technology towards the further promotion and
development of this CO2-refinery process.

1. Introduction

Microbial electrosynthesis cells (MES) are bioelectrochemical sys-
tems in which the reduced value-added products are generated at the
anaerobic cathode electrode, usually by relying on the (electrotrophic)
CO2-utilizing biofilm formed there. Meanwhile, the anode reaction is
mostly abiotic in the MES. As a matter of fact, the general MES scheme
proposes the decomposition of water at the anode by the external en-
ergy supplied into the system, resulting formally in O2, e- and H+. In
principles, the electrons enter the external circuit connecting the elec-
trodes, and the protons migrate (in most cases through a membrane) to
the cathode. Here, they participate in the biocatalysed synthesis of a
particular substance with the incoming electrons via the reduction of
CO2 available in the catholyte. The simplest organic molecule in the
broad range of products at the cathode is methane [1], realizing simul-
taneously the “power-to-gas” and “carbon capture and utilization
(CCU)” technologies. Additionally, components with higher carbon
numbers, such as alcohols (methanol, ethanol), organic acids (e.g.,
formic acid, acetic acid, propionic acid, butyric acid) and bioplastics
(polyhydroxybutyrate, PHB) can also be derived using MES [2–4] as
shown in Fig. 1. Furthermore, as auxiliary technologies to MES, other
bioelectrochemical systems (e.g. microbial fuel cells, MFC, and micro-
bial electrolysis cells, MEC) can also be used to obtain additional value-

added cathodic products, such as H2O2, NH3 or reduced metals, where
the anodic oxidation process is catalysed by electro-active bacteria,
while the product synthesis does not necessarily require biocatalyst [5,
6]. Overall, based on the potentials and flexibility of MES in the low-
carbon footprint electro-biotechnological production of chemicals, the
enormous scientific attention paid to this emerging platform over the
last decade or so is fully justified. As a result of the considerable R&D
activity, MES – similar to the other representatives of the microbial
electrochemical technology (e.g., microbial fuel cells, microbial elec-
trolysis cells) – have been studied in-depth to find the most important
factors influencing their effectiveness. Accordingly, it can be inferred
that the actual efficiency of the MES is fundamentally determined by (i)
the materials the system is built from, (ii) the operating conditions and
finally, (iii) the qualities of biocatalysts on the cathode-surface.

Therefore, this review paper is contextualized around the objective
of evaluating and presenting the international knowledge relevant to
these major characteristics of MES. By assessing the topic in the light of
these questions, we aim at the crucial, up-to-date analysis of how the
different scientific solutions and strategies could support driving the
segment of MES further on the way of technological progression and
perspectives.
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Fig. 1. Electrode potential dependence of cathodic products.

2. Influence of design factors (electrodes, membranes) in
Microbial Electrosynthesis Cells

In the case of MES, most electrode developments focus on the cath-
ode, with less attention paid to the anodes. The anodes used in MES,
where water decomposition takes place, are mostly carbon-based, with
a high overvoltage for O2 formation, thus increasing the amount of en-
ergy to be invested [7,8]. Bian et al. identified 4 main directions for
more efficient (and preferably cheaper) anodes:

1. coating the electrode surface with a small amount of precious
metal,

2. using photoanodes,
3. replacing anodic water decomposition reaction to provide e-/H+

and
4. employing organic material oxidizing bioanodes [9,10].

Regarding cathodes, carbon-based materials are used most fre-
quently, some of which are commercially available and some of them
are still in the research and development phase. A detailed list of these
materials can be found in the study by Aryal et al. [11]. Overall, the
reasons behind favouring C-based materials are their low price, high
specific surface area, good corrosion resistance and electrical conduc-
tivity, biocompatibility, and flexible manufacturing in a variety of
forms [12]. In addition, cathode electrode materials often –and most
promisingly in up-scaled technologies – needs to include additional cat-
alyst (e.g. platinum coating) in order to provide hydrogen at sufficient
rate for the bioelectrosynthesis [13]. Regarding the distance between
the electrodes, Song et al. found (as expected) that keeping it as small as
possible (in their work, 8 cm in a conventional H-cell reactor) could in-
crease the current density as well as the volumetric productivity of MES
(up to 0.21 g/(L*d) with the example of acetic acid as target product)
[14].

Proton/cation exchange membranes (PEM, CEM) are standard solu-
tions for electrode chamber separation, however, Gildemyn et al. [15]
suggested that it may be worth extending research to anion exchange
and bipolar membranes, as well, due to the ionic composition of the
electrolytes of MES. In an acetic acid producer MES operated with an
anion exchange membrane (AEM), the authors concluded that this de-
sign resulted in greater stability and required less external energy in-
vestment [15]. In general, the use of AEM can be advantageous for in-
situ product separation of acetate and other compounds from the
catholyte, and moreover, the concept of three-chamber reactors (hav-
ing a recovery chamber between a CEM/AEM pair) can be adopted for
further increasing the product extraction efficiency in MES [15,16].

The crucial role of membranes extends not only to accomplishing
ion transfer, but also to the aspect of (hindered) oxygen transfer from
the anolyte towards the cathode. Either as competitive electron accep-
tor at the cathode or as an inhibitor for the microbes involved in the
electrosynthesis, substantial O2 transport should be avoided in MES to
achieve sufficient product yields and efficiency [17]. Therefore, the
cost of membranes in return to oxygen retention is to be paid during re-
actor construction. Membrane-less designs lack the price and ohmic
drop accompanying membrane including MES, however, in order to
avoid the presence of O2 – and the inherent consequences – at the cath-
ode, higher distance between the electrodes has to be kept, which
causes further potential losses in the system. In terms of electron utiliza-
tion efficiency, it was shown in previous works that membrane-less re-
actors with vertically placed electrodes (O2-generating anode on the
top, cathode and gas flow at the bottom) can eliminate the disadvanta-
geous effects of O2 [17,18]. Moreover, it was also demonstrated previ-
ously that in membrane-less reactors, careful selection of the anode ma-
terial (i.e. VITO-CoRE™ combined with stainless steel cover) together
with sustaining only mild electrochemical activity in the MES could
prevent O2 evolution [19].

3. Influence of operating conditions on the efficiency of Microbial
Electrosynthesis Cells

3.1. Cathode potential

The cathode potential (EC) has a prominent role in MES to initiate
the product formation (via CO2 reduction) and to influence its rate. As
the range of possible products is relatively wide, the distinct potentials
must be chosen specifically for the particular target (Fig. 1). In the case
of the simplest synthesizable organic molecule, methane, if water de-
composition occurs at the anode, the theoretically necessary (practi-
cally larger) potential difference between the electrodes, is 1.06 V
(pH=7, T = 298 K). For other components, data regarding bioelec-
trosynthesis – under the same boundary conditions – can be found in
the paper of Bajracharya et al. [20]. Accordingly, it can be calculated
that the theoretical EC ranges from − 0.24 to − 0.48 V depending on the
product. The formation of H2 may also occur at the cathode (−0.414 V
vs. SHE, pH=7). This H2, produced electrochemically (abiotically) un-
der anaerobic conditions, can be used by microbes (using their re-
versible bidirectional hydrogenase enzymes) to obtain electrons and
protons. In this case the cathodic electron transfer mechanism is so-
called indirect, mediated by hydrogen gas. It should be noted that H2
can be also produced biologically by hydrogenotrophic bacteria present
in the biofilm, e.g. through the enzymatic decomposition of formic acid
(HCOOH = H2 + CO2) [21–23]. If such H2 production occurs at the
cathode, it is readily consumed by the cathodic biofilm and is involved
in the substrate-product conversion.

EC has a significant effect on the structure, diversity and efficiency
of the resulting biofilm, therefore ensuring optimal EC is essential. In
case of methanogenic biocathode, Li et al. concluded that methane
production was predominantly mediated by direct electron transfer in
the bioelectrosynthesis cells started-up at EC = −0.7 - − 0.8 V (vs. Ag/
AgCl, sat. KCl), while at EC = −0.9 - − 1.1 V (vs. Ag/AgCl, sat. KCl)
values, CH4 formation was mediated rather by indirect electron trans-
fer [24]. Using a DC power supply (negative terminal: cathode, posi-
tive terminal: anode) Flores-Rodriguez and Min [25] investigated the
process of methane bioelectrosynthesis in the range of 0.5–1.5 V and
marked 1 V as the optimum. By examining the composition of the re-
sulting cathodic microbial consortium, it was concluded that an inter-
dependent (syntrophic) network of H2-producing and H2-consuming
microbes developed there. The effect of the cathode potential on the
acetate production efficiency in MES was first investigated by Mo-
hanakrishna et al. [26], where it was clearly shown that more negative
EC (−0.8 V vs. −0.6 V) lead to significantly higher acetate productivity
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(up to ~ 114 mg acetate/(L*d)) and provided more beneficial biofilm
formation environment. In the case of organic acid-producing MES,
Das et al. suggested that the energy requirements of the process should
be considered to determine optimal EC [27]. In the range of EC = −0.6
- − 1 V (vs. SHE), it was found that although more negative EC is ad-
vantageous in terms of acid yields (acetic and butyric acids), it is
linked to a higher demand of external energy. Considering this factor,
EC = −0.7 V (vs. SHE) was finally determined as the operational opti-
mum for the organic acid production [27]. This kind of approach
clearly shows that the cost-effectiveness of MES ultimately depends on
the source of the auxiliary energy. Therefore, it may be worth consid-
ering (especially in terms of scaling-up) technical solutions where the
process is carried out by connecting “green” power from a renewable
energy source (e.g., solar energy). In this case, the energy produced in
surplus can be stored by producing valuable components (electro-fuels,
electro-commodities). In their study, del Pilar Anzola Rojas et al.
showed that although the availability of “green” power for the MES
operation can fluctuate in time, the microbial community developing
on the biocathode and producing acetic acid may prove to be suffi-
ciently robust in response to such a disturbance [28].

3.2. CO2 feeding

In MES, the CO2 feeding method is of great importance, since it may
determine the formation rate of the products. The solubility of carbon
dioxide in the catholyte depends on its composition, temperature and
pressure. At 1 bar and 303 K (which is typical for biological systems),
its value in water is relatively limited, 1.26 g/kg [29]. Its dissolution
rate is influenced by factors such as:

1. the actual dissolved CO2 concentration,
2. the specific area for mass transfer (determined by e.g. the input

mode of gas bubbling) and
3. its consumption rate at the cathode.

According to the research of Mohanakrishna et al., the substrate
concentration in MES also affects the rate of cathodic reaction as well as
the product titre [30]. According to their results, raising the initial bi-
carbonate (substrate) concentration from 1 g/L to 4 g/L increased the
rate of acetic acid production by approximately 4–5 times, and after 7
operating cycles the acetic acid concentration could be increased to
5 g/L (as opposed to 1.2–1.3 g/L in case of 1 g/L initial bicarbonate
concentration). In a research by Dessí et al., various MES operating
strategies were investigated, with CO2 bubbling and NaHCO3 feeding,
fixing the cathode potential (EC = −1 V vs. Ag/AgCl) [31]. According
to their results, the efficient production of acetic acid and butyric acid
required the suppression of methane producers using a chemical in-
hibitor (bromoethanesulfonic acid, BESA, 0.5 g/L in the catholyte), and
the best acid productivity was obtained by the direct CO2 feeding
method (2.54 g CO2/(m2 ×d) relative to the cathode surface area). In-
terestingly, the biofilm structure on the cathode surface was inhomoge-
neous and the electrotrophic microbes were physically closer to the cur-
rent collection point. In order to feed CO2 to the reactor efficiently, Bian
et al. wrapped the cathode around a porous ceramic fibre, thus, allow-
ing direct access for the microbes to CO2 [32]. By varying the CO2 dos-
ing, it was found that higher flow rates in the range of 0.3–10 mL/min
had a positive effect on acetic acid and methane production, and the ca-
thodic biofilm was sufficiently stable when gas flow was interrupted,
which could occur in real conditions as a result of operational uncer-
tainties [32]. Del Pilar Anzola Rojas et al. [33] also found that higher
CO2 flow increased the productivity of MES, but underlined that the
structure of the cathode could significantly affect its optimal value. As
the development of MES is desirable for real industrial applications, it is
needed to conduct research with real gas samples that contain other
pollutants in addition to CO2 instead of the pure CO2 used in most labo-

ratory tests. For this purpose, Roy et al. examined the behaviour of MES
using a feed gas mixture containing CO2, N2, O2, and various aliphatic
and aromatic hydrocarbons. Their results suggest that mixed-culture
cathodic biofilms are more suitable for the treatment of these types of
gases in MES thanks to their greater flexibility against contaminants,
e.g., oxygen [34].

3.3. Temperature and pH

Regarding the operation of the MES, the effect of temperature and
pH on the efficiency of MES should be investigated. Although, similar to
the MFC and MEC systems, the mesophilic temperature range is the
most typical, some studies suggest that it may be appropriate to system-
atically examine and adjust the temperature optimum for strains grow-
ing in cathodic biofilm. In this way, Faraghiparapari and Zengler
demonstrated increased productivity of acetic acid at 60 °C by using
Moorella thermoacetica and Moorella thermoautotrophica thermophilic
microbes [35].

The effect of catholyte pH on product formation is complex. On the
one hand, it affects the CO32-↔HCO3-↔H2CO3 balance, i.e. the available
number of protons, and on the other hand, the growth and metabolism
of the strains in the cathodic biofilm is also affected by the pH. Regard-
ing the impact of pH in bioelectrochemical systems, encompassing bio-
electrosynthesis cells too, the recent paper published by Zeppilli et al.
[16] could give some useful insights.

Actually, Batlle-Vilanova et al. found that controlling the pH in MES
at 5.8 made the formation of acetic acid thermodynamically more
favourable and also met the needs of homoacetogenic bacteria, which
prefer mainly slightly acidic media [36]. The effect of pH is also re-
flected in the spectrum of products formed, since, for example, acetic
acid production can be shifted towards the formation of butyric acid by
the so-called chain elongation reaction if the pH is low enough, and the
partial pressure of H2 is sufficiently high [37]. It is noteworthy that the
pH can influence the product separation, as well, since it affects the be-
haviour of the charged molecules. Actually, using a membrane electro-
dialysis technique, acids (as a function of their protonation) can be sep-
arated from the medium, as a relevant system was shown by Gildemyn
et al. in connection with MES for producing acetic acid [38]. This tech-
nique was successfully applied for in-situ recovery of organic acids from
a biohydrogen fermentation effluent, thereby increasing the stability of
the process [39]. Furthermore, in the work of Bajracharya et al. an an-
ion exchange resin (Amberlite™ FPA53) was found appropriate to ex-
tract and concentrate acetic acid (and prevent, thus, any inhibitory ef-
fect caused by its accumulation) over a longer period of time covering
several consecutive production cycles [40].

4. Biocatalysts at the cathode of MES

A key-aspect for efficient cathodic CO2 reduction is the supply of
electrons to microbes as whole-cell biocatalysts used in the vast major-
ity of MES. The electron transfer can take place using a mediator mole-
cule or via direct mechanism. In the case of mediated electron transfer,
a chemical component transports the electron picked up from the elec-
trode to the cells. H2 and/or formic acid (produced electrochemically
and/or biotically at the cathode) play the role of electron donors in
cases where the process takes place through an intermediary molecule.
In the case of direct electron uptake, the electrotrophic microbes – con-
nected to the cathode surface – directly utilize the available reducing
power.

The cathodic biofilm typically contains methanogens, acetogens,
and in some cases aerobic strains, which can be used alone or as part of
a microbial consortium [6]. From the viewpoint of the (planktonic and
immobilized) microbes present in the mixed culture MES, the high-
throughput DNA sequencing techniques targeting e.g., the 16 S rRNA
gene could be deployed for delivering fundamental understanding of
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community interactions and population dynamics [41]. Certainly, the
product portfolio in MES is notably determined by the properties of the
underlying microbial population and their active metabolic pathways.
Accordingly, several components may simultaneously appear at the
cathode, e.g., acetate, methane, solvents such as ethanol and organic
acids (e.g. propionic- and butyric acids) [26].

During the synthesis, the rate of the cathodic product formation is
directly dependent on the generated (negative) current density. In this
regard, research has concluded that instead of two-dimensional cathode
structures, the use of three-dimensional electrodes capable of adhering
specifically larger mass of active biomass (biocatalyst) is expedient
[42]. The most typical products of MES are methane and acetic acid,
however, it is also possible to produce other components with longer
carbon-chain (Fig. 2), and the central molecule of the chain elongation
(and thus, the product formation) cascade is the acetyl coenzyme A
[43]. The synthesis of most target molecules takes places through the
energetically favourable Wood-Ljungdahl metabolic pathway [44]. Mi-
crobes with the ability to generate these compounds can convert short-
chain organic acids to medium-chain organic acids through reverse β-
oxidation. Starting from acetic acid, C4, C6 and C8 derivatives, while
from acids with an odd number of C-atoms (e.g., propionic acid) C5, C7
derivatives can be synthesized [45]. Kracke et al. highlighted a selec-
tion of bacteria being the most promising to diversify the product spec-
trum of MES (underlining also the potential of metabolic engineering to
further improve the process) [46]. This includes a series of species be-
longing to the class Clostridia, for instance C. autoethanogenum
(ethanol), C. beijerinckii (iso-propanol), C. caboxidivorans (acetone), C.
tyrobutyricum (butyrate), C. acetobutylicum (butanol) and C. ljungdahlii
(2,3-butanediol) [46].

By taking up electrons at the cathode, microbes are able to increase
the amount of available NADH (NAD+ + H+ + e- = NADH) reduced
coenzyme (electron carrier). This has a positive impact on the yield of
more reduced metabolites, e.g., by the reduction of carboxylic acids
(acetic acid, butyric acid) as terminal electron acceptors to the corre-
sponding alcohol (carboxylic acid + ne- + nH+ = alcohol) [47]. Fur-
thermore, the research of Izadi et al. showed that besides the polarized
cathode (−1 V vs. Ag/AgCl) as an electron source, the addition of
formic acid and ethanol as chemical electron donors may be advanta-
geous for the chain elongation reaction[48]. For greater selectivity to-
wards acid molecules with higher carbon numbers (butyric acid,
caproic acid), Jourdin et al. recommended the operation of a continu-

ous MES (EC = −0.85 V vs. SHE) with higher CO2 load (173 L CO2/d)
and shorter hydraulic residence time (14 days) [49]. Resulting from the
forced convection flow and continuous, fast supply of nutrients, a more
robust cathodic biofilm had developed, which was capable of higher
electron uptake rates, and thus, was more productive [49]. In contrast,
the results of Das and Ghangrekar, according to which in the case of
acetic, propionic and butyric acid-producing MES have shown that the
batch mode resulted in better product yield compared to the continuous
reactor [50]. The authors mentioned the higher CO2 and H2 retention
achieved in batch mode (led to better availability for the microbes) as
the reason behind the phenomenon [50].

Furthermore, Mateos et al. achieved increased acetic acid produc-
tion by continuously recirculating the cathode-side headspace gas (con-
taining CO2) to the catholyte, thus, at a utilization rate of 171 mL
CO2/L-d, 261 mg acetic acid/L-d productivity could be attained [51]. In
addition to acetogenic microbes (Sporomusa, Clostridium), Desulfovibrio,
Pseudomonas, Arcobacter, Acinetobacter and Sulfurospirillum strains were
present in the cathodic biofilm [51]. In terms of reactor stability of MES
producing acetic acid, butyric acid and isopropanol, Arends et al.
pointed out that the key to adequate long-term production was to con-
trol the hydraulic residence time, together with the appropriate adjust-
ment of the catholyte pH [52]. The pH control of the catholyte (in the
acidic range) can also play an important role (the product itself, e.g.,
acetic acid, can also contribute to this) in the elimination of competing
methanogens. For this purpose, Bajracharya et al. proposed a multi-
step, sequential inoculum selection and enrichment method for reduc-
ing methanogenic activity that does not require the use of specific
chemical inhibitors during MES operation [53]. Enrichment and ac-
climatization of homoacetogenic microbes to higher bicarbonate con-
centrations also proved to be a suitable strategy in the research of Mo-
hanakrishna et al., by which a maximum acetic acid titre of 15 g HCO3-

/L could be obtained [54]. If the goal is methane production, the so-
called power-to-gas concept can be implemented in MES, by which the
electrical energy can be stored in form of chemical energy [55].

Although the already discussed whole-cell biocatalysts are em-
ployed most frequently in MES, the use of immobilized enzymes also
shows an increasing tendency. In this aspect, substrate-specific enzy-
matic cathodes mainly contain enzymes belonging to the oxidoreduc-
tases, which take up electrons from the electrode either by a direct or
indirect (cofactor e.g., NADH, e--transport molecule) mechanism. En-
zymes that have been studied more widely so far include:

Fig. 2. Main biosynthetic chain elongation routes for cathodic products. (adapted with changes from Jiang et al. [43]).
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Fig. 3. The outline of operational and design factors to be considered for efficient microbial electrosynthesis.

1. formate dehydrogenases, which reduce CO2 to formic acid and
2. nitrogenases, which convert N2 to ammonia.

However, there are several more “exotic” examples in the literature
which result in alkanes, polyhydroxybutyrate, etc. [56]. Furthermore,
the use of carbonic anhydrase enzyme is gaining ground, as it acceler-
ates the dissolution of CO2 in the catholyte, and its presence has a bene-
ficial effect on e.g., product formation by the formate dehydrogenase
enzyme [57,58].

5. Perspectives

In the light of the above cited literature, diverse research work
needs to be done to improve MES characteristics. The most essential as-
pects and developmental directions are summarized in Fig. 3. Addition-
ally, in Table 1, tendencies of microbial electrosynthesis cells based on

Table 1 –
Number of MES themed articles published in the last 5 years. The search was
made in the Scopus database using “microbial electrosynthesis cell” with dif-
ferent additional words listed below.
additional searching word number of studies published

(2017–2022)

cathode development 26
anode development* 9
membrane development 14
anion exchange membrane 8
cation exchange membrane 9
bipolar membrane 3
membraneless 1
free /extracellular/immobilized enzyme 12
formate dehydrogenases 5
optimization 22
membrane optimization 2
electrode optimization 15
operation optimization 4
microbiological/biocatalyst optimization 4

*There is no result between 2021 and 2022

the last 5 years could be observed. Although relatively wide and valu-
able knowledge has been collected in the recent years related to the op-
erational parameters of MES (such as the effect of cathode potential, the
C-source type and reaction conditions), the next phase of MES develop-
ment and industrialization must rely on discoveries and technical solu-
tions in material science, mass transfer and biocatalysis aspects of the
systems. It can be said that electrodes and membranes should be opti-
mized based on general considerations (e.g. high electrode surface area,
sufficient ion exchange features, etc.) and at the same time, they should
also be adjusted according to the desired operational mode and addi-
tional process parameters. The scale-up of MES will require a robust re-
actor design, which not only underlines the need for cost-effective parts
and components, but also the potential exclusion of some of them, such
as in case of membrane-less designs. In addition, further fundamental
studies should evaluate the effect of the mass transfer of various com-
pounds on the bioelectrosynthesis performance, as well as on the prod-
uct recovery. Then, the effect of the overall system design on the biolog-
ical apparatus ought to be understood extensively and investigated to
fine-tune microbial electrosynthesis. Although the proposed objective
requires significant innovation and research capacities, a successful ac-
complishment may contribute to a paradigm-shift, where microbial and
conventional electrochemical processes powered by renewable energy
and feedstocks are in the centre of a sustainable bioproduct generation
chain. This concept (Fig. 4) can be realized in the so-called electro-
biorefineries [59,60]. Such a technological approach was proven appro-
priate to produce not only acetate or methane, but biomass-based high-
value chemicals, among others, drop-in fuels [61], polymer bricks such
as C5-dicarboxylates [62] or muconic acid [63,64], chiral alcohols [65],
ectoine [66] and volatile fatty acids [67]. In addition to the proper de-
sign and operation of MES, the extension of the bioproduct variety can
further accelerate their envisaged industrial deployment.

6. Conclusions

The main design-, operational- and microbiological aspects of MES
and their developmental strategies were assessed and presented in this
work. It can be concluded that establishing an attractive MES technol-

5



CO
RR

EC
TE

D
PR

OO
F

P. Bakonyi et al. Journal of CO2 Utilization xxx (xxxx) 102348

Fig. 4. Comprehensive scheme of electro-biorefineries for the production of value-added compounds.

ogy, which fits the concept of sustainable green chemical technology,
requires optimization in these areas. Advanced electrodes and mem-
branes can further improve the utilization efficiency of CO2 feedstock,
while targeted control of the operating conditions and knowledge of
their effects on microbes and associated metabolic pathways are essen-
tial to diversify the spectrum of electro-commodities and hence increase
the wider implementation of the MES as part of the bioelectrochemical
platform.
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