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Significance

Metabolites are central players in 
biochemical reaction networks, 
and their concentrations shape 
cellular physiology and disease 
risks. However, the general 
principles driving the evolution of 
metabolite concentrations are 
essentially unexplored. Here, 
using cross- species comparisons 
of metabolomes and biochemical 
modeling, we report simple rules 
that universally dictate the 
evolutionary conservation of 
metabolite levels in animals. We 
identified three main factors, 
metabolite abundance, 
essentiality, and association with 
human diseases, that predict 
evolutionary conservation well. 
Remarkably, biomarkers of 
metabolic diseases can be 
distinguished from other 
metabolites simply based on 
evolutionary conservation, 
without requiring any prior 
clinical knowledge. This study 
opens the way to exploit 
evolutionary information to 
evaluate the clinical significance 
of metabolite alterations in 
humans.
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Metabolite levels shape cellular physiology and disease susceptibility, yet the general 
principles governing metabolome evolution are largely unknown. Here, we introduce 
a measure of conservation of individual metabolite levels among related species. By 
analyzing multispecies tissue metabolome datasets in phylogenetically diverse mam-
mals and fruit flies, we show that conservation varies extensively across metabolites. 
Three major functional properties, metabolite abundance, essentiality, and association 
with human diseases predict conservation, highlighting a striking parallel between the 
evolutionary forces driving metabolome and protein sequence conservation. Metabolic 
network simulations recapitulated these general patterns and revealed that abundant 
metabolites are highly conserved due to their strong coupling to key metabolic fluxes in 
the network. Finally, we show that biomarkers of metabolic diseases can be distinguished 
from other metabolites simply based on evolutionary conservation, without requiring 
any prior clinical knowledge. Overall, this study uncovers simple rules that govern 
metabolic evolution in animals and implies that most tissue metabolome differences 
between species are permitted, rather than favored by natural selection. More broadly, 
our work paves the way toward using evolutionary information to identify biomarkers, 
as well as to detect pathogenic metabolome alterations in individual patients.

molecular evolution | metabolic networks | systems biology | phylogenetic comparative method |  
neutral evolution

Metabolites are intermediates of biochemical pathways as well as regulators of enzymes 
and nonenzymatic proteins (1). Accordingly, intracellular metabolite concentrations are 
key quantities that affect the rates of metabolic reactions (fluxes) and regulate various 
layers of cellular organization (2, 3). Consequently, metabolite dysregulation underlies 
various human diseases, from metabolic disorders to cancer (4, 5). Given the tight asso-
ciations between metabolite levels and cellular physiology, it is often supposed that evo-
lutionary changes in the metabolome contribute to phenotypic differences between species 
(6, 7). Indeed, shifts in specific metabolite levels have been associated with phenotypic 
evolution in both mammals (6, 7) and plants (8, 9). However, the general principles 
driving metabolome evolution remain largely unexplored. Metabolite levels show broad 
similarities between cells of distantly related organisms (10) and obey simple optimality 
principles (11, 12), indicating widespread natural selection to preserve them. In fact, 
metabolome- altering mutations continuously occur during evolution, with harmful ones 
likely being eliminated by natural selection, affecting patterns of metabolome variation 
among species. Thus, elucidating the evolutionary forces shaping the metabolome has 
relevance for a better understanding of the organization of cellular metabolism, and for 
human health as well.

Here, we propose that the functional role and biochemical properties of metabolites 
influence the amount of permissible changes in their levels during evolution. Consequently, 
metabolites that are more strongly constrained by the requirement for proper cellular 
function, i.e., subject to stronger functional constraints, should be more evolutionarily 
conserved in their levels. This is analogous to the well- established phenomenon that 
proteins evolving under stronger functional constraints are more conserved in their 
sequences (13, 14). Furthermore, just as sequence conservation informs on deleterious 
genetic variants (15, 16), conservation of metabolite levels should inform on the health 
impact of metabolite changes.

To test this hypothesis and to gain mechanistic insights into metabolome conservation, 
we combined phylogenetic analysis of metabolomics data with systems biology modeling. 
We primarily focused on mammals due to their relevance for human health and the availability 
of comprehensive multispecies metabolomics data covering a broad phylogenetic range. 
Specifically, a previous study quantified the relative levels of ~150 metabolites in four major 
organs of 26 mammalian species, spanning an evolutionary period of ~200 My (7). Our 
study revealed that the extent of conservation of individual metabolite levels is largely uniform 
across mammalian lineages, but varies extensively across metabolites. Such variation in con-
servation results from the differing amounts of functional constraints across metabolites, and 
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is primarily determined by metabolite abundance (i.e., absolute 
concentration), as evidenced by an independent dataset on absolute 
metabolite levels in mice (17). Systems modeling revealed that highly 
abundant metabolites are more closely correlated with key fluxes  
in the metabolic network, explaining their strong conservation. 
Remarkably, evolutionary conservation is predictive of the disease-  
involvements of metabolites, confirming that high conservation 
implies large fitness impacts in human. Finally, we demonstrated 
that metabolome evolution is governed by similar rules in the dis-
tantly related Drosophila genus. Overall, our work offers a universal 
conceptual framework of metabolome conservation that informs on 
the disease association of metabolites.

Results

Extensive Variation in Evolutionary Conservation of Metabolite 
Levels. To systematically investigate the evolutionary conservation of 
metabolite levels, we first analyzed a published dataset of mammalian 
metabolomes within a phylogenetic framework. The dataset contains 
the relative levels of 139 nonlipid metabolites in four organs (brain, 
kidney, heart, and liver) across 26 mammalian species, representing 
nine taxonomical orders (7) (Fig. 1A). The dataset covers a wide range 
of central metabolic pathways, including amino acid, carbohydrate, 
energy, and cofactor metabolism, and represents the most quanti-
tative and phylogenetically diverse multispecies comparison of meta-
bolomes to date. Therefore, it is particularly well- suited to interrogate 
the general principles of metabolome evolution.

The magnitude of metabolite- level fold- change differences among 
the 26 species varies widely across metabolites in all studied organs 
(SI Appendix, Fig. S1). For example, in liver, cytidine level varies up 
to 529- fold among species, while malate shows highly similar levels 
in all species, with less than 2.3- fold differences (Fig. 1A). This pat-
tern suggests extensive variation in the evolutionary conservation 
of metabolite levels among different metabolites. To more rigorously 
estimate the degree of evolutionary conservation, while also account-
ing for species phylogeny, we introduce a score that captures the 
extent of conservation of metabolite levels along the phylogeny for 
each metabolite and for each organ (Methods, Dataset S1A). This 
metabolite conservation score (MCS) is based on the widely used 
Brownian motion (BM) model of evolution, which provides a sim-
ple and informative measure of evolutionary rate for quantitative 
traits (18). We define MCS as the inverse of the rate of evolutionary 
change in metabolite level (Methods). Importantly, MCS requires 
information only on the relative levels of metabolites across species 
and is therefore directly comparable among metabolites despite lack 
of multispecies data on absolute concentrations. We note that sim-
ilar phylogenetic inference methods have been widely adopted to 
study gene expression evolution (19, 20).

MCS displays extensive variation across metabolites in all four 
organs, spanning 560- fold to 970- fold ranges (Fig. 1B). Importantly, 
variation in MCS is not caused by technical artifacts, as within- species 
variation and measurement noise explain less than ~7% of total 
variance in MCS (SI Appendix, Fig. S2, Methods) and using an evo-
lutionary model that explicitly incorporates such variation results 
in highly similar MCS values (SI Appendix, Fig. S3 and Dataset S1A, 
Methods). Phylogenetic comparisons of metabolomes might be con-
founded by dietary and environmental differences between species 
(6). To address this issue, we additionally analyzed a metabolome 
dataset of fibroblasts isolated from 16 mammals and cultured under 
identical in vitro conditions (21). Despite large differences between 
cell types and study conditions, the MCS values calculated from 
the in vitro fibroblast data show highly significant correlations with 
those based on the in vivo assessment of the four organs (SI Appendix, 
Fig. S4 and Dataset S1A). Furthermore, MCS extensively varies 

among different metabolites (up to 290- fold) in the fibroblast data-
set as well. Thus, large differences in the conservation of individual 
metabolite concentrations hold in an independent dataset that is 
not confounded by environmental differences. This, together with 
previous observations in primates (6), suggests that environmental 
differences do not substantially confound phylogenetic comparisons 
of tissue metabolomes.

Conservation of a metabolite might vary across the phylogeny 
due to lineage- specific shifts in selective pressure (i.e., adaptive 
evolution). However, such heterogeneities are unlikely to con-
found our inferences. First, in each organ, only a small fraction 
(7 to 29%) of metabolite levels show lineage- specific shifts (7), 
and MCS is robust to such effects (SI Appendix, Fig. S5, see 
Methods). Second, we show that the rate of evolutionary change 
of metabolite levels is largely homogenous across the phylogenetic 
tree. To assess the variability of the rate of evolutionary change 
between clades, we calculated separate MCS values on two inde-
pendent clades of the tree: rodents, rabbit and primates versus all 
other placental mammals (Dataset S1A). These two clade- specific 
MCSs strongly correlate with each other in all organs (see Fig. 1C 
for liver and SI Appendix, Fig. S6 for other organs), indicating that 
metabolites that are conserved in a particular clade also tend to 
be conserved in the rest of mammals.

Together, these results indicate that the evolution of individual 
metabolite levels can be characterized by a simple conservation 
score, which is largely invariant across mammalian clades, but 
varies extensively across metabolites.

Abundance and Essentiality Are Important Determinants of 
Evolutionary Conservation. By analogy to the neutral theory of 
sequence evolution (22), we hypothesize that conserved metabolites 
are subject to stronger functional constraints against concentration 
changes. If so, MCS should largely be determined by the functional 
role and biochemical properties of metabolites. To test this, we 
compiled 17 features capturing the biological and chemical properties 
of metabolites, including pathway membership (Dataset S1B), the 
number of network connections (network degree), absolute metabolite 
concentration (abundance) in mice (17), chemical class, toxicity, and 
various physicochemical properties (Fig. 2A and SI Appendix, Table S1 
and Dataset S1A, see Methods). We also included “essentiality,” a 
feature describing whether a metabolite participates in a reaction 
catalyzed by an essential enzyme, as determined by gene deletions 
in mice (23).

We found several metabolite features that are statistically sig-
nificantly associated with MCS when analyzed individually 
(Fig. 2A and SI Appendix, Table S1, Methods). As metabolite 
features might correlate with each other, we next carried out 
multivariate regression to identify independent predictors of 
MCS by jointly analysing the four organs (Methods). We found 
that a simple model with three dominant predictors explains 
~31% of variation in MCS across metabolites (Fig. 2B and 
SI Appendix, Table S3). This is a remarkably high figure when 
considering that we estimate the upper limit of the predictability 
of MCS at 49%, based on its reproducibility between two inde-
pendent clades (Fig. 1C and SI Appendix, Table S2). Notably, 
the portion of variance explained in metabolite conservation is 
comparable to the explained evolutionary rate variation in pro-
tein sequences (~40%) (24).

Three general metabolite properties have significant independent 
effects on MCS in all organs: abundance, molecular weight, and 
involvement in essential reactions (Fig. 2B and SI Appendix, Table S4). 
Specifically, metabolites that are i) highly abundant in the cell, ii) 
have a small molecular size or iii) participate in reactions encoded D
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by essential genes tend to be more conserved (Fig. 2 C and D). The 
latter finding is consistent with the intuitive expectation that pertur-
bations in metabolites connected with essential enzymes are espe-
cially harmful, and are therefore subject to stronger stabilizing 
selection.

Abundance is the strongest determinant of conservation in all 
organs (Fig. 2B and SI Appendix, Table S4). Metabolites vastly 
differ in their absolute concentrations, spanning over six orders of 
magnitude (10). We revealed that higher abundance of a  
metabolite is associated with a higher conservation score, with a 
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Fig. 1. Metabolites differ widely in their conservation score during mammalian evolution. (A) Phylogeny of 26 mammals and heatmap illustrating how metabolite 
levels in liver vary among species (log2 fold- change compared to mouse), exemplified by two metabolites: Malate shows highly similar levels in all species, 
while cytidine is highly variable. (B) Distributions of MCSs in each organ, as inferred from all 26 species (logarithmic scale). The vertical dashed lines show the 
MCSs of the two example metabolites from panel A (cytidine–blue, malate–yellow). (C) Conservation scores (liver) calculated for two independent clades of the 
tree show a strong correlation (Pearson’s r = 0.67, P = 1.1e−18, N = 132). Line depicts the fitted linear regression. Similar results are obtained for other organs 
(SI Appendix, Fig. S6). The tree on the left depicts the two independent clades of mammals for which conservation scores were inferred, with the names of the 
constituents’ taxonomical orders.
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continuous trend across the entire range of abundance (Fig. 2D 
and SI Appendix, Fig. S7). We emphasize that abundance data 
come from an independent study that quantified absolute metab-
olite concentrations for several matching organs in mice (17). 
Low- abundance metabolites are typically measured with larger 
noise, potentially underestimating their conservation scores. 
However, such a bias is unlikely to confound our results because 
the positive correlation between abundance and MCS remains 
highly similar when explicitly accounting for measurement vari-
ability in the conservation score calculations (SI Appendix, Table S5 
versus SI Appendix, Fig. S7, Methods). Furthermore, the conclu-
sion also holds when inferring MCS from the in vitro fibroblast 
dataset and correlating it with absolute metabolite concentrations 
measured in mouse cell culture (10), suggesting that it is not an 
artifact of comparing species with different diets (SI Appendix, 
Fig. S8).

Conservation is largely independent of the chemical class, phys-
icochemical properties, toxicity, pathway membership, network 
position, and interaction degree of metabolites in the multivariate 
model (SI Appendix, Table S4). For instance, while metabolites 
participating in many reactions or serving as allosteric activators 
of enzymes tend to be conserved, these relationships disappear 
when accounting for other metabolite properties (SI Appendix, 
Table S4). Thus, contrary to intuitive expectations, metabolites 
interacting with multiple enzymes are not more strongly con-
strained. Furthermore, the toxic effects of highly increased metab-
olite levels, as assessed by toxicity in mice (25), do not appear to 
constrain metabolome evolution.

Together, these findings demonstrate that evolutionary con-
servation of metabolite levels is well predictable based on a hand-
ful of metabolite properties, with abundance being the primary 
determinant.
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Fig. 2. Determinants of MCS. (A) Barplot showing the percentage of variance in conservation score explained by each metabolite feature individually (i.e., 
univariate models). Only features with a significant effect are shown (false discovery rate adjusted p- value < 0.01, Methods). (B) Barplot showing the percentage 
of variance in conservation score explained by multivariate regression modeling. Bars indicate the percentage of variance explained by the full model, as well 
as the independent contribution of each feature found to be significant in the model (P < 0.05). (C) Metabolites participating in reactions encoded by essential 
genes show higher conservation scores than the rest of metabolites (two- sided Wilcoxon tests, brain: P = 0.0013; heart: P = 0.019; kidney P = 0.0049; liver  
P = 0.0022). Boxplots show the median, first and third quartiles, with the whiskers showing the values within a 1.5 interquartile range distance from the first 
and third quartiles. (D) Metabolites with high absolute concentration (abundance) show higher conservation scores (kidney: Spearman’s correlation rho = 0.53,  
P = 1.1e−06, N = 76; for other organs see SI Appendix, Fig. S7). Line indicates LOESS regression, with their 95% CI indicated in blue.
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Organ- Specific Metabolite Conservation Reflects Differential 
Functional Constraints. We next sought to investigate the 
differences in individual MCSs between different organs. We 
hypothesize that such shifts in conservation arise from organ- 
specific biological functions.

In general, MCS correlates well among the four organs, indi-
cating similar amounts of metabolite- specific functional con-
straints across organs (Fig. 3A). This is consistent with our finding 
that a handful of metabolite properties universally determine 
conservation in all four organs (Fig. 2B). Nevertheless, some 
metabolites are much more conserved in one organ than in the 
others (SI Appendix, Table S6). Literature data suggest that such 
differences partly reflect organ- specific metabolite functions 
(Fig. 3B). For example, both gamma- aminobutyrate and gluta-
mate show the strongest conservation in the brain, where they 
serve as the principal inhibitory and excitatory neurotransmitters, 
respectively (26). Similarly, the osmolytes betaine and myo- inositol 
are especially conserved in the kidney and such molecules have 
key roles in protecting renal medullary cells from high NaCl and 
urea levels (27).

Several metabolites display elevated levels in specific organs, 
independent of the species (7). Given that abundant metabolites 
tend to show enhanced conservation within organs (Fig. 2D), 
we hypothesize that a particular metabolite should be more con-
served in organs where it is more abundant. Indeed, several 
metabolites displaying organ- specific conservation also have 
higher levels in those organs where they are more conserved 
(Fig. 3B). As a systematic test, we examined the relationship 
between the relative differences (fold- change) of metabolite levels 
and conservation scores among different organs (Fig. 3C). As 
expected, between- organ differences in metabolite levels and 
between- organ conservation score differences display a significant 

positive correlation (Fig. 3C). Note that since the total amount 
of evolutionary changes in the metabolome varies by organ (7), 
we compared the conservation of individual metabolites across 
organs while accounting for this metabolome- wide effect 
(Methods).

Together, these results indicate that metabolites vary in their 
conservation due to differing amounts of functional constraints, 
partly reflecting organ- specific metabolite functions, and highlight 
the key influence of abundance on metabolite conservation.

Systems Modeling Illuminates the Mechanism of Functional 
Constraint. Why are the metabolites that are abundant or 
involved in essential reactions highly conserved? Metabolite 
concentrations are principal determinants of reaction rates (fluxes) 
in the network (3). As metabolic fluxes obey optimality principles 
(28), we propose that selection to maintain key metabolic fluxes 
at optimal values constrains the evolution of metabolite levels, 
and may explain the higher conservation of metabolites that 
are abundant or involved in essential reactions. To test this, we 
simulated evolution in a physiologically relevant mathematical 
model of central metabolism. We employed a kinetic model 
of the core metabolism of human erythrocytes, which includes 
glycolysis, the 2,3- bisphosphoglycerate shunt and the pentose- 
phosphate cycle, with 40 internal metabolites (29). The model 
allowed us to simulate the effects of changes in enzyme kinetic 
parameters (i.e., mutations) on steady- state fluxes and metabolite 
concentrations (Methods). Assuming that the nonmutated model 
represents a fitness maximum resulting from past evolutionary 
optimization of erythrocyte metabolism, we approximated the 
deleterious effect of mutations by calculating deviations in four 
specific fluxes, referred to as key fluxes, that are important for 
proper erythrocyte functioning (29) (Methods). Then, we simulated 

1. Handler, J.S., and Kwon, H.M. (2001). Cell and Molecular Biology of Organic Osmolyte Accumulation in Hypertonic Renal Cells. NEF 87, 106–110.
https://doi.org/10.1159/000045897.
2. Lango, R., Smolenski, R.T., Narkiewicz, M., Suchorzewska, J., and Lysiak-Szydlowska, W. (2001). Influence of l-carnitine and its derivatives on myocardial metabolism
and function in ischemic heart disease and during cardiopulmonary bypass. Cardiovascular Research 51, 21–29. https://doi.org/10.1016/S0008-6363(01)00313-3.
3. Wyss, M., and Kaddurah-Daouk, R. (2000). Creatine and Creatinine Metabolism. Physiological Reviews 80, 1107–1213. https://doi.org/10.1152/physrev.2000.80.3.1107.
4. Andres, R.H., Ducray, A.D., Schlattner, U., Wallimann, T., and Widmer, H.R. (2008). Functions and effects of creatine in the central nervous system. Brain Research
Bulletin 76, 329–343. https://doi.org/10.1016/j.brainresbull.2008.02.035.
5. Krnjević, K. (1970). Glutamate and γ-Aminobutyric Acid in Brain. Nature 228, 119–124. https://doi.org/10.1038/228119a0.
6. Verbalis, J.G. (2010). Brain volume regulation in response to changes in osmolality. Neuroscience 168, 862–870. https://doi.org/10.1016/j.neuroscience.2010.03.042.
7. Schaffer, S.W., Ju Jong, C., KC, R., and Azuma, J. (2010). Physiological roles of taurine in heart and muscle. Journal of Biomedical Science 17, S2.
https://doi.org/10.1186/1423-0127-17-S1-S2.

B

A C

Fig. 3. Organ- specific differences in MCS. (A) Simi-
larity of conservation scores of metabolites across 
the four organs as measured by Pearson’s correlation 
coefficients. All organ comparisons are highly signif-
icant (P < 1.1e−10, N = 113 to 122). (B) Examples of 
shifts in metabolite conservation among organs that 
likely reflect organ- specific functions. Table shows 
organ- specific conservation and abundance patterns 
of selected metabolites (i.e., indicating the organs 
in which a specific metabolite is more conserved 
or abundant relative to the cross- organ average) 
and a description of their organ- specific functions.  
(C) Between- organ differences in metabolite levels 
show a positive correlation with between- organ 
conservation score differences (Spearman’s rho  = 
0.27, P < 10−4 from permutation test). For each 
metabolite, metabolite- level difference (fold- change) 
and conservation score difference (fold- change) 
were calculated for all six possible organ pairs. Each 
dot represents the comparison of two organs for a 
particular metabolite. Line indicates LOESS regres-
sion. Statistical significance was assessed by permu-
tation (Methods).D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 S

Z
E

G
E

D
I 

B
IO

L
O

G
IA

I 
K

U
T

A
T

O
K

O
Z

PO
N

T
 o

n 
Se

pt
em

be
r 

22
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

16
0.

11
4.

61
.2

52
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2302147120#supplementary-materials


6 of 12   https://doi.org/10.1073/pnas.2302147120 pnas.org

evolution with and without stabilizing selection to maintain the 
levels of these key fluxes, the latter corresponding to evolution 
under pure genetic drift, using a Markov chain Monte Carlo 
(MCMC) approach (30) (SI Appendix, Fig. S9, Methods). In the 
pure genetic drift scenario, we accepted all mutations that led to a 
steady- state solution, while in the stabilizing selection scenario we 
only accepted those mutations that had only a very minor effect 
on the key fluxes. Specifically, we applied selection to maintain key 
fluxes around their wild- type values by removing those mutations 
that altered these fluxes beyond a predefined threshold (Methods). 
As a consequence, the metabolome differences accumulated over 
many iterations are neutral because the key fluxes in the network 
still take near wild- type values. Thus, these scenarios represent 
nonadaptive–neutral–modes of evolution.

As expected, in silico MCSs are much higher in the presence 
of stabilizing selection (SI Appendix, Fig. S10), demonstrating that 
many metabolome- altering mutations are harmful. Furthermore, 
between- metabolite differences in MCS increase significantly 
under stabilizing selection (SI Appendix, Fig. S10), indicating that 
the requirement to maintain key fluxes imposes varying levels of 
constraint across different metabolites. Remarkably, metabolite 
abundance and involvement in essential reactions are determinants 
of in silico MCS. In particular, we found a significant positive 
correlation between a metabolite’s abundance in the wild- type 
(i.e., nonmutated) model and its conservation score in the simu-
lations (Fig. 4A). Similarly, metabolites involved in reactions that 
are deemed essential in silico (i.e., reactions that have a large 
impact on key fluxes when inactivated) show high conservation 
scores in the simulations (Fig. 4B, Methods). Importantly, these 
associations hold only in the presence of stabilizing selection, indi-
cating that they are not caused by mutational variability (Fig. 4 A 
and B). Furthermore, a multivariate analysis indicates that metab-
olite abundance and reaction essentiality are independently asso-
ciated with in silico MCS (SI Appendix, Table S7).

We next hypothesized that mutations altering abundant metab-
olites are more likely to perturb key fluxes and are therefore selected 
against. To test this, we defined a measure of fitness coupling for 
each metabolite by simulating the impact of single mutations and 
calculating how strongly changes in the levels of each metabolite 
are correlated with changes in key fluxes (Methods). Consistent 
with the hypothesis, abundant metabolites are indeed more strongly 
coupled to fitness (Fig. 4C). Furthermore, the extent of fitness 
coupling of a metabolite correlates with its conservation score 
inferred under stabilizing selection, but not under pure genetic 
drift (Fig. 4D). In addition, the four key fluxes assumed to be 
important for fitness (29) lead to a significantly stronger correlation 
between metabolite abundance and fitness coupling than randomly 
defined key fluxes (SI Appendix, Fig. S11A; Methods). Thus, the 
strong coupling of highly abundant metabolites to fitness is not a 
by- product of the modeling procedure, but specifically holds for a 
fitness definition that captures the biochemical functions of the 
erythrocyte metabolic network (29). Further analysis confirmed 
that the strong conservation of abundant metabolites is mediated 
by fitness coupling (SI Appendix, Fig. S11B).

Finally, the above results also hold for a different model of 
erythrocytes and a model of human hepatic glucose metabolism 
(SI Appendix, Appendix S1). Overall, these findings indicate that 
metabolites that are highly abundant or participate in essential 
reactions are more conserved in their levels because they are more 
crucial to maintain key metabolic fluxes. Importantly, as beneficial 
mutations are not included in the simulations, all accumulated 
metabolome differences are neutral. Thus, we conclude that a 
simple neutral model of metabolome evolution is sufficient to 
explain major empirical patterns of metabolome conservation.

Evolutionary Conservation Informs on Disease Association. 
Next, we asked whether the conservation of a metabolite informs 
on its association with diseases. We first focused on human inborn 
errors of metabolism (IEMs), which are genetic disorders caused 
by disruption of specific metabolic pathways (31). The early 
onset and high severity of these disorders suggest that metabolites 
associated with IEMs might be highly constrained in mammals. 
We compiled metabolites known to be involved in the disease 
etiology or the diagnosis of IEMs routinely measured in newborn 
screening (Methods, SI Appendix, Table S8). We found that IEM- 
associated metabolites show significantly higher conservation 
scores than the rest of metabolites in all four organs (Fig. 5A and 
SI  Appendix, Fig.  S12). The strong evolutionary conservation 
of IEM- associated metabolites is not explained by abundance, 
a particular class of conserved metabolites or specific metabolic 
pathways (SI Appendix, Table S9), suggesting that it reflects their 
importance for normal metabolic functioning.

To test whether this finding applies to other diseases beyond 
IEM, we used MarkerDB, a comprehensive database of clinical 
biomarkers (32) and focused on 11 broad disease conditions with 
sufficient numbers of metabolites (SI Appendix, Table S10 and 
Dataset S1C). As expected, metabolites associated with metabolic 
disorders, including many IEMs, tend to be highly conserved 
(Fig. 5B). More remarkably, we identified two additional broad 
disease conditions—cancers and cardiovascular diseases—that are 
independently associated with highly conserved metabolites (Fig. 5 
C and D and SI Appendix, Table S10, Methods). For instance, cho-
line, a precursor in lipid metabolism, is highly conserved in all four 
organs, but is not associated with any IEMs (SI Appendix, Fig. S13). 
Notably, abnormal choline metabolism is a general hallmark of 
cancers, and both phosphocholine and total choline- containing 
metabolite levels are used to detect malignant tumors (33). 
Furthermore, the oncometabolite succinate (34) also shows marked 
conservation in several organs (SI Appendix, Fig. S13).

Biomarkers of metabolic disorders show the strongest signal 
of conservation (Fig. 5B), suggesting that evolutionary conser-
vation could potentially be leveraged to identify such biomarkers 
independently of previous clinical knowledge. As a preliminary 
test, we computed an aggregate score of conservation across the 
four organs (Methods). Encouragingly, this conservation score 
alone separates biomarkers of metabolic disorders from the rest 
of metabolites with reasonable accuracy (area under the ROC 
curve = 0.75, Fig. 5E).

Finally, we hypothesized that metabolites involved in multiple 
diseases are more likely to affect organismal fitness when altered 
and hence are under stronger stabilizing selection. Indeed, the 
conservation score shows a positive correlation with the number 
of specific diseases involving a particular metabolite (SI Appendix, 
Fig. S14; effect is independent of abundance and essentiality, 
SI Appendix, Table S11).

Metabolome Conservation in the Drosophila Genus. To test the 
generality of our main findings, we also analyzed metabolome 
evolution in the distantly related genus Drosophila, across a 50- My 
phylogeny (SI Appendix, Fig. S15A). We calculated metabolite- 
specific conservation scores using data on 92 nonlipid metabolites 
measured in whole adults of 11 Drosophila species under the same 
controlled environment (35) (Dataset S1D, Methods). Just as in 
mammals, MCS varies extensively across different metabolites, 
spanning over three orders of magnitude (SI Appendix, Fig. S15B). 
Remarkably, using an independent dataset of absolute metabolite 
concentrations in Drosophila melanogaster (36) (Dataset S1D), we 
found a significant positive correlation between abundance and the 
conservation score, with an effect size similar to that in mammals D
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(SI  Appendix, Fig.  S15C). Furthermore, metabolites involved 
in human IEMs tend be highly conserved in Drosophila as well 
(SI Appendix, Fig. S15D). We conclude that metabolome evolution 
is governed by similar principles in two distant animal phyla.

Discussion

In this work, we combine phylogenetic analysis of metabolome 
data with systems biology modeling to seek general principles 
governing the evolution of the levels of tissue metabolites in ani-
mals. By introducing a measure of evolutionary conservation of 
individual metabolite levels, we showed that the extent of conser-
vation of a given metabolite is largely invariant between closely 

related clades, but varies extensively across metabolites. Such var-
iation in conservation is predictable based on a few metabolite 
properties and is consistent with a simple model where natural 
selection preserves flux through key metabolic reactions while 
permitting the accumulation of selectively neutral changes in 
enzyme activities. We further demonstrated that this general con-
ceptual framework of metabolome conservation informs on dis-
ease associations and biomarker status of metabolites.

Metabolite abundance emerged as the main determinant of 
conservation, with highly abundant metabolites displaying the 
highest level of conservation, as evidenced by three independent 
datasets of absolute metabolite concentrations in mice (Fig. 2), 
D. melanogaster (SI Appendix, Fig. S15) and in vitro cell culture 
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Fig. 4. Functional constraints in an in silico model of metabolic evolution. (A) Metabolites with a higher abundance in the wild- type model show higher conservation 
scores in the presence of stabilizing selection (blue dots, Spearman rho = 0.55, P = 6.63e−4, N = 35), but not in the absence of selection (orange dots, Spearman 
rho = 0.30, P = 0.078, N = 35). Each dot and error bar represents the mean and SD of the MCS, calculated for a particular metabolite based on 10 simulations. 
(B) Metabolites involved in essential reactions (i.e., their products or substrates) have higher conservation scores than those involved in nonessential reactions 
in the presence of stabilizing selection (blue), but not in the absence of selection (orange), as indicated by two- sided Wilcoxon tests (P = 7.82e−3 and P = 0.246, 
respectively). Each dot represents the mean conservation score for a particular metabolite based on 10 simulations. (C) Wild- type abundance of metabolites 
correlates with their extent of fitness coupling (Spearman rho = 0.49, P = 3.14e−3, N = 35). (D) MCSs correlate with the extent of fitness coupling under stabilizing 
selection (Spearman rho = 0.55, P = 7.78e−4, N = 35), but not in the absence of it (Spearman rho = 0.06, P = 0.724, N = 35). The lines in panels A, C, and D represent 
LOESS regressions, with their 95% CIs shown. The boxplots in panel B show the median, first, and third quartiles, with the whiskers showing the values within 
a 1.5 interquartile range distance from the first and third quartiles.
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(SI Appendix, Fig. S8). Importantly, any particular metabolite 
displays stronger conservation in organs where it is more abun-
dant, demonstrating that abundance per se affects conservation. 
Systems modeling further showed that abundant metabolites are 
subject to stronger functional constraints (Fig. 4). Why should it 
be so? First, the levels of highly abundant metabolites might be 
more rate- limiting for key fluxes than those of low- abundance 
metabolites, implying a causal effect of metabolite level on fitness. 
Specifically, it might be the case that metabolic systems have 
evolved toward optimal states where the concentrations of abun-
dant metabolites have lower margins of safety around their optimal 
values, analogous to the “expression cost” hypothesis to explain 
the elevated sequence conservation of highly expressed proteins 
(14, 37). This argument assumes that the optimal level of a metab-
olite reflects a trade- off between the benefits (e.g., enzymatic rate) 
and cellular costs of metabolite production. Under such optimal 
conditions, the benefit and cost of having an extra molecule should 
be equal and identical across metabolites (i.e., have the same mar-
ginal values). As a consequence, a mutation that reduces the level 
of a metabolite by a given fraction would cause a larger loss of 
benefit for a highly abundant metabolite than for a lowly abundant 
one. This would be analogous to the observation that halving gene 
dosage is generally more deleterious for highly expressed genes 
(37). Alternatively, abundant metabolites might not be particularly 
rate- limiting, but might be subject to stronger indirect selection 
due to the harmful side effects of mutations affecting their levels 
(38). We speculate that there might be less ways to alter abundant 
metabolites without also perturbing key fluxes, resulting in 

stronger indirect selection on these molecules. Finally, regardless 
of their specific functions, abundant metabolites incur broad cel-
lular costs due to limitations on osmotic pressure (12) and total 
dry mass (11), potentially constraining their evolution. Clearly, 
further studies are needed to test these scenarios.

Our work has profound implications for the neutral theory of 
molecular evolution, which posits that most within-  and between-  
species variations at the molecular level are selectively neutral rather 
than adaptive (22). While the theory explains many aspects of 
sequence and gene expression evolution (20, 22, 39), it has been 
unclear whether it applies to variations at the metabolome level, 
which is more closely related to phenotypes (40). Our results are 
broadly consistent with a neutral model of metabolome evolution. 
First, MCSs are largely constant across different mammalian clades, 
suggesting that similar evolutionary forces shape the metabolome 
despite extensive phenotypic divergence. Second, conservation is 
determined by the functional properties of metabolites, namely 
abundance, involvement in essential reactions and association with 
human diseases. As these metabolite properties likely reflect the level 
of functional constraints, rather than the amount of adaptive evolu-
tion, they support the neutral model. Notably, analogous gene  
properties—expression level, essentiality and disease association 
(13)—determine protein sequence conservation, revealing a striking 
parallel between the selective constraints driving metabolome and 
protein evolution. Finally, metabolic modeling demonstrated that 
stabilizing selection on key fluxes is sufficient to explain the strong 
conservation of abundant and essential metabolites without the need 
to invoke adaptation to changing environments. Specifically, the 
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Fig. 5. Levels of disease- associated 
metabolites are highly conserved. (A) 
Metabolites involved in IEM show 
significantly higher conservation 
scores than the rest of metabolites 
in the kidney (two- sided Wilcoxon 
rank sum test). For other organs, 
see SI  Appendix, Fig.  S12. (B–D) 
Metabolites associated with three 
broad disease conditions (metabolic 
disorders, cancer, and cardiovascular 
disorders) show a significantly higher 
level of conservation than the rest 
of metabolites in kidney (P- values 
from the Wilcoxon rank sum tests 
are shown in figure). Boxplots show 
the median, first and third quartiles, 
with the whiskers indicating the 
values within a 1.5 interquartile ran-
ge distance from the first and third 
quartiles. (E) ROC for prediction of 
biomarkers of metabolic disorders 
based on the median conservation 
score across organs.
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model simulations included only neutral and deleterious mutations, 
but not beneficial ones, yet recapitulated the main empirical obser-
vations. Together, these results suggest that a substantial fraction of 
metabolome differences among mammals, as well as among 
Drosophila species, are neutral and are permitted rather than favored 
by selection. It remains to be tested whether further predictions of 
the neutral model are fulfilled, and whether they also hold for other 
major taxa. Nevertheless, our simulation study represents an impor-
tant step toward a theoretical framework of metabolic evolution 
driven by nonadaptive processes.

The evolutionary history of gene sequences and gene expression 
levels informs on their disease involvement (16, 20). Our work 
expands this notion to include an additional layer of molecular 
phenotypes by showing that metabolome conservation is predic-
tive of the disease associations of metabolites. Remarkably, bio-
markers can be distinguished from nonbiomarker metabolites 
simply based on the comparison of metabolomes across species, 
without utilizing any prior clinical knowledge. As expected, 
metabolite conservation appears to be most informative for met-
abolic diseases that disrupt basic cellular functions and show an 
early onset, such as inborn errors of metabolism. More intrigu-
ingly, metabolites associated with tumorigenesis are also well con-
served, suggesting that cancer avoidance might be an important 
selective force in wild mammals (41).

We emphasize that while some metabolite biomarkers are caus-
ally involved in disease development, the exact nature of many 
metabolite–disease associations remains unclear. In some cases, 
metabolite dysregulation could very well be a consequence of the 
disease itself, while in others it could precede any symptoms and 
even be an indicator of future disease onset. We note that elevated 
evolutionary conservation can result either from direct selection 
on a disease- causing metabolite or indirect (apparent) selection 
on a metabolite that correlates with disease states. Therefore, we 
expect that large alterations in the levels of metabolites that are 
otherwise subject to strict evolutionary constraints may indicate 
underlying health issues even if there is no causal relationship 
between the metabolite and the disease.

We anticipate that evolutionary metabolomics should have at 
least two possible applications to aid clinical diagnosis. First, it 
offers a strategy to identify metabolites whose dysregulation mat-
ters the most to human health and therefore could be involved in 
disease mechanisms or may be used as biomarkers. Given the 
plethora of assayed metabolites in metabolomic epidemiology 
studies (42), evolutionary conservation may help to prioritize 
them for biomarker identification and further investigations. 
Second, it might be possible to infer the range of permissible 
metabolite levels from cross- species data, and use this information 
to detect pathogenic alterations in individual metabolome profiles 
(20). As clinical diagnoses typically rely on the measurement of 
plasma metabolite levels, it is an important open issue whether 
the concept of evolutionary conservation could be applied to 
blood metabolomes, which might be more strongly influenced by 
environmental effects than tissue metabolomes.

In sum, our findings illustrate how evolutionary comparisons 
of metabolite levels on a network scale can be leveraged to study 
the functional constraints and pathogenic alterations of cellular 
metabolism.

Methods

Calculating MCSs. To study metabolome conservation in mammals, we obtained 
metabolomic measurements of 139 nonlipid metabolites from a multispecies 
study (7). The dataset contains relative metabolite levels across 26 mammalian 
species in four organs (brain, heart, kidney, and liver) and is based on targeted 

metabolomics measurements involving three distinct liquid chromatography–
mass spectrometry (LC- MS) methods. Note that the measured samples were 
homogenates of freshly frozen tissues of killed animals, matched by age (i.e., 
young adults) and sex (7). We calculated the mean of the normalized (log10- 
transformed) relative metabolite level across all biological replicates so that 
each metabolite in each species and organ is represented by a single relative 
concentration value. We then used these values as continuous molecular traits 
for which conservation scores are computed.

To calculate the MCS of individual metabolites, we first fit a simple BM model 
of trait evolution on the relative levels of each metabolite in each organ across 
the phylogeny, using the fitContinuous function in the Geiger R package (43).

The BM model represents evolution of a continuous trait through time as 
a random walk process in which, during any elapsed time Δt, the value of the 
trait ( x ) changes by a random number drawn from a normal distribution with a 
mean of 0 and a variance of σ2Δt. As such, at any timepoint t1, the level of the 
trait can be estimated as:

 [1]x(t1) ∼ 
(
x
(
t0
)
, σ2Δt

)
.

This BM process can then be applied to a phylogenetic tree, as described by 
Felsentein (44). In short, given a known phylogeny and known trait values at the tips 
of the tree, we can use Felsenstein’s method to estimate the value of σ2 that gives rise 
to the observed trait values in the timeframe supplied by the branch lengths of the 
phylogenetic tree, while also accounting for the phylogenetic relationships between 
the species. The evolutionary rate parameter of the BM model, σ2, measures the rate 
of trait diversification along the phylogeny and is in the units of trait variance increase 
per unit evolutionary time (as approximated by phylogenetic distance).

It has been argued that the rate parameter of a simple BM model is a useful 
measure of the “effective rate” of trait evolution, even if more complex evolu-
tionary models fit a given trait better (18). Next, by taking the inverse of the 
evolutionary rate parameter, we define a measure of metabolite conservation, 
where metabolites that diverge more slowly in their levels over time are repre-
sented by higher conservation scores. Note that comparison of MCS scores across 
metabolites does not demand direct comparisons of concentrations between 
metabolites and hence no data on absolute concentrations are required.

Conservation scores were calculated in a similar fashion for relative metabolite 
levels measured in fibroblast cell cultures (21) and Drosophila species (35) as 
well. The phylogenetic trees used in these calculations were obtained from refs. 
21 and 35 and from http://www.timetree.org/ (45).

Variation of Conservation Scores among Different Metabolites versus 
Biological Replicate Measurements. To assess the impact of measurement 
noise and/or within- species variation on the inferred MCSs and compare it to among- 
metabolite variation, we made use of multiple biological replicate measurements. 
Specifically, we sampled randomly with replacement concentration values from two 
to four biological replicate measurements, depending on the species and the organ, 
and re- calculated MCSs 100 times (i.e., bootstrap procedure). For each organ, metabo-
lite/species pairs having only one replicate were removed from the analysis (89.1% of 
all organ—species–metabolite triplets have more than one replicate). For each organ, 
we then applied a one- way ANOVA test on the resulting MCS distributions to partition 
the amount of total variance in conservation scores into between- metabolites vari-
ance and error variance, the latter capturing variation between biological replicate 
measurements of the same metabolites.

Metabolite Features Associated with MCS. Seventeen distinct classes of 
metabolic features were collected in order to probe their relationship with MCS. 
Information on the regulatory roles of metabolites (enzyme activator, inhibitor, and 
cofactor function) was obtained from ref. 46 which was compiled from the BRENDA 
database (47). Information on the chemical properties of metabolites (chemical 
class, molecular weight, dissociation constants, water solubility, and hydrophobic-
ity) were collected from the HMDB and KEGG databases (48, 49). Metabolite toxicity 
information, in the form of mouse LD50 values (the concentration of the metabolite 
that is lethal to 50% of specimens, in mg/kg) was collected from the ChemIDPlus 
database (https://chem.nlm.nih.gov/chemidplus/). Pathway membership and broad 
position in the metabolic network (biosynthetic, degradation, and energy metabo-
lism) were collected from the KEGG and HumanCyc databases, respectively (48, 50). 
We note that pathway membership was used only for those metabolic pathways that D
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contained at least five metabolites for which we had conservation score calculated, 
yielding 27 pathways in total. Organ- specific absolute metabolic abundance meas-
urements were obtained for mouse from the Mouse Multiple tissue Metabolome 
DataBase (MMMDB) (17). Network degree (the number of reactions a metabolite 
participates in) was determined using a genome- scale reconstruction of the human 
metabolic network (51). Metabolites involved in metabolic reactions that are encoded 
by essential genes were identified using phenotypic data from mouse knockout lines. 
In short, we identified genes whose deletion caused either a lethal phenotype or 
infertility in the Mouse Genome Database (23). Next, we defined essential reactions 
as reactions where the majority (>50%) of the genes associated with the reaction in 
the human metabolic network are essential. A metabolite was considered part of the 
essential set if it participates in at least one essential reaction. For brevity, we refer 
to such metabolites as “essential” metabolites, even though metabolite essentiality 
cannot be directly measured.

To probe the relationships between MCS and individual metabolite features, 
we used linear regression modeling. For each individual feature, we fitted a linear 
model that accounts for both the effect of the given feature and the organ in which 
the conservation scores were estimated (i.e., organ membership). This allowed us 
to assess the general effect of each feature on evolutionary conservation across 
all four organs simultaneously, while accounting for organ- specific global dif-
ferences in conservation score. The percentage of variance in MCS explained 
by each feature (as shown in Fig. 2A and SI Appendix, Table. S1) was calculated 
by subtracting the R2 value of a model containing organ- membership as the 
only predictor variable from the R2 value of the model containing both organ- 
membership and the feature of interest as predictor variables. Each chemical 
class and KEGG pathway was evaluated separately.

To identify the main determinants of evolutionary conservation while controlling 
for potential covariations between metabolite features, we performed a multivar-
iate analysis as follows. We fitted an initial linear model that included all features 
and metabolic pathways that individually had a significant effect on conservation 
scores (nine metabolic features and seven specific metabolic pathways, as shown 
in SI Appendix, Table S4). Next, we used a stepwise feature selection (using the step 
function in R) to identify the most parsimonious linear model that contains the 
combination of features that provides the best fit based on the Akaike information 
criterion. To quantify the contribution of the individual metabolite features to the 
most parsimonious model (i.e., independent effect), we fitted simpler models by 
leaving out single features and calculating the decrease in the adjusted R2 value. 
The portion of variance in MCS explained by the combination of metabolite features 
was determined by subtracting the independent effect of organ membership from 
the adjusted R2 value of the most parsimonious multivariate model. Note that, 
in order to minimize the number of features in the multivariate model, we used 
chemical class as a single multilevel factor, instead of multiple binary features.

Between- Organ Differences in MCS. For all between- organ analyses, we only 
included metabolites that were measured in all four organs (110 metabolites of 
a total of 139). To compare the conservation of metabolites across organs, we first 
normalized the conservation scores as two of the four organs, brain and heart, are 
generally more strongly conserved than the others (i.e., show smaller amounts of 
total evolutionary divergence across the whole metabolome). Conservation scores 
were first normalized by log2 transformation and then centered on zero for each 
organ. Then, we calculated the organ- specific deviation in conservation for each 
metabolite by taking the normalized conservation score from one organ and sub-
tracting the mean normalized scores of the other three organs from it. High con-
servation deviation for a given organ indicates that the metabolite is more strongly 
conserved in that particular organ compared to other organs. For each organ, we 
identified the top 10% most strongly deviating metabolite (SI Appendix, Table S6).

To test whether between- organ differences in metabolite levels are generally 
associated with shifts in MCSs, we first calculated, for each metabolite, the dif-
ferences in the normalized conservation scores between all organ pairs. Next, 
between- organ differences in metabolite levels were determined by calculating 
the log2 fold change of metabolite levels between all organ pairs for each species 
and then taking the average of the species- specific fold change values. Thus, 
each metabolite is described by six conservation scores and six metabolite- level 
fold change values, corresponding to all six possible comparisons among the 
four organs. We then quantified the association between all metabolite- level 
fold change and conservation score fold change values across all metabolites 
using the Spearman’s rank correlation coefficient. Because the fold change values 

associated with a given metabolite are not independent from each other, we 
calculated the P- value of the correlation using a permutation test as follows. 
We randomly reassigned the organ memberships of MCSs and recalculated the 
Spearman’s correlation coefficient across 10,000 permutations, to test whether 
the observed correlation is significantly higher than expected by chance (i.e., 
one- sided test).

Evolutionary Simulations in a Mechanistic Model of Central Metabolism.
A kinetic model of the core metabolism of human erythrocytes. We used a pub-
licly available kinetic model of the human erythrocyte central metabolism, including 
glycolysis, the 2,3- bisphosphoglycerate shunt and the pentose- phosphate cycle (29). 
This model contains 40 variable metabolites, 38 kinetic reactions, and 166 kinetic 
parameters (http://jjj.biochem.sun.ac.za/models/holzhutter/). Four specific fluxes, 
referred to as key fluxes, are assumed to be important for the fitness: a) the formation 
of 2,3- bisphosphoglycerate (flux �9 ), which modulates oxygen affinity of hemoglobin, 
b) ATP (adenosine triphosphate) utilization (flux �16 ), which maintains Na/K gradients 
across plasma membrane, c) glutathione (GSH) oxidation (flux �21 ), which prevents 
oxidative damage in the cell, and d) the synthesis of phosphoribosyl- pyrophosphate 
(flux �26 ), required for the salvage of adenine nucleotides (29).
Calculating the fitness effect of mutations in the model. The kinetic model 
allowed us to simulate the effects of changes in enzyme kinetic parameters (i.e., 
mutations) on steady- state fluxes and metabolite levels. Mutations are approximated 
by independent random perturbations to the parameters of the 38 kinetic equations. 
To simulate a single mutational event, one kinetic parameter p is selected at random 
(uniformly among reactions) and its mutant value p′ is derived by multiplying it with 
a factor drawn from a log10- normal distribution of variance �mut

2 (52):

 
[2]p� → p × 10� , � ∼ 

(
0, �mut

2
)
.

The mutational variance �mut
2 is constant for all the kinetic parameters. The steady- 

state of each mutant model was computed using Copasi software (53).
The model's fitness is approximated by computing the distance z between 

the mutant and wild- type models, similarly to the minimization of metabolic 
adjustment (MOMA) approach (54). The distance z represents the deviation from 
the optimal steady- state in the Euclidean space of the relative values of the four 
key fluxes �9 , �16 , �21 , and �26,

 [3]z =
‖‖‖‖

v−v0
v0

‖‖‖‖2
,

with � =
(
�9, �16, �21, �26

)
 the key flux levels in the mutant model, �0 the wild- 

type key flux levels, and where the division by �0 is element- wise. Importantly, this 
definition assumes that the wild- type model represents a fitness maximum resulting 
from past evolutionary optimization of erythrocyte metabolism. Note that such an 
evolutionary optimization may reflect trade- offs between the maximization of key 
fluxes, and the minimization of enzymatic production costs and metabolite levels 
due to molecular crowding, osmotic pressure and other broad cellular costs (11, 12). 
In this model, any mutation in kinetic parameters is deleterious, as it increases the 
distance z . Moreover, we assume that in the vicinity of the wild- type model, the 
different kinetic parameters of the same enzyme can be mutated independently 
without strongly violating thermodynamic constraints, if mutation sizes are small 
enough (see parameter values in SI Appendix, Table S12).
Evolutionary simulations using a MCMC approach. To simulate evolution, we 
implemented a MCMC modeling algorithm (30). This approach is assumed to be 
efficient under the weak mutation- strong selection regime (55). During the simu-
lations, no mutation can improve wild- type fitness (i.e., there is no adaptive evolu-
tion). Deleterious mutations are deterministically removed by stabilizing selection 
below a predefined fitness threshold (see below) and neutral mutations can fix by 
genetic drift with a probability of 1/Ne, where Ne is the effective population size. For 
computational simplicity, we rescaled the simulation timescale by Ne, and hence 
all arising neutral mutations are allowed to fix with a probability of 1 (see below).

As illustrated in SI  Appendix, Fig.  S9, starting from the wild- type model 
(SI Appendix, Fig. S9A) and at each iteration t  of the MCMC algorithm:

1)  One kinetic parameter p is selected at random and mutated (Eq. 2; 
SI Appendix, Fig. S9B),

2)  The steady- state of the mutant model is computed (SI Appendix, Fig. S9C). If 
the mutant does not reach a steady- state, the iteration t  is recalculated (i.e., 
the mutation is discarded).D
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3)  The distance z between the mutant and the wild- type models is computed 
(Eq. 3). Stabilizing selection is simulated by applying a selection threshold 
� to the distance z . If z < 𝜔 the mutation is accepted. Else, the mutation is 
discarded (SI Appendix, Fig. S9D). Thus, no mutation can improve the non-
mutated model fitness.

4)  A new iteration t + 1  is computed (SI Appendix, Fig. S9E).

We ran 10 repetitions of T = 10,000 iterations in two different simulation 
experiments: i) Genetic drift simulations, where all the mutations are accepted 
( � = +∞ ), and (ii) Stabilizing selection simulations, where a selection thresh-
old � = 1 × 10−4 is applied on the distance z between mutated and nonmutated 
models, defining a range of selectively neutral mutations that are allowed to 
fix. For all the simulations, the mutation size was �mut = 1 × 10−2 . Simulation 
parameters are described in SI Appendix, Table S12.

The numerical framework (as a Python package), simulation results, and 
scripts for additional analyses are publicly available on GitHub (https://github.
com/pappb/Liska- et- al- Principles- of- metabolome- conservation).
In silico MCS. At the end of the evolutionary simulation, the evolutionary rate 
of each metabolite level is calculated based on a BM estimation model (18),

 
[4]ER

([
Xi
])

=
var

([
Xi
]
t
∕
[
Xi
]
0

)

T
,

with ER
([
Xi
])

 the evolution rate of the level [Xi ] of metabolite Xi , 
[
Xi
]
t
 being its 

level at iteration t  , 
[
Xi
]
0
 the level of the wild- type model, and T  the total number 

of iterations of the simulation. The conservation score of each metabolite is then 
calculated by taking the inverse of the evolution rate.
Calculating the fitness coupling of metabolites. We defined a fitness coupling 
measure for each metabolite by introducing many independent random sin-
gle mutations into the kinetic parameters of the model and by calculating the 
Spearman correlation coefficient between the relative change of metabolite levels 
and the relative change of the four key metabolic fluxes. To this aim, we performed 
N = 10,000 independent single mutations of the wild- type model, by selecting 
a single kinetic parameter at random uniformly among reactions, and mutating 
it in a log10- normal distribution of size �mut

2 = 1 × 10−2 . We measured each 
time the relative change of metabolite levels and key fluxes in response to muta-
tions. We then used this result to compute pairwise correlations between fluxes 
and metabolites. Specifically, for each steady- state flux � j and each steady- state 
metabolite level 

[
Xi
]
 across all mutations, the Spearman correlation was computed 

between the absolute value of relative changes, compared to the wild- type model.
The fitness coupling of a given metabolite Xi was then evaluated by computing 

the mean correlation between the metabolite and the four key fluxes �9 , �16 , 
�21 , and �26:

 [5]

coupling
(
Xi
)
=

1

4
×

∑

j∈{9,16,21,26}

cor

(
|||||

(
� j − � j,0

)

� j,0

|||||
,
||||
|

([
Xi
]
−
[
Xi
]
0

)

[
Xi
]
0

||||
|

)

,

where � j,0 is the wild- type value of � j , and 
[
Xi
]
0
 is the wild- type value of Xi.

Exploration of random combinations of key metabolic fluxes. We also used 
the methodology described above to compute the coupling of metabolites 
(Eq. 5) to 10,000 combinations of key fluxes drawn at random (from random 
1- uplets to 4- uplets). For each random combination, the fitness couplings of 
metabolites were computed, as well as the Spearman correlation between 
metabolite abundances and their fitness coupling. For 100 random combi-
nations of key fluxes, we also computed one stabilizing selection simulation 
( � = 1 × 10−4 , �mut = 1 × 10−2 , and T = 10,000 ) per combination, in order 
to compute the Spearman correlation between metabolite abundances and 
their conservation scores.
Calculating in silico reaction essentiality. For each of the 38 reactions of the 
model, we reduced the flux level to a small fraction of the wild- type level (0.001% 
for the erythrocyte model from ref. 29), computed the new steady- state and eval-
uated the deviation of the four key fluxes relative to their wild- type level. This 
measure quantifies the essentiality of each reaction regarding deviation from 
optimal key flux levels and hence fitness. We considered a reaction as essential if 
at least one key metabolic flux is dropped to zero upon its inhibition. Metabolites 
that are substrates or products of at least one essential reaction are classified 

as “essential metabolites.” We were able to determinate the essentiality of 32 
metabolites. It was not possible to calculate it for three metabolites because of 
numerical stability issues.
Removal of low- varying metabolites. From all modeling analyses, we excluded 
five metabolites whose variability was either zero or underestimated in evolution-
ary simulations: NAD (nicotinamide adenine dinucleotide), P1NADPH (reduced 
nicotinamide adenine dinucleotide phosphate), glutathione, pyruvate, and lac-
tate. These metabolites are insensitive to mutations, as the variabilities of NAD, 
P1NADPH, and glutathione are zero in some genetic drift simulations, while pyru-
vate and lactate are directly dependent on constant input/output metabolites 
through transport reactions.

Metabolites Associated with Human Diseases. Metabolites associated with 
IEM were compiled as follows. We included 24 IEM diseases from the US Health 
Resources and Services Administration’s core recommended uniform newborn 
screening panel (https://www.hrsa.gov/advisory- committees/heritable- disorders/
rusp). We identified disease- associated metabolites by manual curation from the 
relevant literature, as well as the Online Mendelian Inheritance in Man database 
(https://www.omim.org/) and the Orphanet database of rare diseases (https://
www.orpha.net). Any metabolite whose level is known to be affected by the 
disease- causing mutation or is known to show an altered level on diagnostic 
panels was classified as being associated with the IEM disease.

We tested the difference in conservation scores between IEM associated and 
nonassociated metabolites in all four measured organs using ANOVA. To test 
whether the results are not biased by amino acids, which are prevalent among 
IEM- associated metabolites, we repeated the test after excluding all metabolites 
that are classified as “amino acids, peptides, and analogues” according to ref. 7. 
To ensure that the high conservation of IEM- associated metabolites is not driven 
by single specific metabolite pathways, we identified five metabolic pathways in 
KEGG that include three or more IEM associated metabolites: “alanine, aspartate, 
and glutamate metabolism,” “arginine biosynthesis,” “phenylalanine metabo-
lism,” “valine, leucine, and isoleucine biosynthesis,” and “valine, leucine, and 
isoleucine degradation.” We then repeated the ANOVA test five times, excluding 
each one of the above pathways in turn.

For the expanded disease association analysis, we collected chemical biomark-
ers from the MarkerDB database (32). The database includes the known chemical 
biomarkers of a total of 407 human diseases, all of which belong to at least one 
of 20 broad disease conditions present in MarkerDB. Note that all conditions that 
are listed in the categories “others” (such as pregnancy) and “exposure” (such as 
smoking) only were omitted from further analysis, as most of these are not strictly 
disease conditions. In total, 106 metabolites in our dataset were associated with 
at least one broad disease condition.

To probe the associations between conservation score and involvement of 
metabolites in broad disease conditions, we focused on 11 broad disease condi-
tions, each of which is associated with at least 10 metabolites in our dataset. The 11 
broad conditions include cancers, cardiovascular system disorders, digestive system 
disorders, endocrine disorders, germ line disorders, hematological and lymphatic 
disorders, immune disorders, mental and behavioral disorders, metabolic disor-
ders, nervous system disorders, and urinary system disorders. Because the same 
metabolite might be involved in multiple broad disease conditions, we used a 
multivariate approach to determine which disease conditions are significantly asso-
ciated with MCS while controlling for the effects of other disease conditions. First, 
we determined which broad disease conditions’ biomarkers are significantly more 
conserved than nonbiomarker metabolites using univariate two- sided Wilcoxon 
rank- sum tests (P < 0.05 in at least three out of the four organs). Then, we deter-
mined which of the remaining disease conditions show significant independent 
associations with conservation score using a multivariate linear regression model.

To estimate the extent to which metabolites associated with metabolic 
disorders in MarkerDB can be predicted based on MCS, we first calculated an 
aggregate conservation score for each metabolite that represents its level of 
conservation across the four organs. This was achieved by first normalizing the 
conservation scores in each organ (see Between- Organ Differences in MCS), 
and then taking the median value across the four organs as an aggregate 
MCS. We then built a classification model using logistic regression that pre-
dicts association with metabolic disorders using only the aggregate MCSs. We 
then evaluated the prediction accuracy of the classifier by a receiver operating 
characteristics (ROC) curve analysis and by calculating AUC using the R package D
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“ROCR” (56). To test the relationship between a metabolite’s conservation score 
and the number of associated diseases, we used Spearman’s correlation. This 
analysis included all specific metabolite–disease associations from MarkerDB, 
not just those involving the 11 broad disease condition categories.

Metabolome Conservation in the Drosophila Genus. Metabolomics data of 92 
nonlipid metabolites measured in 11 Drosophila species (D. ananassae, D. yakuba,  
D. erecta, D. melanogaster, D. simulans, D. sechellia, D. pseudoobscura, D. persimilis,  
D. willistoni, D. virilis, and D. mojavensis) and the phylogenetic tree describing the evo-
lutionary relationship between the species were obtained from ref. 35. Conservation 
scores were computed as described above (see “Calculating MCSs”) (35).

Absolute metabolite concentrations of 35 nonlipid metabolites, as quantified 
by NMR metabolomics, were obtained from ref. 36. We used the metabolite 
concentrations measured in whole D. melanogaster larvae samples, in order to 
best match the samples used in ref. 35. Of these 35 metabolites, 24 overlapped 
between the datasets.

Data, Materials, and Software Availability. All data associated with this study 
are available in the supporting information. Data and code associated with the 
systems modeling work is available on GitHub (https://github.com/pappb/
Liska- et- al- Principles- of- metabolome- conservation) (57).
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