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Metabolite levels shape cellular physiology and disease susceptibility, yet the general
principles governing metabolome evolution are largely unknown. Here, we introduce
a measure of conservation of individual metabolite levels among related species. By
analyzing multispecies tissue metabolome datasets in phylogenetically diverse mam-
mals and fruit flies, we show that conservation varies extensively across metabolites.
Three major functional properties, metabolite abundance, essentiality, and association
with human diseases predict conservation, highlighting a striking parallel between the
evolutionary forces driving metabolome and protein sequence conservation. Metabolic
network simulations recapitulated these general patterns and revealed that abundant
metabolites are highly conserved due to their strong coupling to key metabolic fluxes in
the network. Finally, we show that biomarkers of metabolic diseases can be distinguished
from other metabolites simply based on evolutionary conservation, without requiring
any prior clinical knowledge. Overall, this study uncovers simple rules that govern
metabolic evolution in animals and implies that most tissue metabolome differences
between species are permitted, rather than favored by natural selection. More broadly,
our work paves the way toward using evolutionary information to identify biomarkers,
as well as to detect pathogenic metabolome alterations in individual patients.

molecular evolution | metabolic networks | systems biology | phylogenetic comparative method |
neutral evolution

Metabolites are intermediates of biochemical pathways as well as regulators of enzymes
and nonenzymatic proteins (1). Accordingly, intracellular metabolite concentrations are
key quantities that affect the rates of metabolic reactions (fluxes) and regulate various
layers of cellular organization (2, 3). Consequently, metabolite dysregulation underlies
various human diseases, from metabolic disorders to cancer (4, 5). Given the tight asso-
ciations between metabolite levels and cellular physiology, it is often supposed that evo-
lutionary changes in the metabolome contribute to phenotypic differences between species
(6, 7). Indeed, shifts in specific metabolite levels have been associated with phenotypic
evolution in both mammals (6, 7) and plants (8, 9). However, the general principles
driving metabolome evolution remain largely unexplored. Metabolite levels show broad
similarities between cells of distantly related organisms (10) and obey simple optimality
principles (11, 12), indicating widespread natural selection to preserve them. In fact,
metabolome-altering mutations continuously occur during evolution, with harmful ones
likely being eliminated by natural selection, affecting patterns of metabolome variation
among species. Thus, elucidating the evolutionary forces shaping the metabolome has
relevance for a better understanding of the organization of cellular metabolism, and for
human health as well.

Here, we propose that the functional role and biochemical properties of metabolites
influence the amount of permissible changes in their levels during evolution. Consequently,
metabolites that are more strongly constrained by the requirement for proper cellular
function, i.e., subject to stronger functional constraints, should be more evolutionarily
conserved in their levels. This is analogous to the well-established phenomenon that
proteins evolving under stronger functional constraints are more conserved in their
sequences (13, 14). Furthermore, just as sequence conservation informs on deleterious
genetic variants (15, 16), conservation of metabolite levels should inform on the health
impact of metabolite changes.

To test this hypothesis and to gain mechanistic insights into metabolome conservation,
we combined phylogenetic analysis of metabolomics data with systems biology modeling.
We primarily focused on mammals due to their relevance for human health and the availability
of comprehensive multispecies metabolomics data covering a broad phylogenetic range.
Specifically, a previous study quantified the relative levels of ~150 metabolites in four major
organs of 26 mammalian species, spanning an evolutionary period of ~200 My (7). Our
study revealed that the extent of conservation of individual metabolite levels is largely uniform
across mammalian lineages, but varies extensively across metabolites. Such variation in con-
servation results from the differing amounts of functional constraints across metabolites, and
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is primarily determined by metabolite abundance (i.e., absolute
concentration), as evidenced by an independent dataset on absolute
metabolite levels in mice (17). Systems modeling revealed that highly
abundant metabolites are more closely correlated with key fluxes
in the metabolic network, explaining their strong conservation.
Remarkably, evolutionary conservation is predictive of the disease-
involvements of metabolites, confirming that high conservation
implies large fitness impacts in human. Finally, we demonstrated
that metabolome evolution is governed by similar rules in the dis-
tantly related Drosophila genus. Overall, our work offers a universal
conceptual framework of metabolome conservation that informs on
the disease association of metabolites.

Results

Extensive Variation in Evolutionary Conservation of Metabolite
Levels. To systematically investigate the evolutionary conservation of
metabolite levels, we first analyzed a published dataset of mammalian
metabolomes within a phylogenetic framework. The dataset contains
the relative levels of 139 nonlipid metabolites in four organs (brain,
kidney, heart, and liver) across 26 mammalian species, representing
nine taxonomical orders (7) (Fig. 1A4). The dataset covers a wide range
of central metabolic pathways, including amino acid, carbohydrate,
energy, and cofactor metabolism, and represents the most quanti-
tative and phylogenetically diverse multispecies comparison of meta-
bolomes to date. Therefore, it is particularly well-suited to interrogate
the general principles of metabolome evolution.

The magnitude of metabolite-level fold-change differences among
the 26 species varies widely across metabolites in all studied organs
(81 Appendix, Fig. S1). For example, in liver, cytidine level varies up
to 529-fold among species, while malate shows highly similar levels
in all species, with less than 2.3-fold differences (Fig. 1A4). This pat-
tern suggests extensive variation in the evolutionary conservation
of metabolite levels among different metabolites. To more rigorously
estimate the degree of evolutionary conservation, while also account-
ing for species phylogeny, we introduce a score that captures the
extent of conservation of metabolite levels along the phylogeny for
each metabolite and for each organ (Methods, Dataset S1A). This
metabolite conservation score (MCS) is based on the widely used
Brownian motion (BM) model of evolution, which provides a sim-
ple and informative measure of evolutionary rate for quantitative
traits (18). We define MCS as the inverse of the rate of evolutionary
change in metabolite level (Mezhods). Importantly, MCS requires
information only on the relative levels of metabolites across species
and is therefore directly comparable among metabolites despite lack
of multispecies data on absolute concentrations. We note that sim-
ilar phylogenetic inference methods have been widely adopted to
study gene expression evolution (19, 20).

MCS displays extensive variation across metabolites in all four
organs, spanning 560-fold to 970-fold ranges (Fig. 1B). Importantly,
variation in MCS is not caused by technical artifacts, as within-species
variation and measurement noise explain less than ~7% of total
variance in MCS (81 Appendix, Fig. S2, Methods) and using an evo-
lutionary model that explicitly incorporates such variation results
in highly similar MCS values (S] Appendix, Fig. S3 and Dataset S1A,
Methods). Phylogenetic comparisons of metabolomes might be con-
founded by dietary and environmental differences between species
(6). To address this issue, we additionally analyzed a metabolome
dataset of fibroblasts isolated from 16 mammals and cultured under
identical in vitro conditions (21). Despite large differences between
cell types and study conditions, the MCS values calculated from
the in vitro fibroblast data show highly significant correlations with
those based on the in vivo assessment of the four organs (ST Appendix,
Fig. S4 and Dataset S1A). Furthermore, MCS extensively varies
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among different metabolites (up to 290-fold) in the fibroblast data-
set as well. Thus, large differences in the conservation of individual
metabolite concentrations hold in an independent dataset that is
not confounded by environmental differences. This, together with
previous observations in primates (6), suggests that environmental
differences do not substantially confound phylogenetic comparisons
of tissue metabolomes.

Conservation of a metabolite might vary across the phylogeny
due to lineage-specific shifts in selective pressure (i.e., adaptive
evolution). However, such heterogeneities are unlikely to con-
found our inferences. First, in each organ, only a small fraction
(7 to 29%) of metabolite levels show lineage-specific shifts (7),
and MCS is robust to such effects (8] Appendix, Fig. S5, see
Methods). Second, we show that the rate of evolutionary change
of metabolite levels is largely homogenous across the phylogenetic
tree. To assess the variability of the rate of evolutionary change
between clades, we calculated separate MCS values on two inde-
pendent clades of the tree: rodents, rabbit and primates versus all
other placental mammals (Dataset S1A). These two clade-specific
MCSs strongly correlate with each other in all organs (see Fig. 1C
for liver and ST Appendix, Fig. S6 for other organs), indicating that
metabolites that are conserved in a particular clade also tend to
be conserved in the rest of mammals.

Together, these results indicate that the evolution of individual
metabolite levels can be characterized by a simple conservation
score, which is largely invariant across mammalian clades, but
varies extensively across metabolites.

Abundance and Essentiality Are Important Determinants of
Evolutionary Conservation. By analogy to the neutral theory of
sequence evolution (22), we hypothesize that conserved metabolites
are subject to stronger functional constraints against concentration
changes. If so, MCS should largely be determined by the functional
role and biochemical properties of metabolites. To test this, we
compiled 17 features capturing the biological and chemical properties
of metabolites, including pathway membership (Dataset S1B), the
number of network connections (network degree), absolute metabolite
concentration (abundance) in mice (17), chemical class, toxicity, and
various physicochemical properties (Fig. 24 and S/ Appendix, Table S1
and Dataset S1A, see Methods). We also included “essentiality,” a
feature describing whether a metabolite participates in a reaction
catalyzed by an essential enzyme, as determined by gene deletions
in mice (23).

We found several metabolite features that are statistically sig-
nificantly associated with MCS when analyzed individually
(Fig. 24 and SI Appendix, Table S1, Methods). As metabolite
features might correlate with each other, we next carried out
multivariate regression to identify independent predictors of
MCS by jointly analysing the four organs (Methods). We found
that a simple model with three dominant predictors explains
~31% of variation in MCS across metabolites (Fig. 2B and
SI Appendix, Table S3). This is a remarkably high figure when
considering that we estimate the upper limit of the predictability
of MCS at 49%, based on its reproducibility between two inde-
pendent clades (Fig. 1C and SI Appendix, Table S2). Notably,
the portion of variance explained in metabolite conservation is
comparable to the explained evolutionary rate variation in pro-
tein sequences (~40%) (24).

Three general metabolite properties have significant independent
effects on MCS in all organs: abundance, molecular weight, and
involvement in essential reactions (Fig. 2Band SI Appendix, Table S4).
Specifically, metabolites that are i) highly abundant in the cell, ii)
have a small molecular size or iii) participate in reactions encoded
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Fig. 1. Metabolites differ widely in their conservation score during mammalian evolution. (A) Phylogeny of 26 mammals and heatmap illustrating how metabolite
levels in liver vary among species (log, fold-change compared to mouse), exemplified by two metabolites: Malate shows highly similar levels in all species,
while cytidine is highly variable. (B) Distributions of MCSs in each organ, as inferred from all 26 species (logarithmic scale). The vertical dashed lines show the
MCSs of the two example metabolites from panel A (cytidine-blue, malate-yellow). (C) Conservation scores (liver) calculated for two independent clades of the
tree show a strong correlation (Pearson’s r = 0.67, P = 1.1e-18, N = 132). Line depicts the fitted linear regression. Similar results are obtained for other organs
(S/ Appendix, Fig. S6). The tree on the left depicts the two independent clades of mammals for which conservation scores were inferred, with the names of the

constituents’ taxonomical orders.

by essential genes tend to be more conserved (Fig. 2 C'and D). The
latter finding is consistent with the intuitive expectation that pertur-
bations in metabolites connected with essential enzymes are espe-
cially harmful, and are therefore subject to stronger stabilizing
selection.

PNAS 2023 Vol.120 No.35 e2302147120

Abundance is the strongest determinant of conservation in all
organs (Fig. 2B and S/ Appendix, Table S4). Metabolites vastly
differ in their absolute concentrations, spanning over six orders of
magnitude (10). We revealed that higher abundance of a
metabolite is associated with a higher conservation score, with a
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Fig. 2. Determinants of MCS. (A) Barplot showing the percentage of variance in conservation score explained by each metabolite feature individually (i.e.,
univariate models). Only features with a significant effect are shown (false discovery rate adjusted p-value < 0.01, Methods). (B) Barplot showing the percentage
of variance in conservation score explained by multivariate regression modeling. Bars indicate the percentage of variance explained by the full model, as well
as the independent contribution of each feature found to be significant in the model (P < 0.05). (C) Metabolites participating in reactions encoded by essential
genes show higher conservation scores than the rest of metabolites (two-sided Wilcoxon tests, brain: P = 0.0013; heart: P = 0.019; kidney P = 0.0049; liver
P =0.0022). Boxplots show the median, first and third quartiles, with the whiskers showing the values within a 1.5 interquartile range distance from the first
and third quartiles. (D) Metabolites with high absolute concentration (abundance) show higher conservation scores (kidney: Spearman'’s correlation rho = 0.53,
P=1.1e-06, N = 76; for other organs see S/ Appendix, Fig. S7). Line indicates LOESS regression, with their 95% Cl indicated in blue.

continuous trend across the entire range of abundance (Fig. 2D
and ST Appendix, Fig. S7). We emphasize that abundance data
come from an independent study that quantified absolute metab-
olite concentrations for several matching organs in mice (17).
Low-abundance metabolites are typically measured with larger
noise, potentially underestimating their conservation scores.
However, such a bias is unlikely to confound our results because
the positive correlation between abundance and MCS remains
highly similar when explicitly accounting for measurement vari-
ability in the conservation score calculations (87 Appendix, Table S5
versus ST Appendix, Fig. S7, Methods). Furthermore, the conclu-
sion also holds when inferring MCS from the in vitro fibroblast
dataset and correlating it with absolute metabolite concentrations
measured in mouse cell culture (10), suggesting that it is not an
artifact of comparing species with different diets (S Appendix,
Fig. S8).

40f12 https://doi.org/10.1073/pnas.2302147120

Conservation is largely independent of the chemical class, phys-
icochemical properties, toxicity, pathway membership, network
position, and interaction degree of metabolites in the multivariate
model (87 Appendix, Table S4). For instance, while metabolites
participating in many reactions or serving as allosteric activators
of enzymes tend to be conserved, these relationships disappear
when accounting for other metabolite properties (S Appendix,
Table S4). Thus, contrary to intuitive expectations, metabolites
interacting with multiple enzymes are not more strongly con-
strained. Furthermore, the toxic effects of highly increased metab-
olite levels, as assessed by toxicity in mice (25), do not appear to
constrain metabolome evolution.

Together, these findings demonstrate that evolutionary con-
servation of metabolite levels is well predictable based on a hand-
ful of metabolite properties, with abundance being the primary
determinant.
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Organ-Specific Metabolite Conservation Reflects Differential
Functional Constraints. We next sought to investigate the
differences in individual MCSs between different organs. We
hypothesize that such shifts in conservation arise from organ-
specific biological functions.

In general, MCS correlates well among the four organs, indi-
cating similar amounts of metabolite-specific functional con-
straints across organs (Fig. 34). This is consistent with our finding
that a handful of metabolite properties universally determine
conservation in all four organs (Fig. 2B). Nevertheless, some
metabolites are much more conserved in one organ than in the
others (87 Appendix, Table S6). Literature data suggest that such
differences partly reflect organ-specific metabolite functions
(Fig. 3B). For example, both gamma-aminobutyrate and gluta-
mate show the strongest conservation in the brain, where they
serve as the principal inhibitory and excitatory neurotransmitters,
respectively (26). Similarly, the osmolytes betaine and myo-inositol
are especially conserved in the kidney and such molecules have
key roles in protecting renal medullary cells from high NaCl and
urea levels (27).

Several metabolites display elevated levels in specific organs,
independent of the species (7). Given that abundant metabolites
tend to show enhanced conservation within organs (Fig. 2D),
we hypothesize that a particular metabolite should be more con-
served in organs where it is more abundant. Indeed, several
metabolites displaying organ-specific conservation also have
higher levels in those organs where they are more conserved
(Fig. 3B). As a systematic test, we examined the relationship
between the relative differences (fold-change) of metabolite levels
and conservation scores among different organs (Fig. 3C). As
expected, between-organ differences in metabolite levels and
between-organ conservation score differences display a significant
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positive correlation (Fig. 3C). Note that since the total amount
of evolutionary changes in the metabolome varies by organ (7),
we compared the conservation of individual metabolites across
organs while accounting for this metabolome-wide effect
(Methods).

Together, these results indicate that metabolites vary in their
conservation due to differing amounts of functional constraints,
partly reflecting organ-specific metabolite functions, and highlight
the key influence of abundance on metabolite conservation.

Systems Modeling llluminates the Mechanism of Functional
Constraint. Why are the metabolites that are abundant or
involved in essential reactions highly conserved? Metabolite
concentrations are principal determinants of reaction rates (fluxes)
in the network (3). As metabolic fluxes obey optimality principles
(28), we propose that selection to maintain key metabolic fluxes
at optimal values constrains the evolution of metabolite levels,
and may explain the higher conservation of metabolites that
are abundant or involved in essential reactions. To test this, we
simulated evolution in a physiologically relevant mathematical
model of central metabolism. We employed a kinetic model
of the core metabolism of human erythrocytes, which includes
glycolysis, the 2,3-bisphosphoglycerate shunt and the pentose-
phosphate cycle, with 40 internal metabolites (29). The model
allowed us to simulate the effects of changes in enzyme kinetic
parameters (i.e., mutations) on steady-state fluxes and metabolite
concentrations (Methods). Assuming that the nonmutated model
represents a fitness maximum resulting from past evolutionary
optimization of erythrocyte metabolism, we approximated the
deleterious effect of mutations by calculating deviations in four
specific fluxes, referred to as key fluxes, that are important for
proper erythrocyte functioning (29) (Methods). Then, we simulated
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evolution with and without stabilizing selection to maintain the
levels of these key fluxes, the latter corresponding to evolution
under pure genetic drift, using a Markov chain Monte Carlo
(MCMC) approach (30) (SI Appendix, Fig. S9, Methods). In the
pure genetic drift scenario, we accepted all mutations that led to a
steady-state solution, while in the stabilizing selection scenario we
only accepted those mutations that had only a very minor effect
on the key fluxes. Specifically, we applied selection to maintain key
fluxes around their wild-type values by removing those mutations
that altered these fluxes beyond a predefined threshold (Mezhods).
As a consequence, the metabolome differences accumulated over
many iterations are neutral because the key fluxes in the network
still take near wild-type values. Thus, these scenarios represent
nonadaptive—neutral-modes of evolution.

As expected, in silico MCSs are much higher in the presence
of stabilizing selection (S7 Appendix, Fig. S10), demonstrating that
many metabolome-altering mutations are harmful. Furthermore,
between-metabolite differences in MCS increase significantly
under stabilizing selection (87 Appendix, Fig. S10), indicating that
the requirement to maintain key fluxes imposes varying levels of
constraint across different metabolites. Remarkably, metabolite
abundance and involvement in essential reactions are determinants
of in silico MCS. In particular, we found a significant positive
correlation between a metabolite’s abundance in the wild-type
(i.e., nonmutated) model and its conservation score in the simu-
lations (Fig. 4A). Similarly, metabolites involved in reactions that
are deemed essential in silico (i.e., reactions that have a large
impact on key fluxes when inactivated) show high conservation
scores in the simulations (Fig. 4B, Methods). Importantly, these
associations hold only in the presence of stabilizing selection, indi-
cating that they are not caused by mutational variability (Fig. 4 A
and B). Furthermore, a multivariate analysis indicates that metab-
olite abundance and reaction essentiality are independently asso-
ciated with in silico MCS (87 Appendix, Table S7).

We next hypothesized that mutations altering abundant metab-
olites are more likely to perturb key fluxes and are therefore selected
against. To test this, we defined a measure of fitness coupling for
each metabolite by simulating the impact of single mutations and
calculating how strongly changes in the levels of each metabolite
are correlated with changes in key fluxes (Methods). Consistent
with the hypothesis, abundant metabolites are indeed more strongly
coupled to fitness (Fig. 4C). Furthermore, the extent of fitness
coupling of a metabolite correlates with its conservation score
inferred under stabilizing selection, but not under pure genetic
drift (Fig. 4D). In addition, the four key fluxes assumed to be
important for fitness (29) lead to a significantly stronger correlation
between metabolite abundance and fitness coupling than randomly
defined key fluxes (87 Appendix, Fig. S11A; Methods). Thus, the
strong coupling of highly abundant metabolites to fitness is not a
by-product of the modeling procedure, but specifically holds for a
fitness definition that captures the biochemical functions of the
erythrocyte metabolic network (29). Further analysis confirmed
that the strong conservation of abundant metabolites is mediated
by fitness coupling (S/ Appendix, Fig. S11B).

Finally, the above results also hold for a different model of
erythrocytes and a model of human hepatic glucose metabolism
(SI Appendix, Appendix S1). Overall, these findings indicate that
metabolites that are highly abundant or participate in essential
reactions are more conserved in their levels because they are more
crucial to maintain key metabolic fluxes. Importantly, as beneficial
mutations are not included in the simulations, all accumulated
metabolome differences are neutral. Thus, we conclude that a
simple neutral model of metabolome evolution is sufficient to
explain major empirical patterns of metabolome conservation.
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Evolutionary Conservation Informs on Disease Association.
Next, we asked whether the conservation of a metabolite informs
on its association with diseases. We first focused on human inborn
errors of metabolism (IEMs), which are genetic disorders caused
by disruption of specific metabolic pathways (31). The early
onset and high severity of these disorders suggest that metabolites
associated with IEMs might be highly constrained in mammals.
We compiled metabolites known to be involved in the disease
etiology or the diagnosis of IEMs routinely measured in newborn
screening (Methods, SI Appendix, Table S8). We found that IEM-
associated metabolites show significantly higher conservation
scores than the rest of metabolites in all four organs (Fig. 54 and
SI Appendix, Fig. S12). The strong evolutionary conservation
of IEM-associated metabolites is not explained by abundance,
a particular class of conserved metabolites or specific metabolic
pathways (87 Appendix, Table S9), suggesting that it reflects their
importance for normal metabolic functioning.

To test whether this finding applies to other diseases beyond
IEM, we used MarkerDB, a comprehensive database of clinical
biomarkers (32) and focused on 11 broad disease conditions with
sufficient numbers of metabolites (S Appendix, Table S10 and
Dataset S1C). As expected, metabolites associated with metabolic
disorders, including many IEMs, tend to be highly conserved
(Fig. 5B). More remarkably, we identified two additional broad
disease conditions—cancers and cardiovascular diseases—that are
independently associated with highly conserved metabolites (Fig. 5
Cand D and SI Appendix, Table S10, Methods). For instance, cho-
line, a precursor in lipid metabolism, is highly conserved in all four
organs, but is not associated with any IEMs (S] Appendix, Fig. S13).
Notably, abnormal choline metabolism is a general hallmark of
cancers, and both phosphocholine and total choline-containing
metabolite levels are used to detect malignant tumors (33).
Furthermore, the oncometabolite succinate (34) also shows marked
conservation in several organs (SI Appendix, Fig. S13).

Biomarkers of metabolic disorders show the strongest signal
of conservation (Fig. 5B), suggesting that evolutionary conser-
vation could potentially be leveraged to identify such biomarkers
independently of previous clinical knowledge. As a preliminary
test, we computed an aggregate score of conservation across the
four organs (Methods). Encouragingly, this conservation score
alone separates biomarkers of metabolic disorders from the rest
of metabolites with reasonable accuracy (area under the ROC
curve = 0.75, Fig. 5E).

Finally, we hypothesized that metabolites involved in multiple
diseases are more likely to affect organismal fitness when altered
and hence are under stronger stabilizing selection. Indeed, the
conservation score shows a positive correlation with the number
of specific diseases involving a particular metabolite (S/ Appendix,
Fig. S14; effect is independent of abundance and essentiality,
SI Appendix, Table S11).

Metabolome Conservation in the Drosophila Genus. To test the
generality of our main findings, we also analyzed metabolome
evolution in the distantly related genus Drosophila, across a 50-My
phylogeny (S7 Appendix, Fig. S15A4). We calculated metabolite-
specific conservation scores using data on 92 nonlipid metabolites
measured in whole adults of 11 Drosophila species under the same
controlled environment (35) (Dataset S1D, Methods). Just as in
mammals, MCS varies extensively across different metabolites,
spanning over three orders of magnitude (S Appendix, Fig. S15B).
Remarkably, using an independent dataset of absolute metabolite
concentrations in Drosophila melanogaster (36) (Dataset S1D), we
found a significant positive correlation between abundance and the
conservation score, with an effect size similar to that in mammals
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Fig.4. Functional constraintsin anin silico model of metabolic evolution. (A) Metabolites with a higher abundance in the wild-type model show higher conservation
scores in the presence of stabilizing selection (blue dots, Spearman rho = 0.55, P = 6.63e-4, N = 35), but not in the absence of selection (orange dots, Spearman
rho = 0.30, P =0.078, N = 35). Each dot and error bar represents the mean and SD of the MCS, calculated for a particular metabolite based on 10 simulations.
(B) Metabolites involved in essential reactions (i.e., their products or substrates) have higher conservation scores than those involved in nonessential reactions
in the presence of stabilizing selection (blue), but not in the absence of selection (orange), as indicated by two-sided Wilcoxon tests (P = 7.82e-3 and P = 0.246,
respectively). Each dot represents the mean conservation score for a particular metabolite based on 10 simulations. (C) Wild-type abundance of metabolites
correlates with their extent of fitness coupling (Spearman rho = 0.49, P = 3.14e-3, N = 35). (D) MCSs correlate with the extent of fitness coupling under stabilizing
selection (Spearman rho = 0.55, P = 7.78e-4, N = 35), but not in the absence of it (Spearman rho = 0.06, P = 0.724, N = 35). The lines in panels A, C, and D represent
LOESS regressions, with their 95% Cls shown. The boxplots in panel B show the median, first, and third quartiles, with the whiskers showing the values within
a 1.5 interquartile range distance from the first and third quartiles.

(SI Appendix, Fig. S15C). Furthermore, metabolites involved related clades, but varies extensively across metabolites. Such var-
in human IEMs tend be highly conserved in Drosophila as well — iation in conservation is predictable based on a few metabolite
(81 Appendix, Fig. S15D). We conclude that metabolome evolution  properties and is consistent with a simple model where natural
is governed by similar principles in two distant animal phyla. selection preserves flux through key metabolic reactions while

permitting the accumulation of selectively neutral changes in

Discussion enzyme activities. We further demonstrated that this general con-
ceptual framework of metabolome conservation informs on dis-

In this work, we combine phylogenetic analysis of metabolome  ease associations and biomarker status of metabolites.

data with systems biology modeling to seek general principles Metabolite abundance emerged as the main determinant of

governing the evolution of the levels of tissue metabolites in ani- ~ conservation, with highly abundant metabolites displaying the

mals. By introducing a measure of evolutionary conservation of ~ highest level of conservation, as evidenced by three independent

individual metabolite levels, we showed that the extent of conser- datasets of absolute metabolite concentrations in mice (Fig. 2),

vation of a given metabolite is largely invariant between closely D. melanogaster (SI Appendix, Fig. S15) and in vitro cell culture
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(SI Appendix, Fig. S8). Importantly, any particular metabolite
displays stronger conservation in organs where it is more abun-
dant, demonstrating that abundance per se affects conservation.
Systems modeling further showed that abundant metabolites are
subject to stronger functional constraints (Fig. 4). Why should it
be so? First, the levels of highly abundant metabolites might be
more rate-limiting for key fluxes than those of low-abundance
metabolites, implying a causal effect of metabolite level on fitness.
Specifically, it might be the case that metabolic systems have
evolved toward optimal states where the concentrations of abun-
dant metabolites have lower margins of safety around their optimal
values, analogous to the “expression cost” hypothesis to explain
the elevated sequence conservation of highly expressed proteins
(14, 37). This argument assumes that the optimal level of a metab-
olite reflects a trade-off between the benefits (e.g., enzymatic rate)
and cellular costs of metabolite production. Under such optimal
conditions, the benefit and cost of having an extra molecule should
be equal and identical across metabolites (i.e., have the same mar-
ginal values). As a consequence, a mutation that reduces the level
of a metabolite by a given fraction would cause a larger loss of
benefit for a highly abundant metabolite than for a lowly abundant
one. This would be analogous to the observation that halving gene
dosage is generally more deleterious for highly expressed genes
(37). Alternatively, abundant metabolites might not be particularly
rate-limiting, but might be subject to stronger indirect selection
due to the harmful side effects of mutations affecting their levels
(38). We speculate that there might be less ways to alter abundant
metabolites without also perturbing key fluxes, resulting in
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stronger indirect selection on these molecules. Finally, regardless
of their specific functions, abundant metabolites incur broad cel-
lular costs due to limitations on osmotic pressure (12) and total
dry mass (11), potentially constraining their evolution. Clearly,
further studies are needed to test these scenarios.

Our work has profound implications for the neutral theory of
molecular evolution, which posits that most within- and between-
species variations at the molecular level are selectively neutral rather
than adaptive (22). While the theory explains many aspects of
sequence and gene expression evolution (20, 22, 39), it has been
unclear whether it applies to variations at the metabolome level,
which is more closely related to phenotypes (40). Our results are
broadly consistent with a neutral model of metabolome evolution.
First, MCSs are largely constant across different mammalian clades,
suggesting that similar evolutionary forces shape the metabolome
despite extensive phenotypic divergence. Second, conservation is
determined by the functional properties of metabolites, namely
abundance, involvement in essential reactions and association with
human diseases. As these metabolite properties likely reflect the level
of functional constraints, rather than the amount of adaptive evolu-
tion, they support the neutral model. Notably, analogous gene
properties—expression level, essentiality and disease association
(13)—determine protein sequence conservation, revealing a striking
parallel between the selective constraints driving metabolome and
protein evolution. Finally, metabolic modeling demonstrated that
stabilizing selection on key fluxes is sufficient to explain the strong
conservation of abundant and essential metabolites without the need
to invoke adaptation to changing environments. Specifically, the
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model simulations included only neutral and deleterious mutations,
but not beneficial ones, yet recapitulated the main empirical obser-
vations. Together, these results suggest that a substantial fraction of
metabolome differences among mammals, as well as among
Drosophila species, are neutral and are permitted rather than favored
by selection. It remains to be tested whether further predictions of
the neutral model are fulfilled, and whether they also hold for other
major taxa. Nevertheless, our simulation study represents an impor-
tant step toward a theoretical framework of metabolic evolution
driven by nonadaptive processes.

The evolutionary history of gene sequences and gene expression
levels informs on their disease involvement (16, 20). Our work
expands this notion to include an additional layer of molecular
phenotypes by showing that metabolome conservation is predic-
tive of the disease associations of metabolites. Remarkably, bio-
markers can be distinguished from nonbiomarker metabolites
simply based on the comparison of metabolomes across species,
without utilizing any prior clinical knowledge. As expected,
metabolite conservation appears to be most informative for met-
abolic diseases that disrupt basic cellular functions and show an
early onset, such as inborn errors of metabolism. More intrigu-
ingly, metabolites associated with tumorigenesis are also well con-
served, suggesting that cancer avoidance might be an important
selective force in wild mammals (41).

We emphasize that while some metabolite biomarkers are caus-
ally involved in disease development, the exact nature of many
metabolite—disease associations remains unclear. In some cases,
metabolite dysregulation could very well be a consequence of the
disease itself, while in others it could precede any symptoms and
even be an indicator of future disease onset. We note that elevated
evolutionary conservation can result either from direct selection
on a disease-causing metabolite or indirect (apparent) selection
on a metabolite that correlates with disease states. Therefore, we
expect that large alterations in the levels of metabolites that are
otherwise subject to strict evolutionary constraints may indicate
underlying health issues even if there is no causal relationship
between the metabolite and the disease.

We anticipate that evolutionary metabolomics should have at
least two possible applications to aid clinical diagnosis. First, it
offers a strategy to identify metabolites whose dysregulation mat-
ters the most to human health and therefore could be involved in
disease mechanisms or may be used as biomarkers. Given the
plethora of assayed metabolites in metabolomic epidemiology
studies (42), evolutionary conservation may help to prioritize
them for biomarker identification and further investigations.
Second, it might be possible to infer the range of permissible
metabolite levels from cross-species data, and use this information
to detect pathogenic alterations in individual metabolome profiles
(20). As clinical diagnoses typically rely on the measurement of
plasma metabolite levels, it is an important open issue whether
the concept of evolutionary conservation could be applied to
blood metabolomes, which might be more strongly influenced by
environmental effects than tissue metabolomes.

In sum, our findings illustrate how evolutionary comparisons
of metabolite levels on a network scale can be leveraged to study
the functional constraints and pathogenic alterations of cellular
metabolism.

Methods

Calculating McSs. To study metabolome conservation in mammals, we obtained
metabolomic measurements of 139 nonlipid metabolites from a multispecies
study (7). The dataset contains relative metabolite levels across 26 mammalian
species in four organs (brain, heart, kidney, and liver) and is based on targeted
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metabolomics measurements involving three distinct liquid chromatography-
mass spectrometry (LC-MS) methods. Note that the measured samples were
homogenates of freshly frozen tissues of killed animals, matched by age (i.e.,
young adults) and sex (7). We calculated the mean of the normalized (log,,-
transformed) relative metabolite level across all biological replicates so that
each metabolite in each species and organ is represented by a single relative
concentration value. We then used these values as continuous molecular traits
for which conservation scores are computed.

To calculate the MCS of individual metabolites, we first fit a simple BM model
of trait evolution on the relative levels of each metabolite in each organ across
the phylogeny, using the fitContinuous function in the Geiger R package (43).

The BM model represents evolution of a continuous trait through time as
a random walk process in which, during any elapsed time At, the value of the
trait (x) changes by a random number drawn from a normal distribution with a
mean of 0 and a variance of 6°At. As such, at any timepoint t,, the level of the
trait can be estimated as:

x(ty) ~ N (x(ty), 6*At). (1]

This BM process can then be applied to a phylogenetic tree, as described by
Felsentein (44).In short, given a known phylogeny and known trait values at the tips
of the tree, we can use Felsenstein's method to estimate the value of o° that gives rise
to the observed trait values in the timeframe supplied by the branch lengths of the
phylogenetictree, while also accounting for the phylogenetic relationships between
the species. The evolutionary rate parameter of the BM model, 6%, measures the rate
of trait diversification along the phylogeny and isin the units of trait variance increase
per unit evolutionary time (as approximated by phylogenetic distance).

It has been argued that the rate parameter of a simple BM model is a useful
measure of the "effective rate” of trait evolution, even if more complex evolu-
tionary models fit a given trait better (18). Next, by taking the inverse of the
evolutionary rate parameter, we define a measure of metabolite conservation,
where metabolites that diverge more slowly in their levels over time are repre-
sented by higher conservation scores. Note that comparison of MCS scores across
metabolites does not demand direct comparisons of concentrations between
metabolites and hence no data on absolute concentrations are required.

Conservation scores were calculated in a similar fashion for relative metabolite
levels measured in fibroblast cell cultures (21) and Drosophila species (35) as
well. The phylogenetic trees used in these calculations were obtained from refs.
21 and 35 and from http://www.timetree.org/ (45).

Variation of Conservation Scores among Different Metabolites versus
Biological Replicate Measurements. To assess the impact of measurement
noise and/or within-species variation on the inferred MCSs and compare it to among-
metabolite variation, we made use of multiple biological replicate measurements.
Specifically, we sampled randomly with replacement concentration values from two
tofour biological replicate measurements, depending on the species and the organ,
and re-calculated MCSs 100 times i.e., bootstrap procedure). For each organ, metabo-
lite/species pairs having only one replicate were removed from the analysis (89.1% of
all organ—species-metabolite triplets have more than one replicate). For each organ,
we then applied a one-way ANOVAtest on the resulting MCS distributions to partition
the amount of total variance in conservation scores into between-metabolites vari-
ance and error variance, the latter capturing variation between biological replicate
measurements of the same metabolites.

Metabolite Features Associated with MCS. Seventeen distinct classes of
metabolic features were collected in order to probe their relationship with MCS.
Information on the regulatory roles of metabolites (enzyme activator, inhibitor, and
cofactor function) was obtained from ref. 46 which was compiled from the BRENDA
database (47). Information on the chemical properties of metabolites (chemical
class, molecular weight, dissociation constants, water solubility, and hydrophobic-
ity) were collected from the HMDB and KEGG databases (48, 49). Metabolite toxicity
information, in the form of mouse LD50 values (the concentration of the metabolite
that is lethal to 50% of specimens, in mg/kg) was collected from the ChemIDPlus
database (https://chem.nlm.nih.gov/chemidplus/). Pathway membership and broad
position in the metabolic network (biosynthetic, degradation, and energy metabo-
lism) were collected from the KEGG and HumanCyc databases, respectively (48, 50).
We note that pathway membership was used only for those metabolic pathways that
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contained at least five metabolites for which we had conservation score calculated,
yielding 27 pathways in total. Organ-specific absolute metabolic abundance meas-
urements were obtained for mouse from the Mouse Multiple tissue Metabolome
DataBase (MMMDB) (17). Network degree (the number of reactions a metabolite
participates in) was determined using a genome-scale reconstruction of the human
metabolic network (51). Metabolites involved in metabolic reactions that are encoded
by essential genes were identified using phenotypic data from mouse knockout lines.
In short, we identified genes whose deletion caused either a lethal phenotype or
infertility in the Mouse Genome Database (23). Next, we defined essential reactions
as reactions where the majority (>50%) of the genes associated with the reaction in
the human metabolic network are essential. Ametabolite was considered part of the
essential set if it participates in at least one essential reaction. For brevity, we refer
to such metabolites as "essential” metabolites, even though metabolite essentiality
cannot be directly measured.

To probe the relationships between MCS and individual metabolite features,
we used linear regression modeling. For each individual feature, we fitted a linear
model thataccounts for both the effect of the given feature and the organ in which
the conservation scores were estimated (i.e., organ membership). This allowed us
to assess the general effect of each feature on evolutionary conservation across
all four organs simultaneously, while accounting for organ-specific global dif-
ferences in conservation score. The percentage of variance in MCS explained
by each feature (as shown in Fig. 24 and S/ Appendix, Table. S1) was calculated
by subtracting the R? value of a model containing organ-membership as the
only predictor variable from the R? value of the model containing both organ-
membership and the feature of interest as predictor variables. Each chemical
class and KEGG pathway was evaluated separately.

Toidentify the main determinants of evolutionary conservation while controlling
for potential covariations between metabolite features, we performed a multivar-
iate analysis as follows. We fitted an initial linear model that included all features
and metabolic pathways that individually had a significant effect on conservation
scores (nine metabolic features and seven specific metabolic pathways, as shown
in Sl Appendix, Table S4). Next, we used a stepwise feature selection (using the step
function in R) to identify the most parsimonious linear model that contains the
combination of features that provides the best fit based on the Akaike information
criterion. To quantify the contribution of the individual metabolite features to the
most parsimonious model (i.e., independent effect), we fitted simpler models by
leaving out single features and calculating the decrease in the adjusted R? value.
The portion of variance in MCS explained by the combination of metabolite features
was determined by subtracting the independent effect of organ membership from
the adjusted R’ value of the most parsimonious multivariate model. Note that,
in order to minimize the number of features in the multivariate model, we used
chemical class as a single multilevel factor, instead of multiple binary features.

Between-Organ Differences in MCS. For all between-organ analyses, we only
included metabolites that were measured in all four organs (110 metabolites of
atotal of 139).To compare the conservation of metabolites across organs, we first
normalized the conservation scores as two of the four organs, brain and heart, are
generally more strongly conserved than the others (i.e., show smaller amounts of
total evolutionary divergence across the whole metabolome). Conservation scores
were first normalized by log, transformation and then centered on zero for each
organ. Then, we calculated the organ-specific deviation in conservation for each
metabolite by taking the normalized conservation score from one organ and sub-
tracting the mean normalized scores of the other three organs from it. High con-
servation deviation for a given organ indicates that the metabolite is more strongly
conserved in that particular organ compared to other organs. For each organ, we
identified the top 10% most strongly deviating metabolite (S/ Appendix, Table S6).

To test whether between-organ differences in metabolite levels are generally
associated with shifts in MCSs, we first calculated, for each metabolite, the dif-
ferences in the normalized conservation scores between all organ pairs. Next,
between-organ differences in metabolite levels were determined by calculating
the log, fold change of metabolite levels between all organ pairs for each species
and then taking the average of the species-specific fold change values. Thus,
each metabolite is described by six conservation scores and six metabolite-level
fold change values, corresponding to all six possible comparisons among the
four organs. We then quantified the association between all metabolite-level
fold change and conservation score fold change values across all metabolites
using the Spearman’s rank correlation coefficient. Because the fold change values
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associated with a given metabolite are not independent from each other, we
calculated the P-value of the correlation using a permutation test as follows.
We randomly reassigned the organ memberships of MCSs and recalculated the
Spearman's correlation coefficient across 10,000 permutations, to test whether
the observed correlation is significantly higher than expected by chance (i.e.,
one-sided test).

Evolutionary Simulations in a Mechanistic Model of Central Metabolism.
A kinetic model of the core metabolism of human erythrocytes. We used a pub-
licly available kinetic model of the human erythrocyte central metabolism, including
glycolysis, the 2,3-bisphosphoglycerate shuntand the pentose-phosphate cycle (29).
This model contains 40 variable metabolites, 38 kinetic reactions, and 166 kinetic
parameters (http://jjj.biochem.sun.ac.za/models/holzhutter/). Four specific fluxes,
referred to as key fluxes, are assumed to be important for the fitness: a) the formation
of 2,3-bisphosphoglycerate (flux vo), which modulates oxygen affinity of hemoglobin,
b) ATP (adenosine triphosphate) utilization (flux v, ), which maintains Na/K gradients
across plasma membrane, ¢) glutathione (GSH) oxidation (flux v,,), which prevents
oxidative damage in the cell, and d) the synthesis of phosphoribosyl-pyrophosphate
(flux v,4), required for the salvage of adenine nucleotides (29).

Calculating the fitness effect of mutations in the model. The kinetic model
allowed us to simulate the effects of changes in enzyme kinetic parameters (i.e.,
mutations) on steady-state fluxes and metabolite levels. Mutations are approximated
by independent random perturbations to the parameters of the 38 kinetic equations.
Tosimulate asingle mutational event, one kinetic parameter pis selected at random
(uniformly among reactions) and its mutant value p’is derived by multiplying it with
afactor drawn from a log;-normal distribution of variance & ,,,2 (52):

mut
P = px10%a ~ N (0,0,,7°). [2]

The mutational variance o ,,,2is constant for all the kinetic parameters. The steady-
state of each mutant model was computed using Copasi software (53).

The model's fitness is approximated by computing the distance z between
the mutant and wild-type models, similarly to the minimization of metabolic
adjustment(MOMA) approach (54). The distance z represents the deviation from
the optimal steady-state in the Euclidean space of the relative values of the four
key fluxes vg, vy4, vor, and vy,

V=V,

' (3]

Yo Iy
with v = (vg, V44, Vaq, Vo ) the key flux levels in the mutant model, v the wild-
type key flux levels, and where the division by v, is element-wise. Importantly, this
definition assumes that the wild-type model represents a fitness maximum resulting
from past evolutionary optimization of erythrocyte metabolism. Note that such an
evolutionary optimization may reflect trade-offs between the maximization of key
fluxes, and the minimization of enzymatic production costs and metabolite levels
due to molecular crowding, osmotic pressure and other broad cellular costs (11, 12).
In this model, any mutation in kinetic parameters is deleterious, as it increases the
distance z. Moreover, we assume that in the vicinity of the wild-type model, the
different kinetic parameters of the same enzyme can be mutated independently
without strongly violating thermodynamic constraints, if mutation sizes are small
enough (see parameter values in S/ Appendix, Table S12).
Evolutionary simulations using a MCMC approach. To simulate evolution, we
implemented a MCMC modeling algorithm (30). This approach is assumed to be
efficient under the weak mutation-strong selection regime (55). During the simu-
lations, no mutation can improve wild-type fitness (i.e., there is no adaptive evolu-
tion). Deleterious mutations are deterministically removed by stabilizing selection
below a predefined fitness threshold (see below) and neutral mutations can fix by
genetic drift with a probability of 1/N,, where N, is the effective population size. For
computational simplicity, we rescaled the simulation timescale by N, and hence
all arising neutral mutations are allowed to fix with a probability of 1 (see below).
As illustrated in S/ Appendix, Fig. S9, starting from the wild-type model
(SI Appendix, Fig. S9A) and at each iteration t of the MCMC algorithm:

1) One kinetic parameter p is selected at random and mutated (Eq. 2;
Sl Appendix, Fig. S9B),

2) The steady-state of the mutant model is computed (S/ Appendix, Fig. S9C). If
the mutant does not reach a steady-state, the iteration ¢ is recalculated (i.e.,
the mutation is discarded).
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3) The distance z between the mutant and the wild-type models is computed
(Eq. 3). Stabilizing selection is simulated by applying a selection threshold
o to the distance z. If z < w the mutation is accepted. Else, the mutation is
discarded (S/ Appendix, Fig. S9D). Thus, no mutation can improve the non-
mutated model fitness.

4) Anew iterationt + 1 is computed (S/ Appendix, Fig. S9E).

We ran 10 repetitions of T = 10,000 iterations in two different simulation
experiments: i) Genetic drift simulations, where all the mutations are accepted
(w = + o0),and (ii) Stabilizing selection simulations, where a selection thresh-
oldw = 1 x 10~*is applied on the distance z between mutated and nonmutated
models, defining a range of selectively neutral mutations that are allowed to
fix. For all the simulations, the mutation size was &, = 1 x 1072 Simulation
parameters are described in S/ Appendix, Table $12.

The numerical framework (as a Python package), simulation results, and
scripts for additional analyses are publicly available on GitHub (https://github.
com/pappb/Liska-et-al-Principles-of-metabolome-conservation).

In silico Mcs. At the end of the evolutionary simulation, the evolutionary rate
of each metabolite level is calculated based on a BM estimation model (18),

(i) = L, a

with ER([X] ) the evolution rate of the level [X;] of metabolite X;, [X;], being its
level atiteration t,[X,] , the level of the wild-type model, and T the total number
of iterations of the simulation. The conservation score of each metabolite is then
calculated by taking the inverse of the evolution rate.
Calculating the fitness coupling of metabolites. e defined a fitness coupling
measure for each metabolite by introducing many independent random sin-
gle mutations into the kinetic parameters of the model and by calculating the
Spearman correlation coefficient between the relative change of metabolite levels
and the relative change of the four key metabolic fluxes. To this aim, we performed
N = 10,000independent single mutations of the wild-type model, by selecting
asingle kinetic parameter at random uniformly among reactions, and mutating
it in a log,g-normal distribution of size &2 = 1 x 107%. We measured each
time the relative change of metabolite levels and key fluxes in response to muta-
tions. We then used this result to compute pairwise correlations between fluxes
and metabolites. Specifically, for each steady-state flux v; and each steady-state
metabolite level [X;]across all mutations, the Spearman correlation was computed
between the absolute value of relative changes, compared to the wild-type model.
The fitness coupling of a given metabolite X; was then evaluated by computing
the mean correlation between the metabolite and the four key fluxes v, vy,

e RN
(5]

. 1

coupling (X; ) = = x cor

sl =3x 3 7,
where v, is the wild-type value of v;, and [X] ois the wild-type value of X
Exploration of random combinations of key metabolic fluxes. We also used
the methodology described above to compute the coupling of metabolites
(Eq.5)to 10,000 combinations of key fluxes drawn at random (from random
1-uplets to 4-uplets). For each random combination, the fitness couplings of
metabolites were computed, as well as the Spearman correlation between
metabolite abundances and their fitness coupling. For 100 random combi-
nations of key fluxes, we also computed one stabilizing selection simulation
(w=1%10"06,,=1x107%andT = 10,000) per combination, in order
to compute the Spearman correlation between metabolite abundances and
their conservation scores.
Calculating in silico reaction essentiality. For each of the 38 reactions of the
model, we reduced the flux level to a small fraction of the wild-type level (0.001%
for the erythrocyte model from ref. 29), computed the new steady-state and eval-
uated the deviation of the four key fluxes relative to their wild-type level. This
measure quantifies the essentiality of each reaction regarding deviation from
optimal key flux levels and hence fitness. We considered a reaction as essential if
atleast one key metabolicfluxis dropped to zero upon its inhibition. Metabolites
that are substrates or products of at least one essential reaction are classified

(Vf ~ VYo )

1% i.0
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as "essential metabolites.” We were able to determinate the essentiality of 32
metabolites. It was not possible to calculate it for three metabolites because of
numerical stability issues.

Removal of low-varying metabolites. From all modeling analyses, we excluded
five metabolites whose variability was either zero or underestimated in evolution-
ary simulations: NAD (nicotinamide adenine dinucleotide), PINADPH (reduced
nicotinamide adenine dinucleotide phosphate), glutathione, pyruvate, and lac-
tate. These metabolites are insensitive to mutations, as the variabilities of NAD,
PTNADPH, and glutathione are zero in some genetic drift simulations, while pyru-
vate and lactate are directly dependent on constant input/output metabolites
through transport reactions.

Metabolites Associated with Human Diseases. Metabolites associated with
IEM were compiled as follows. We included 24 IEM diseases from the US Health
Resources and Services Administration's core recommended uniform newborn
screening panel (https://www.hrsa.gov/advisory-committees/heritable-disorders/
rusp). We identified disease-associated metabolites by manual curation from the
relevant literature, as well as the Online Mendelian Inheritance in Man database
(https:/lwww.omim.org/) and the Orphanet database of rare diseases (https:/
www.orpha.net). Any metabolite whose level is known to be affected by the
disease-causing mutation or is known to show an altered level on diagnostic
panels was classified as being associated with the [EM disease.

We tested the difference in conservation scores between IEM associated and
nonassociated metabolites in all four measured organs using ANOVA. To test
whether the results are not biased by amino acids, which are prevalent among
[EM-associated metabolites, we repeated the test after excluding all metabolites
that are classified as "amino acids, peptides, and analogues” according to ref. 7.
To ensure that the high conservation of IEM-associated metabolites is not driven
by single specific metabolite pathways, we identified five metabolic pathways in
KEGG that include three or more [EM associated metabolites: "alanine, aspartate,
and glutamate metabolism,” "arginine biosynthesis," “phenylalanine metabo-
lism," "valine, leucine, and isoleucine biosynthesis,” and "valine, leucine, and
isoleucine degradation.” We then repeated the ANOVA test five times, excluding
each one of the above pathways in turn.

Forthe expanded disease association analysis, we collected chemical biomark-
ers from the MarkerDB database (32). The database includes the known chemical
biomarkers of a total of 407 human diseases, all of which belong to at least one
of 20 broad disease conditions presentin MarkerDB. Note that all conditions that
are listed in the categories "others” (such as pregnancy) and "exposure” (such as
smoking) only were omitted from further analysis, as most of these are not strictly
disease conditions. In total, 106 metabolites in our dataset were associated with
at least one broad disease condition.

To probe the associations between conservation score and involvement of
metabolites in broad disease conditions, we focused on 11 broad disease condi-
tions, each of which is associated with at least 10 metabolites in our dataset. The 11
broad conditions include cancers, cardiovascular system disorders, digestive system
disorders, endocrine disorders, germ line disorders, hematological and lymphatic
disorders, immune disorders, mental and behavioral disorders, metabolic disor-
ders, nervous system disorders, and urinary system disorders. Because the same
metabolite might be involved in multiple broad disease conditions, we used a
multivariate approach to determine which disease conditions are significantly asso-
ciated with MCS while controlling for the effects of other disease conditions. First,
we determined which broad disease conditions’ biomarkers are significantly more
conserved than nonbiomarker metabolites using univariate two-sided Wilcoxon
rank-sum tests (P < 0.05 in at least three out of the four organs). Then, we deter-
mined which of the remaining disease conditions show significant independent
associations with conservation score using a multivariate linear regression model.

To estimate the extent to which metabolites associated with metabolic
disorders in MarkerDB can be predicted based on MCS, we first calculated an
aggregate conservation score for each metabolite that represents its level of
conservation across the four organs. This was achieved by first normalizing the
conservation scores in each organ (see Between-Organ Differences in MCS),
and then taking the median value across the four organs as an aggregate
MCS. We then built a classification model using logistic regression that pre-
dicts association with metabolic disorders using only the aggregate MCSs. We
then evaluated the prediction accuracy of the classifier by a receiver operating
characteristics (ROC) curve analysis and by calculating AUC using the R package
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"ROCR" (56).To test the relationship between a metabolite’s conservation score
and the number of associated diseases, we used Spearman's correlation. This
analysis included all specific metabolite-disease associations from MarkerDB,
not just those involving the 11 broad disease condition categories.

Metabolome Conservation in the Drosophila Genus. Metabolomics data of 92
nonlipid metabolites measured in 11 Drosophila species (D. ananassae, D. yakuba,
D. erecta, D. melanogaster, D. simulans, D. sechellia, D. pseudoobscura, D. persimilis,
D. willistoni, D.virilis, and D. mojavensis) and the phylogenetic tree describing the evo-
|utionary relationship between the species were obtained from ref. 35. Conservation
scores were computed as described above (see "Calculating MCSs") (35).

Absolute metabolite concentrations of 35 nonlipid metabolites, as quantified
by NMR metabolomics, were obtained from ref. 36. We used the metabolite
concentrations measured in whole D. melanogaster larvae samples, in order to
best match the samples used in ref. 35. Of these 35 metabolites, 24 overlapped
between the datasets.

Data, Materials, and Software Availability. All data associated with this study
are available in the supporting information. Data and code associated with the
systems modeling work is available on GitHub (https://github.com/pappb/
Liska-et-al-Principles-of-metabolome-conservation) (57).
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