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Abstract. We prove asymptotic formulas for the expectation of the vertex

number and missed area of uniform random disc-polygons in convex disc-

polygons. Our statements are the r-convex analogues of the classical results
of Rényi and Sulanke [10] about random polygons in convex polygons.

1. Introduction and results

Let K be a convex body (compact convex set with non-empty interior) in
d-dimensional Euclidean space Ed, and let Xn = {x1, . . . , xn} be independent
random points from K chosen according to the uniform probability distribution
(the Lebesgue measure in K normalised by the volume of K). The convex hull
K∗n = [Xn] of Xn is a (uniform) random polytope in K. The behaviour of the
geometric properties of K∗n have been investigated extensively. In particular, the
study of the asymptotic properties of K∗n started when, in the plane, Rényi and
Sulanke [9, 10] determined the behaviour of the expectations of the vertex number
of K∗n and the Area(K \ K∗n) missed by K∗n, as n → ∞ in the case when K is
convex polygon or a sufficiently smooth disc. For a detailed overview of known
results about this classical model we refer to the surveys by Bárány [2], Reitzner
[8], Schneider [13], and the references therein.

In this paper we work in the Euclidean plane E2 and consider a modification of
the classical probability model of random polygons in which we use intersections of
congruent circles to generate an analogue of the classical convex hull.

Let B denote the origin centred closed unit ball of E2, and let S1 = ∂B be its
boundary. For a fixed r > 0, an r-disc-polygon is a compact convex set in E2 that is
bounded by a finite number of radius r circular arcs. Let X ⊂ E2 be a finite point
set that is contained in a closed circle of radius r. The intersection of all radius r
closed circular discs that contains X, denoted by [X]r, is an r-disc-polygon. The
vertices and edges of a disc-polygon are defined in the natural way. It is known,
see, for example, [4] that if P is an r-disc-polygon and X ⊂ P , then [X]r ⊂ P .
Furthermore, for each boundary point x ∈ ∂P , there exists a point v ∈ E2 such
that x ∈ rS1 + v and P ⊂ rB + v. We call such rB + v a supporting disc of P .
Note that if x is a vertex of P , then there are infinitely many vectors v with this
property, therefore, in this case the supporting disc is not unique.

Let P be an r-disc-polygon in E2, and let Xn = {x1, x2, . . . , xn} be a sample
of n independent random points in P chosen according to the uniform probability
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distribution. The closed r-hull P rn = [Xn]r is a uniform random r-disc-polygon in
P .

Let f0(·) be the number of vertices of a convex (disc-)polygon, and let Area(·)
denote the area. In [10] Rényi and Sulanke proved that if P is a (classical) convex
polygon, then

lim
n→∞

Ef0(P ∗n)

lnn
=

2

3
f0(P ).(1)

In fact, their formula is more precise than (1) but we state it here in this simpler
form as it fits the following discussion better. It is a natural question: what is the
asymptotics of Ef0(P rn) if P is a r-disc-polygon? Our main result is the following
theorem that answers this question:

Theorem 1. If P is a convex r-disc-polygon different from rB, then

(2) lim
n→∞

Ef0(P rn)

lnn
=

2

3
f0(P ),

and

(3) lim
n→∞

nEArea(P \ P rn)

lnn
=

2

3
f0(P ) Area(P ).

The case P = rB is rather different, and it was treated in Theorem 3.1 in [6],
where we showed that Ef0(P rn) converges without any normalisation.

The quantity Area(P \ P rn) is often called the missed area of P , and the limit
formula (3) follows from (2) by the r-convex analogue of Efron’s identity, cf. [6].
Subsequently, we will prove (2) in detail.

We would like to point out that our argument is very different from the one
used by Rényi and Sulanke in [10], where affine invariance played a key role in
the proof of (1). This is not an option in our case as the model is not invariant
under affine transformations. Therefore, in order to evaluate (13), one needs to use
techniques that are more essentially based on the geometric properties of the model.
This extra geometric information is described in Section 2 and it mainly concerns
the behaviour of small disc-caps which determines how to divide the domain of
integration in (13).

It is a natural question to ask how Theorem 1 is related to the corresponding
classical result (1) of Rényi and Sulanke [9]. Our method can also be used, with
some modifications, to prove (1). However, whether (2) implies (1) in the limit as
r →∞ is unclear.

We call a compact convex set K ⊂ E2 R-convex (the terms R-spindle convex and
R-hyperconvex are also used in the literature), if it is the intersection of all radius
R closed circular discs that contain K. This condition is known to be equivalent to
the property that K slides freely in a circle of radius R, that is, for any x ∈ RS1

there exists a vector p ∈ E2 with x ∈ K+p ⊂ RB. The concept of R-convexity goes
back, at least, to Mayer [7], and it has been investigated recently quite intensively.
The importance of R-convexity comes, in part, from its connection to various old
problems in which intersections of congruent balls appear, like the Kneser-Poulsen
conjecture. For more information on the properties of R-convex sets we refer to [4],
[6] and the references therein.

Our probability model has a natural modification for R-convex discs. If K is
an R-convex disc for some R ≤ r, and Xn = {x1, . . . , xn} are independent random
points chosen from K according to the uniform probability distribution, then it is
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known that the random r-disc-polygon Kr
n = [Xn]r is contained in K, see [6]. The

asymptotic behaviour of the expectations Ef0(Kr
n) and EArea(K \Kr

n) have been
determined by Fodor, Kevei and Vı́gh in [6] in the case when K is a convex disc
such that it boundary ∂K is C2

+ and r > 1/κm, where κm = minx∈∂K κ(x) > 0 and
κ(x) denotes the curvature of ∂K at x. It is known that under these conditions
K is R-convex for R ≥ 1/κm, see [12, Theorem 3.2.12 on p. 164]. The following
statements were proved in [6]:

lim
n→∞

Ef0(Kr
n) · n−1/3 = 3

 
2

3 Area(K)
Γ

Å
5

3

ã
c(K, r),(4)

lim
n→∞

EArea(K \Kr
n) · n2/3 =

3

 
2 Area(K)2

3
Γ

Å
5

3

ã
c(K, r),(5)

where

c(K, r) =

∫
∂K

Å
κ(x)− 1

r

ã1/3

dx.

The symbol Γ(·) denotes Euler’s gamma function, and integration on ∂K is with
respect to arc-length.

The formulas (4) and (5) are generalisations of the corresponding classical results
of Rényi and Sulanke from [9] in the sense that the asymptotic formulas of Rényi
and Sulanke follow from (4) and (5) in the limit as r →∞, see Section 3 of [6] for
details.

Finally, we conjecture that for any r-convex disc K ⊂ E2 different from rB the
following inequalities hold for any n

c1(K) log n < Ef0(Kr
n) < c2(K)n1/3,(6)

for suitable constants c1(K) and c2(K), and that the orders in (6) are optimal: the
left-hand inequality of is realised by r-disc-polygons and the right-hand inequality
by smooth r-convex discs. We note that, due to the different behaviour of rB, it
has to be excluded from the inequality (6), cf. Theorem 1.3 in [6].

The corresponding inequalities in the classical convex case for the number fk(·)
of k-dimensional faces were established using floating bodies and the Economic Cap
Covering Theorem by Bárány and Larman [3] and by Bárány [1]: for any convex
body K ⊂ Ed it holds that

C1(d)(log n)d−1 < Efk(K∗n) < C2(d)n
d−1
d+1(7)

for suitable constants C1(d) and C2(d) and any n. Here the left-hand inequality is
of right order for polytopes and the right-hand one for smooth convex bodies.

Unfortunately, the analogue of the Economic Cap Covering Theorem is not
known for the r-convex case, even in the plane. We conjecture that it is true,
however, the methods used in its proof do not seem to translate to the r-convex
setting.

2. Caps of disc-polygons

As both (2) and (3) are invariant under simultaneous scaling of K and the
generating circles of P rn , we may and do assume from now on that r = 1 and omit
r from the notation. Accordingly, we use the [X]S symbol for the 1-hull of the set
X. In particular, the 1-hull of two points x, y ∈ E2, with |x − y| ≤ 2 is denoted
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by [x, y]S and is called the spindle of x and y. Subsequently, a disc-polygon always
means a convex 1-disc-polygon.

Let P be a disc-polygon and let B◦ denote the origin centred unit radius open
circular disc. A subset D of P is a disc-cap of P if D = P \ (B◦+ p) for some point
p ∈ E2. Note that D is either an edge of P or ∂B + p intersects ∂P in at most
two points, and D contains at least one vertex of P . The boundary of a nonempty
disc-cap D consists of at most two connected arcs: one arc is a subset of ∂P , and
the other arc is a subset of ∂B + p.

For x ∈ ∂P , let N (x) ⊂ S1 denote the set of all outer unit normal vectors of P
at x. If x ∈ ∂P is not a vertex of P , then N (x) = {ux} contains a single element.
If x is a vertex, then N (x) determines a closed and connected arc of S1.

Lemma 2. Let P be a disc-polygon. Let D = P \ (B◦ + p) be a non-empty disc-
cap of P with non-empty interior. Then there exists a unique unit vector u and a
number t > 0 such that B + p = B + x0 − (1 + t)u, where x0 is the unique point on
∂P with u ∈ N (x0).

We call u the outer unit normal, x0 the vertex, and t the height of D. Lemma 2
was proved in [6] for the C2

+ case, and in higher dimension in [5] also for the C1 case.
Essentially the same argument works here too but for the sake of completeness we
provide a short proof.

Proof. Let x0 be a point of P whose distance from p is maximal. First we show that
x0 is unique. Assume on the contrary that x1 6= x0 are both at maximal distance
from p. Then the spindle [x0, x1]S is also in P , and one of the midpoints of the unit
circular arcs connecting x0 and x1 is farther from p than x0, a contradiction.

Let u = (x0 − p)/|x0 − p| ∈ S1. The line through x0 that is perpendicular to u
clearly supports P at x0 hence u ∈ N (x0). Thus, B + p = B + x0 − (1 + t)u for
some t > 0.

On the other hand, if B + p = B + x − (1 + t)u for some x ∈ ∂P , u ∈ N (x)
and t > 0, then B + x− u supports P at x, and (1 + t)B + p also supports P at x.
This yields that x is the farthest point of P from p, and the uniqueness of x0 and
u follows. �

Let D(u, t) denote the disc-cap with normal u and height t. (Due to the strict
convexity of P , u determines x0 uniquely.) Note that for each u ∈ S1, there exists
a maximal positive constant t∗(u) such that (B + xu − (1 + t)u) ∩ P 6= ∅ for all
t ∈ [0, t∗(u)]. Here xu is the unique point in ∂P with u ∈ N (xu). Let A(u, t) =
Area(D(u, t)) and let `(u, t) denote the arc-length of ∂D(u, t)∩(∂B+xu−(1+t)u).

We recall the following notations from [6]. Let x and y be two points from P .
The two unit circles passing through x and y determine two disc-caps of P , which
we denote by D−(x, y) and D+(x, y), respectively, such that Area(D−(x, y)) ≤
Area(D+(x, y)). For brevity of notation, we write A−(x, y) = Area(D−(x, y)) and
A+(x, y) = Area(D+(x, y)) and simply A = Area(P ).

Lemma 3. Let P be a disc-polygon with at least three vertices. Then there exists
a constant δ0 > 0, depending only on P , such that A+(x1, x2) > δ0 for any two
distinct points x1, x2 ∈ P .

Proof. We note that [x1, x2]S cannot cover P because P is not a spindle. Thus,
by compactness, there exists a constant δ0 > 0, depending only on P , such that
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Figure 1. Computing `1

Area(P \[x1, x2]S) > 2δ0 for any two distinct points x1, x2 ∈ P . Now, the statement
of the lemma follows from the fact that P = D−(x1, x2)∪D+(x1, x2)∪[x1, x2]S . �

Note that the statement of Lemma 3 does not hold if P has only two vertices,
that is, if it is a spindle P = [v1, v2]S .

Lemma 4. Let P = [v1, v2]S be a disc-polygon with two vertices. Then there
exists constants c = c(P ) and δ = δ(P ) such that if x1, x2 ∈ P with A−(x1, x2) ≤
A+(x1, x2) < δ then

|x̄1x2| > c,

where |x̄1x2| denotes the arc-length of the shorter unit circular arc joining x1 and
x2.

Proof. Similarly as before,

Area [x1, x2]S ≥ Area [v1, v2]S −A−(x1, x2)−A+(x1, x2) > Area [v1, v2]S − 2δ,

and the assertion follows. �

Assume that for a sufficiently small t the cap D(u, t) = P \ (B◦ + p) contains a
single vertex v of P , and denote by e and e∗ the two edges of P that meet at v.
Let c be the centre of the unit circle that determines e, and n = v − c. The circle
S1 + p intersects S1 + c in y, and the segment pv in z, cf. Figure 1. Let `1 denote
the shorter circular arc connecting y and z, and let β be the angle of u and n.

Lemma 5. With the notation above

(8) lim
(t,β)→(0+,0+)

Å
sin `1 · sinβ

t
− cos `1

ã
= 0.

Proof. We use the notations of Figure 1.
By the Pythagorean theorem

|y − c|2 = 1 = (sin `1 + sinβ)2 + (cos `1 − (1 + t− cosβ))2.
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After simplifying and rearranging the terms we get

sin `1 sinβ + (cos `1 − 1)(cosβ − 1) = (cosβ + cos `1 − 1)t− t2

2
.

Dividing by t > 0 and using the sin2 x+ cos2 x = 1 identity lead to

(9)
sin `1 · sinβ

t

Å
1 +

sin `1 · sinβ
(1 + cos `1)(1 + cosβ)

ã
= cosβ + cos `1 − 1− t

2
.

As β → 0+ and t→ 0+ the claim follows. �

Keeping β > 0 fixed, from (9) we obtain

(10) `1(β, t) ∼ t cotβ, as t→ 0 + .

Let A1(β, t) denote the area of the set bounded by the arcs vy and yz, and the
segment vz, see Figure 1.

Lemma 6. For any ε > 0 there exists δ > 0 such that if t ≤ δβ and β < δ, then

1− ε
2

t`1(β, t) ≤ A1(β, t) ≤ 1 + ε

2
t`1(β, t).

Proof. First note that the assumptions and Lemma 5 imply that `1 is small. Let i
denote the length of the arc ıvy, and put f(x) = x− sinx. Then f(i)/2 is the area
of the set between the arc ıvy and the segment vy. Therefore,

(11) A1(β, t) = Area(yvz) +
1

2
(f(i)− f(`)).

We claim that

f(i)− f(`1) ≤ εt`1.

By the triangle inequality in yvz we obtain

2 sin
i

2
− 2 sin

`1
2
≤ t.

We have

t ≥ 2 sin
i

2
− 2 sin

`1
2

= (i− `1) cos ξ ≥ i− `1
2

,

where ξ ∈ (`1/2, i/2). Thus, i− `1 ≤ 2t. Furthermore, with ξ′ ∈ (`1, i)

(12) f(i)− f(`1) = (i− `1)f ′(ξ′) ≤ (i− `1)
i2

2
≤ i2t ≤ 4`21t,

where, in the last inequality we used that i ≤ 2`1. Since `1 is small, for small
enough δ > 0

(1− ε/2)
t`1(β, t)

2
≤ Area(yvz) ≤ (1 + ε/2)

t`1(β, t)

2
,

thus the result follows from (11) and (12). �
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3. Proof of Theorem 1

We only prove (2) concerning the vertex (or edge) number. The asymptotic
formula (3) for the missed area follows directly from the Efron-type identity (5.10)
in [6].

First we assume that P has at least 3 vertices. Observe that the pair of random
points x1, x2 determines an edge of Pn if and only if at least one of the disc-caps
D−(x1, x2) and D+(x1, x2) does not contain any other points from Xn. Thus, using
the notation from [9],

E(f0(Pn)) =

Ç
n

2

å
Wn,

where

(13) Wn =
1

A2

∫
P

∫
P

ñÅ
1− A−(x1, x2)

A

ãn−2

+

Å
1− A+(x1, x2)

A

ãn−2
ô

dx1dx2.

Note that if all points of Xn fall into the closed spindle spanned by x1 and x2, then
x1 and x2 contribute two edges to Pn (since in this case [Xn]S = [x1, x2]S), and
accordingly, this event is counted in both terms in the integrand of (13).

As f0(P ) ≥ 3 is assumed, Lemma 3 yields that

lim
n→∞

Ç
n

2

å
1

A2

∫
P

∫
P

Å
1− A+(x1, x2)

A

ãn−2

dx1dx2

≤ lim
n→∞

Ç
n

2

å
1

A2

∫
P

∫
P

e−
δ0
A (n−2)dx1dx2

= lim
n→∞

Ç
n

2

å
e−

δ0
A (n−2) = 0.

Thus, the contribution of the second term of (13) is negligible, hence, in what
follows, we will consider only the first term. Note that a similar argument yields
that in the first term of (13) it is enough to integrate over pairs of random points
x1, x2 such that A−(x1, x2) < δ0. Furthermore, the same conclusion holds for any
fixed δ ≤ δ0. Let 1(·) denote the indicator function of an event. Then

(14) lim
n→∞

E(f0(Pn))
1

lnn

= lim
n→∞

1

lnn

Ç
n

2

å
1

A2

∫
P

∫
P

Å
1− A−(x1, x2)

A

ãn−2

1(A−(x1, x2) < δ0)dx1dx2.

Now, we re-parametrise the pair (x1, x2) as follows, see [6] and [11]. Let

(15) (x1, x2) = Φ(u, t, u1, u2),

where u, u1, u2 ∈ S1 and 0 ≤ t ≤ t0(u). Here, for u ∈ S1 we choose t0(u) > 0 to be
the largest value such that Area(D(u, t)) < δ0 for t ≤ t0(u), with δ0 from Lemma
3. Thus

D(u, t) = D−(x1, x2),

and

(x1, x2) = (xu − (1 + t)u+ u1, xu − (1 + t)u+ u2).

Note that u1 and u2 are the unique outer unit normal vectors of ∂B+xu−(1+t)u at
x1 and x2, respectively. This yields that, for fixed u and t, both u1 and u2 are in the
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same arc of length `(u, t) in S1. We denote this arc by L(u, t). Since A−(x1, x2) <
δ0, D−(x1, x2) is uniquely determined by Lemma 3. Now, the uniqueness of the
vertex and height of a disc-cap guarantees that Φ is well-defined, bijective, and
differentiable on a suitable domain of (u, t, u1, u2), cf. [6].

Let v0, . . . , vk−1 denote the vertices of P labelled cyclically on ∂P in the positive
direction, and let N (vi) = n̆imi ⊂ S1, which is a closed arc of S1. Let r : [0, 2π)→
S1 be the usual parametrisation of the unit circle, and we introduce αi = r−1(ni),
βi = r−1(mi), for an arbitrary u ∈ S1 we use β = r−1(u), and for simplicity we
write D(β, t) = D(r(β), t), etc. accordingly. Put

N1 = ∪k−1
i=0N (vi) ⊂ S1, N2 = S1\N1,

and

B1 = {(x1, x2) ∈ P 2 : u ∈ N1, where D(u, t) = D(x1, x2)}, B2 = P 2\B1.

The same calculation as in the Appendix of [6] yields that the Jacobian |JΦ| of Φ
satisfies

(16) |JΦ(u, t, u1, u2)| =
®

(1 + t)|u1 × u2|, if u ∈ N1,

t|u1 × u2|, if u ∈ N2.

We note that |u1×u2| equals the sine of the length of the unit circular arc between
x1 and x2 on the boundary of D(u, t).

First, we show that the part of the integral in (14) on B2 is negligible. No-
tice that if u ∈ N2, then for any t > 0 the length `(u, t) is large, say `(u, t) >
1
2 min{emin,

π
2 } = c, with emin being the length of the shortest edge of P . Here

and later on, c, C are strictly positive generic constant, whose exact value is not
important and can be different at each appearance. Therefore,

(17) A(u, t) > tc, u ∈ N2, t > 0.

Note that the height t0(u), defined after (15), is uniformly bounded: 0 < t1 ≤
t0(u) ≤ t2. Using (16) and (17) we have∫ ∫

B2

Å
1− A−(x1, x2)

A

ãn−2

1(A−(x1, x2) < δ)dx1dx2

=

∫
N2

∫ t0(u)

0

∫
L(u,t)

∫
L(u,t)

Å
1− A(u, t)

A

ãn−2

t|u1 × u2|du1du2 dtdu

=

∫
N2

du

∫ t0(u)

0

Å
1− A(u, t)

A

ãn−2

t(`(u, t)− sin `(u, t))dt

≤ C
∫ t2

0

(1− ct)n−2tdt = O(n−2).

We also used that t2 can be chosen sufficiently small to guarantee that ct2 < 1.
Furthermore, the variables u1 and u2 appear only in the |u1 × u2| term, thus the
inner double integral can be evaluated explicitly. In summary, the integral on B2

is negligible.
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Next we deal with the part of the integral in (14) on B1. We have that∫ ∫
B1

Å
1− A−(x1, x2)

A

ãn−2

1(A−(x1, x2) < δ)dx1dx2

=

∫
N1

du

∫ t0(u)

0

Å
1− A(u, t)

A

ãn−2

(1 + t)(`(u, t)− sin `(u, t))dt.

Replacing t0(u) with t1 we lose a negligible part of the integral, as before.
We split the integral further according to the vertices. Fix ε > 0 small enough.

If β ∈ [αi + ε, βi − ε], i = 0, 1 . . . , k − 1, then by (10) it follows that

`(β, t) ∼ t(cot(β − αi) + cot(βi − β)).

Since β ∈ [αi + ε, βi− ε], thus A(β, t) ∼ t`(β, t)/2 ≥ ct2 as t→ 0+, uniformly in β.
Therefore, for a fixed ε > 0, for each i = 0, 1, . . . , k − 1, it holds that∫ βi−ε

αi+ε

dβ

∫ t1

0

Å
1− A(β, t)

A

ãn−2

(1 + t)(`(β, t)− sin `(β, t))dt

≤ C
∫ t1

0

(1− ct2)nt3dt = O(n−2).

Therefore, the main contribution of the integral (14) comes from the corners.

For simplicity, choose the vertex v0 and assume that α0 = 0. We determine the
contribution of the integral on β ∈ (0, ε). Introduce the notation

I =

∫ ε

0

dβ

∫ t1

0

Å
1− A(β, t)

A

ãn−2

(1 + t)(`(β, t)− sin `(β, t))dt.

Let δ > 0 be a fixed small number, to be determined later. We split I as follows

I1 =

∫ ε

0

dβ

∫ t1

δβ

Å
1− A(β, t)

A

ãn−2

(1 + t)(`− sin `) dt,(18)

I2 =

∫ ε

0

dβ

∫ δβ

0

Å
1− A(β, t)

A

ãn−2

(1 + t)(`− sin `) dt.(19)

First we show that I1 is negligible for any δ > 0 and ε > 0.
To simplify notation, put `1 = `1(β, t) and `2 = `− `1 (as in Lemma 5), and let

Ai be the area corresponding to `i, i = 1, 2 (see Figure 2).
We note that `2 is small, since it follows from (10) that

(20) `2(β, t) ∼ t cot(β0 − β) as t→ 0+,

uniformly in β ≤ ε.
Now assume that t > δβ and `1 < δ/2. Then

sin `1 sinβ

t
<

δ
2β

δβ
=

1

2
,

which contradicts Lemma 5 if δ is sufficiently small. Therefore

(21) `1(β, t) ≥ δ/2, if t ≥ δβ.

Thus D(β, t) contains a triangle with base of length t and height at least δ/4 (see
Figure 2), implying

(22) A(β, t) ≥ A1(β, t) > ct.
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Figure 2.

We obtain that

I1 ≤ 2

∫ ε

0

dβ

∫ t1

δβ

Å
1− A(β, t)

A

ãn−2

dt

≤ 2

∫ t1

0

t

δ
(1− ct)n−2

dt = O(n−2),

which proves that I1 is negligible.
Finally, we estimate I2, which carries the weight of the integral in (13). Let

ε1 > 0 be fixed. We apply (20) and Lemmas 5 and 6, and we choose δ > 0 and
ε > 0 small enough such that

(1− ε1)
t3

6
≤ t− sin t ≤ (1 + ε1)

t3

6
, t ∈ [0, δ],

(1− ε1)
t

β
≤ `(β, t) ≤ (1 + ε1)

t

β
, t/δ ≤ β ≤ ε,

(1− ε1)
t2

2β
≤ A(β, t) ≤ (1 + ε1)

t2

2β
, t/δ ≤ β ≤ ε.

Substituting y = t2(1− ε1)/(2Aβ) =: d1t
2/β and changing the order of integration

yield

I2 ≤
∫ ε

0

dβ

∫ δβ

0

Å
1− (1− ε1)t2

2βA

ãn−2
t3(1 + ε1)3

6β3
(1 + δε)dt

=
(1 + δε)(1 + ε1)3

12 d2
1

∫ ε

0

dβ

∫ δ2d1β

0

(1− y)n−2 y

β
dy

=
(1 + δε)(1 + ε1)3

12 d2
1 n

2

∫ nδ2εd1

0

(
1− x

n

)n−2

x
(
ln(εδ2d1n)− lnx

)
dx

∼ lnn (1 + δε)(1 + ε1)3

12 d2
1 n

2
as n→∞.

Since ε1 > 0 is arbitrary, and the lower bound can be obtained by an analogous
argument, we have obtained that

(23) I2 ∼
A2 lnn

3n2
as n→∞.
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Since at each vertex we have twice the contribution of I2, the statement follows
when f0(P ) ≥ 3.

To finish the proof we need to deal with the case in which f0(P ) = 2. By
Lemma 4, if both A−(x1, x2) and A+(x1, x2) are small, then ` is larger than an
absolute constant, and this part of the integral can be estimated similarly to I1.
The rest of the argument remains valid in this case as well.
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