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We propose a novel many-body framework combining the density matrix renormalization group (DMRG) 
with the valence-space (VS) formulation of the in-medium similarity renormalization group. This 
hybrid scheme admits for favorable computational scaling in large-space calculations compared to 
direct diagonalization. The capacity of the VS-DMRG approach is highlighted in ab initio calculations 
of neutron-rich nickel isotopes based on chiral two- and three-nucleon interactions, and allows us 
to perform converged ab initio computations of ground and excited state energies. We also study 
orbital entanglement in the VS-DMRG, and investigate nuclear correlation effects in oxygen, neon, and 
magnesium isotopes. The explored entanglement measures reveal nuclear shell closures as well as pairing 
correlations.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

Low-energy nuclear theory has seen dramatic progress in the 
ab initio description of nuclei based on chiral effective field the-
ory (EFT) interactions and powerful many-body methods that can 
access nuclei up to 208Pb [1–4]. The use of EFTs enables consis-
tent two- and many-body interactions (and operators) [5–9] as 
well as theoretical uncertainty estimates from the EFT power-

* Corresponding authors.
E-mail addresses: alexander.tichai@physik.tu-darmstadt.de (A. Tichai), 

stefan@algorithmiq.fi (S. Knecht), atk@atomki.hu (A.T. Kruppa), 
legeza.ors@wigner.hu (Ö. Legeza), mocap@uoradea.ro (C.P. Moca), 
schwenk@physik.tu-darmstadt.de (A. Schwenk), werner.miklos@ttk.bme.hu
(M.A. Werner), zarand.gergely.attila@ttk.bme.hu (G. Zarand).
https://doi.org/10.1016/j.physletb.2023.138139
0370-2693/© 2023 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
counting expansion [10–12]. In medium-mass nuclei the many-
body Schrödinger equation is commonly solved using basis ex-
pansion methods that incorporate low-rank particle-hole exci-
tations in a systematic way from a suitably chosen reference 
state [13–16]. The development of methods with polynomial com-
putational scaling was key for advancing ab initio calculations to 
heavier systems [3,4,17–19]. Among these, the in-medium simi-
larity renormalization group (IMSRG) represents a powerful and 
flexible approach to efficiently target a broad range of nuclear 
observables [14,20–25]. However, the description of strongly cor-
related, open-shell systems poses significant challenges when a 
(symmetry-conserving) single-reference state does not capture the 
static correlations. This requires the development of novel expan-
sion schemes at tractable computational cost [1]. In this work, we 
use valence-space (VS) techniques where an active-space Hamilto-
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nian is decoupled from a closed-shell core and subsequently used 
in a large-space or shell-model diagonalization, giving access to 
a wide range of observables such as low-lying spectroscopy and 
transitions [21,23,26–29]. In ab initio calculations, open-shell sys-
tems are also targeted using either symmetry-broken [30–35] or 
multi-configurational reference states [22,36–39].

In other fields of many-body research such as condensed matter 
physics or quantum chemistry, the density matrix renormaliza-
tion group (DMRG) is well established as a powerful tool to treat 
strongly correlated quantum systems [40–43]. Previous studies in 
nuclear structure have focused on phenomenological shell-model 
applications [44–47] and open quantum systems using a Gamow 
basis [48,49]. However, the development of the DMRG to medium-
mass ab initio calculations has not been explored. This is the goal 
of this work.

In this Letter, we apply the DMRG approach in ab initio nuclear 
structure calculations of medium-mass nuclei for the first time. We 
use the VS-IMSRG to decouple a valence-space Hamiltonian, which 
is then used as input to large-scale DMRG calculations. The fa-
vorable scaling of the DMRG provides an efficient framework for 
accessing computationally challenging open-shell nuclei in a sys-
tematically controllable way. Moreover, entanglement properties of 
many-body system are accessible from orbital entropies and de-
rived quantities, thus proving a novel perspective to the emergence 
of structure from nuclear forces.

2. Valence-space DMRG approach

The central idea of this work is the combination of the DMRG 
with the valence-space formulation of the IMSRG. This gives rise 
to a hybrid many-body framework, which we refer to as valence-
space density matrix renormalization group (VS-DMRG). Starting 
from an initial Hamiltonian with two-nucleon (NN) and three-
nucleon (3N) interactions, the VS-IMSRG generates a valence-
space-decoupled Hamiltonian that is restricted to an active space 
of limited size [21,23]. While the use of a valence-space Hamil-
tonian is similar to the phenomenological shell model, with the 
VS-IMSRG this is derived from chiral EFT interactions without ad-
justments. During the IMSRG-evolution many-body operators of 
higher particle rank are truncated at the normal-ordered two-
body level, defining the IMSRG(2) truncation. The valence-space-
decoupled Hamiltonian HVS used as input for the DMRG calcula-
tion is represented in second-quantized form as

HVS =
∑

p

εp c†
pcp + 1

4

∑

pqrs

V pqrs c†
pc†

qcscr , (1)

where εp are the single-particle energies and V pqrs the (anti-
symmetrized) two-body matrix elements. The collective label p =
(np, lp, jp, mp, tp) gathers all quantum numbers of a single nu-
cleon: radial quantum number n, orbital angular momentum l, 
total angular momentum j and its projection m, and isospin pro-
jection t distinguishing protons and neutrons.

The initial VS-IMSRG decoupling is performed in a single-
particle space of 15 major harmonic-oscillator shells, i.e., emax ≡
(2n + l)max = 14, and the 3N interaction matrix elements are re-
stricted to e1 + e2 + e3 � E3max = 16. For all our calculations, we 
employ the 1.8/2.0 NN+3N Hamiltonian from Ref. [50], which is 
based on chiral EFT interactions. The three-nucleon interactions are 
taken into account by keeping only two-body contributions after 
normal ordering [51–53].

In the DMRG calculation we use the occupation-number repre-
sentation of an orbital, yielding a local Hilbert space with dimen-
sion d = 2. Therefore, each orbital is represented by two distinct 
occupation states σ , i.e. σ ∈ {0, 1}. The full Hilbert space of N
2

orbitals is then built from a tensor product of the local spaces, 
i.e., HN ≡ ⊗N

i=1Hi . The DMRG approach provides a variational pro-
cedure for the minimization of the ground-state energy (or the 
lowest energy for a given total angular momentum and parity) 
using a matrix product state (MPS) parametrization of the many-
body state (see, e.g., Ref. [41]), that eventually converges to the full 
configuration interaction (FCI) limit for a given Hilbert space. To 
this end, the nuclear orbitals are mapped onto a one-dimensional 
chain. This protocol is based on the two-orbital mutual information 
(see next section) of the orbitals to minimize long-range correla-
tions, i.e., to find a quasi-optimal ordering of the orbitals along the 
one dimensional DMRG topology [54,55].

The corresponding wave function of N orbitals is an N dimen-
sional tensor, the CI coefficient corresponding to a determinant 
σ = (σ1, σ2, . . . , σi, σi+1, . . . , σN) is expressed as a product of ma-
trices Aσi

i associated to each orbital i as |�〉 = ∑
σ Cσ |σ 〉, where

Cσ = Aσ1
1 Aσ2

2 . . . Aσi
i A

σi+1
i+1 . . . AσN

N . (2)

The dimension of the matrices in the MPS representation scales 
exponentially with the number of orbitals, such that truncations 
are required to keep the dimensions numerically tractable. In the 
DMRG algorithm the matrices Aσi

i are iteratively optimized. In an 
iteration step of the two-site DMRG variant the tensor space is 
split according to HN = H(left) ⊗ Hp ⊗ Hp+1 ⊗ H(right) where 
H(left) (H(right)) denote the left (right) blocks that are formed from 
precontracted A matrices to the left and right of the sites p and 
p + 1, respectively.

For a given site p, the MPS matrix is updated through a diago-
nalization of the neighboring block Hamiltonian and the maximal 
matrix dimension (M), also known as bond dimension, is kept be-
low a threshold value by keeping only those matrix components 
which correspond to highest Schmidt weights obtained via sin-
gular value decomposition. Therefore, the state’s components are 
obtained through a series of unitary transformations (“sweeps”) 
going through the orbital space forward from left to right, and 
then backward, until convergence is reached. The method’s intrin-
sic truncation error is thus set by M = dimH(left) = dimH(right)

corresponding to the dimension of the left/right blocks. Eventually, 
the size of the bond dimension to reach an acceptable convergence 
is in direct correspondence with the amount of quantum entan-
glement in the many-body state [42]. The DMRG convergence is 
substantially improved following the configuration-interaction dy-
namically extended active-space procedure, similar to the calcula-
tions performed in Ref. [47].

3. Entanglement and correlation measures

For the study of correlation effects in nuclear many-body sys-
tems, we explore a set of entanglement measures [56,57]. The 
total entropy [58] Itot ≡ ∑

p sp is obtained from the single-orbital 
entropy sp ≡ −Trρp lnρp , where ρp is the one-orbital-reduced 
density matrix of the orbital p obtained by tracing out all other or-
bitals except for p [59]. The single-orbital entropy is directly linked 
to the natural occupation numbers in the many-body state [60]. 
Therefore, systems with strong static correlations give rise to in-
creased values for sp and, consequently, Itot. In the case of weakly 
correlated systems, occupation numbers are either np ≈ 0 or 1, re-
flecting the existence of a dominant reference determinant, as ob-
tained in a mean-field calculation, for example. As a consequence, 
nuclei with shell closures will be accompanied by a local mini-
mum in the total entropy. To more cleanly disentangle correla-
tions for protons and neutrons, we define the proton (neutron) 
total entropy I(p)

tot (I(n)
tot ) where only single-orbital entropies of a 

given particle species are summed over. Correlations among pairs 
of orbitals can be further studied from the entanglement entropy 
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Fig. 1. Energies of the ground state (filled) and first 2+ state (open symbols) 
in 78Ni calculated from the VS-DMRG and CI for corresponding many-body-
space dimension. The VS-DMRG results are obtained for bond dimensions M =
256, 512, 1024, 2048, 4096, 8192, 10240, while CI employs a particle-hole trunca-
tion with Tmax = 3, 4, 5, 6, 7. The full valence-space dimension is given by the ver-
tical line (Full CI). Numbers (horizontal lines) correspond to extrapolated VS-DMRG 
energies.

spq ≡ −Trρpq lnρpq using the two-orbital reduced density matrix 
ρpq . Combining single- and two-orbital entropies leads to the mu-
tual information, I p �=q ≡ sp + sq − spq [54]. Since matrix elements 
of ρpq are expressed in terms of two-orbital correlation functions, 
also known as generalized correlation functions [61], spq can be 
viewed as a weighted average of the corresponding correlations. 
Subtraction of sp and sq when I pq is calculated is analogous to 
the usual subtraction of the unconnected parts of the two-orbital 
correlation functions. Entanglement studies in nuclear theory have 
been performed in shell-model applications [47,62] and in no-core 
calculations of light systems [63]. We emphasize that the entan-
glement measures are of non-observable character, as they depend 
on the nuclear Hamiltonian and the many-body basis (see, e.g., 
Refs. [64,65]). Thus, we focus on their qualitative behavior.

4. Neutron-rich nickel isotopes from VS-DMRG

To show the power of the VS-DMRG, we apply this new ap-
proach to the description of neutron-rich nickel isotopes that are 
attracting significant experimental attention, e.g., with the recent 
discovery of the doubly magic nature of 78Ni [67]. In fact, ab ini-
tio calculations approaching 78Ni require additional truncations of 
the configuration interaction (CI) or shell model space when ex-
ploring a 0h̄ω valence space on top of a 60Ca core.1 In this work, 
the CI calculations haven been performed using the KSHELL [68]
and BIGSTICK [69] codes, while the DMRG calculations together 
with quantum-information-based analysis tools used the DMRG-
Budapest program package [70].

In Fig. 1 we compare large-scale CI and VS-DMRG calculations 
for 78Ni based on the same VS-IMSRG interaction as in Ref. [67]. 
For 78Ni, the FCI dimension is 2.3 · 1011, while our largest CI calcu-
lations involved 1.9 · 109 configurations employing a truncation at 
Tmax = 7 particle-hole (ph) excitations. In contrast, the dimension 
of the DMRG space increases only gradually, and is well tractable 
even for the largest considered bond dimension M = 10240, with 

1 Reference [67] quotes the 2+ energy for 78Ni to be E�
2+ = 3.34 MeV for includ-

ing up to Tmax = 7 particle-hole excitations. In our studies we confirmed that this 
was a misprint and calculations were performed up to Tmax = 6.
3

Fig. 2. Neutron, proton, and total entropies (top) and 2+ excitation energies (bot-
tom) along even-mass nickel isotopes. Entropies are calculated at bond dimension 
M = 10240 whereas for the excitation energies the bond dimension was varied be-
tween M = 256 − 10240. Experimental values are taken from Ref. [66].

corresponding configuration space of ≈ 107, two orders of magni-
tude below the largest accessible CI dimension. The DMRG dimen-
sion is essentially the dimension of the space spanned by the two 
block spaces and the two orbitals, ∼ M2d2, further constrained by 
selection rules for parity, isospin and angular-momentum projec-
tion. Fig. 1 clearly shows that the VS-DMRG results for the ground 
and first 2+ excited states reveal a more robust convergence pat-
tern compared to the CI calculation. While the ground-state energy 
converges systematically in the CI case, there is still a sizeable lin-
ear trend present for the first excited 2+ state, making the extrap-
olation of the excitation energy challenging. This may potentially 
hint at relevant 8p8h excitations missing in the Tmax = 7 trun-
cation. In contrast, the VS-DMRG results converge systematically 
beyond M = 1024. Fitting a quadratic polynomial fextr.(1/M) =
a/M2 +b/M +c enables a robust extrapolation of the energies [42]. 
Other sweep-based and truncation error based extrapolation pro-
cedures have been successfully applied in condensed-matter and 
quantum chemistry applications [42,43,71]. Extrapolation uncer-
tainties are obtained by taking into account only the 3, 4, 5 data 
points corresponding to the largest bond dimensions, yielding a 
VS-DMRG estimate of E�

2+ = 3.007 ± 0.017 MeV. At much lower 
space dimensions, the VS-DMRG approach thus yields much lower 
uncertainties compared to CI (E�

2+ = 3.141 ± 0.205 MeV). For a 
given size of the many-body space the MPS wavefunction includes 
correlations much more efficiently compared to CI.

Next we study the emergence of shell structure from the per-
spective of the information entropy from our VS-DMRG calcula-
tions. Fig. 2 displays neutron, proton and total entropies and 2+
excitation energies for 70−80Ni. The total entropy shows a pro-
nounced kink for 78Ni consistent with its doubly magic nature. 
The proton contribution to the total entropy is small from 70Ni to 
78Ni and then exhibits a strong increase to 80Ni. We attribute this 
sudden increase of proton correlations to the onset of nuclear de-
formation effects. This is also consistent with the rapid transition 
from spherical to deformed ground states beyond 78Ni predicted 
in Ref. [67]. As expected from the VS-IMSRG results in Ref. [67], 
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Fig. 3. Neutron and proton entropies from VS-DMRG calculations for the oxygen 
chain (left) and for the evolution at N = 16 from the closed proton shell to 26Ne and 
28Mg (right). Vertical dashed lines indicate neutron shell closures. Total entropies of 
odd-mass nuclei are displayed as lighter symbols as they are for M J = 1/2.

the VS-DMRG reproduces nicely the high 2+ excitation energy in 
78Ni, with an improved result of E�

2+ = 3.01 MeV compared to the 
published VS-IMSRG excitation energy E�

2+ � 3.34 MeV. The dif-
ference to the experimental value of E�

2+ = 2.6 MeV is therefore 
significantly decreased for this 1.8/2.0 NN+3N Hamiltonian, and the 
difference is attributed to truncated three-body operators in the 
VS-IMSRG [67,72]. Finally, we note that the convergence with in-
creasing bond dimension M is significantly slower in 78Ni, which is 
consistent with the importance of higher n-particle-n-hole (npnh) 
correlations in the ground and excited states (see also Fig. 1).

5. Shell structure in sd-shell nuclei

Following 78Ni, we explore shell structure in the sd shell based 
on the total entropies obtained from VS-DMRG calculations us-
ing the VS-IMSRG decoupled Hamiltonian from the same 1.8/2.0 
NN+3N interactions. Fig. 3 shows the total neutron and proton 
entropies for the oxygen isotopes and the N = 16 isotones 26Ne
(Z = 10) and 28Mg (Z = 12). Since an sd-shell valence space is 
employed, the proton entropy for the oxygen isotopes is identically 
zero in all cases. For the even-mass oxygen isotopes one observes 
a pronounced kink in the single-orbital entropy at N = 16, indi-
cating the strong shell closure for 24O. A complementary analysis 
of the CI coefficients reveals that the ground state is dominated by 
the reference state (≈ 92%) with admixtures from 2p2h-excitations 
(≈ 7%), thus confirming the weakly correlated nature of the many-
body state. A less pronounced kink is observed in 22O where the 
d5/2 shell is closed. For odd-mass nuclei the entropy is lower 
compared to their neighbors with an additional neutron due to 
the presence of an unpaired nucleon. Note that the entropy of 
odd-mass nuclei depends on the particular value of the magnetic 
quantum number M J in the ground-state multiplet [73]. Here we 
consistently show the entropy values for M J = 1/2, but differences 
for different M J are small, �Itot ≈ 0.1, and thus do not affect our 
general conclusions. Finally, we note that the neutron entropy for 
27,28O vanishes due to the single Slater-determinant ground state 
in the sd shell.

The correlations of 26Ne and 28Mg both reveal an enhancement 
of the neutron total entropy induced by the presence of valence 
protons (Fig. 3, right panel). Both nuclei admit for more collective 
many-body states with enhanced mixing from 3p3h excitations 
(10%, 17% in 26Ne, 28Mg, respectively) and 4p4h excitations (12%, 
15%). Deformation effects present in neon and magnesium isotopes 
cannot be captured within a sd-shell valence space but require the 
inclusion for several major shells [35,74]. However, this poses chal-
lenges in the VS-IMSRG decoupling which is beyond the scope of 
the present paper and left for future studies [75].

A refined understanding of the individual correlation effects is 
obtained from the mutual information (MI). Fig. 4 shows the MI of 
4

the sd-shell orbitals for 24O, 26Ne, and 28Mg. In the case of even-
mass nuclei with Jπ = 0+ ground states, the MI for the differ-
ent m j orbital substates are degenerate. The large diagonal entries 
(black regions) in the proton-proton and neutron-neutron subblock 
reflect pairing correlations between time-reversed single-particle 
states [47]. In 24O, the homogeneous strength in the neutron-
neutron blocks d5/2-d3/2 and s1/2-d3/2, as well as the uniform MI 
background in the d3/2-d3/2 blocks can be understood in terms of 
nucleon pair fluctuations in generalized seniority-like states [62]. 
The proton-proton block of the MI in 26Ne can be similarly un-
derstood, and is very similar to the neutron-neutron-block in 18O
(not shown). The emerging structures in the proton-neutron blocks 
in 26Ne and 28Mg share common features, e.g., the formation of 
neutron-proton pairs built from m j = ±5/2 states. Moreover, both 
nuclei admit for enhanced couplings between neutron d3/2 and 
proton d5/2 states. Similar pairing correlations were observed in 
recent no-core studies of 4,6He [63].

6. Conclusion and outlook

In this Letter we performed the first ab initio DRMG calcula-
tions of medium-mass nuclei based on chiral NN+3N interactions. 
Combining the DMRG with the VS-IMSRG leads to a powerful hy-
brid many-body approach, the VS-DMRG, that efficiently accounts 
for static and dynamic correlation effects. The use of an MPS 
parametrization of the many-body state is computationally supe-
rior to conventional CI expansions, and enables convergence in 
large-scale valence-space applications. As shown for 78Ni and in 
the sd shell, the VS-DMRG through its entropy-based entanglement 
measures also provides new insights to shell structure and correla-
tions in nuclei. Moreover, the VS-DMRG is ideally suited for explor-
ing systems that are not captured starting from a single-reference 
state, such as deformed nuclei. However, this requires the use of 
multi-shell decoupling in the VS-IMSRG which is still an open 
area [75]. While the present focus was on the calculation of ener-
gies, the VS-DMRG framework can be naturally extended to other 
observables such as radii or electroweak transitions. For future de-
velopments, the use of a symmetry-restricted, i.e., J -scheme, for-
mulation of the VS-DMRG (see, e.g., Refs. [45,46]) will be helpful to 
cope with the increasing number of orbitals in large-scale applica-
tions. Furthermore, the study of multi-partite entanglement [76,77]
can provide insights to many-body correlations in nuclei.
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