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ON THE STATISTICAL EXAMINATION OF
CONTINUOUS STATE MARKOV PROCESSES. I*

MATYAS ARATO

Introduction

The statistical examination of stochastic processes has a history of only
twenty years. The first significant results were those of Mann and Wald [1];
they dealt with the estimation of parameters of an n-dimensional discrete station-
ary Gaussian Markov process. In this context the name of John von Neumann
must also be mentioned. He investigated one-dimensional discrete-time station-
ary Gaussian Markov processes, and he introduced the so-called serial correlation
coefficient. In the fifties the first survey, written by UIf Grenander [1], appeared.
His work was of fundamental importance first of all for the theory of continuous-
time processes; up to the present day it remains highly significant, which can be
illustrated, for example, by its recent translation into Russian and its publication
in book form. In 1948 A. N. Kolmogorov posed the problem of parameter esti-
mation for stationary Gaussian Markov processes as one of the most important
problems of the theory of stochastic processes. He wrote that the problem has
a definite meaning and a specific relevance only when investigating the parameters
as a whole and not one by one. A partial solution was provided in a paper by
Linnik [1]. Further results in this direction were obtained by Luvsanceren [1],
[2]. The complete solution of the problem as formulated by Kolmogorov and in
the form in which he had assumed it could be solved was given by the author of
the present paper in his dissertation [1].

In the fifties the theory of stochastic processes (or simply processes) went
through a period of intensive development, above all due to its applications in
radioelectronics and physics. It was during this period that the theory of proc-
esses developed within probability theory and become its nucleus. Recently a
valuable book on the statistical examination of Markov processes, written by
Patrick Billingsley [1], appeared; it deals mainly with discrete-time processes
and has no relation to the present paper.

In the present paper knowledge of elements of mathematical statistics and
the theory of stochastic processes is assumed, but nevertheless references will be
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provided whenever necessary. The restriction to Gaussian processes may at the
beginning seem essential to the reader, but, as can be seen in the relevant litera-
ture, research undertaken so far is in fact concerned only with this type of proc-
esses. Although many of the results obtained are also valid in other types of
processes, known applications usually meet conditions making the restriction only
to Gaussian processes possible. On the other hand, we shall see that even prob-
lems concerning Gaussian processes are much more complicated than when in-
dependent observations are made.

The present paper and its sequels are in the nature of a survey; they aim at
providing a complete description, and therefore they deal with parts of the theory
which are commonly known together with new results. The aim of the present
paper is to underline those special features of statistical problems in stochastic
processes which do not appear when dealing with sequences of independent ob-
servations. The most fundamental in this investigation, for example in estimation
of parameters, is the problem of asymptotic distribution of the parameter estima-
tors. The main difficulty here is that the unknown parameters may have values
not very different from those for which the process becomes singular (and in
applications mostly this case occurs). For singular processes the central limit
theorem is not valid, and therefore the distribution of estimators need not be,
uniformly in the parameter values, asymptotically normal (even if each parameter
separately has asymptotically normal distribution), which means that the limit
distribution cannot be used for construction of confidence limits. This is, of
course, only one way to formulate specific features of stochastic processes; other
possibilities yield the language of information theory.

These problems were suggested to me by A. N. Kolmogorov during my
postgraduate studies. His encouragement and constant help, together with valu-
able comments I received from Ja. G. Sinai, made it possible for me to finish my
thesis. I want to express here again my gratitude to both of them.

The present paper makes use of the basic results obtained in my thesis and
contains detailed proofs of results which have been published in previous papers
[2], [3] without proofs.

The Continuous-Time Stationary Normal One-Dimensional Case

§1. Characteristics of processes. Their physical
meaning and mathematical description
A significant number of physical processes can be described not by the
following differential equation:
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dx(t '
—% = —Ax(?) (A=0)

(with a solution x = xoe"“), but rather by a so-called stochastic differential
equation, which is written as

(1.1) dE(1) = — &R dt +dL(D), EL(= EE(N=0),

where {(7) is a Wiener process (a Gaussian Markov process with independent
increments); {(¢+ + 7) and £(?) are independent for 7 > 0. Except when other-
wise stated, we shall deal only with Gaussian processes. The meaning of the
above differential equation can be given with the help of the following integral
equation (£(¢) is its solution):

) EO—E) = ~4 [ ¢ ds+(0~ L),

where the integral is to be understood in the mean square sense; the existence
and uniqueness of the solution follows from general theorems (Doob [1]; IS [1]),
of course in the mean square sense.

The stochastic process described by (1.1) differs from the process described
by an ordinary differential equation in that damping is not steady but some per-
turbation is always present.

In the Wiener process, for example, the motion of a particle of a perfect
gas or fluid is described without taking into account the velocity of the particle,
but the Gaussian Markov process does take this velocity into account. Here it
should be mentioned that a procedure which takes into account the term caus-
ing small perturbations has previously been applied in the theory of differential
equations by Pontrjagin, Andronov and Vitt [1].

Equation (1.1) can be understood as an equation which describes the motion
of a particle with velocity &(r) under a stochastic external force with friction pro-
portional to its velocity. In a similar way £(¢) can be interpreted as a stochastic-
ally variable potential whose growth is proportional to the potential itself.

Since we have assumed that the process is of the Gaussian type and E&(¢) =

0, the process itself is uniquely determined by its covariance function. We shall L“’Wt

@awpreve—the—ﬁiiv;ng*knewmt«hé@mm;w
THEOREM 1. M one-dimensional Gaussian {{ocess (E£(®) = 0) is of Markov

N
type if and only if its /biﬁin R(s, 1) satisﬁ'eﬁ/t e condition
(1.2) R(s,%) =R(s, u) R(d,’t), s<u<t,

PROOF. Let the Gaussian proCess £(¢) be of Markov type. Then



206 M. ARATO
E{E@)IEW), E@} = E{&(t)lf(u)},,,zf‘k(u, £) & ()
and §() — E {E(f)li(u), £(s)} is orthogonal to £6) (if s < u), which we shall
write as follows: £(t) — E{&(D)I@w), §(5)} 1 £(s); therefore
E{(0E@)= E{{@EWREW 1)} = R(u, 1) E{EEEW)}-

After dividing by Var &(s) we get (1 2)
Now let a real Gaussian process satisfy (1.2); then ev1dent1y

E{»f(t)f(S)} R(u, 1) E{E®EW)} = 0
‘which means that £(f) — R,(‘u, HEw) | &(s) for s <u. Therefore almost surely
R, 0EG@) = E{LEWIE@} = E{ENIEW, EG1); s E60
where s, <u (i =1, , n), and thus the process is of Markov type.
In particular, when £(?) is a stationary process and Var £s) = os, then
R(s, 1) = R(t - s) and j
(1.3) R(t; +1)=R@)DRE), ]

e

mgiv gé\ui.—u._«/ r—TT ,,“__/_f,,,,er/ -
9 _R@)=cte .
—/_,_"' ————

and 1n/tﬁe correlatroniunctron are 1dentrcaf/’l‘he\solutlon of (1t yisa

Acfter‘some/sunple calculatrons it becomes ‘evident that p paramgters‘)blrr B
@‘
atig

ZL/ When E(d¢(1)? = o§ dt, on the basis of (1 1) we obtam oy = 2)\orE
" 1t now becomes clear that a separable process £(¢) is continuous and non-
differentiable with probability 1 (Kolmogorov’s theorem; see Doob [1], Russian
p. 576).*
The process [ ;of(t) dt = n(t) exists in the mean square sense, and the fol-

lowing formula is valid:
2 B
(1.5) ENONG) = 75 fe=+ e+ 2hs — 1 — =29,

Evidently

) t s A ZI
En(n@) = [ [ aie” " drar,

o lo

and our statement follows after simple calculations.

*Editor’s note. The citation is to the translator’s appendix in the Russian edition of
Doob’s book. It refers to Theorem 4 of E. Slutsky’s paper Qualche proposizione relativa
alla teoria delle funzione aleatorie (Giorn. Ist. Ital. Attuari 8 (1937), 183-199).
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We shall now prove the following assertion.

THEOREM 2. The stationary Gaussian Markov process satisfies equation
(1.1), i.e. the process §(t) — &(t,) + Mn(?) is a Wiener process.

Proor. From (1.5) we have
2
(1.6) CE(®)? = —‘f [e=* 4+ At —1];

A?
on the other hand, for z, > ¢, > s, > 5, we have

CE(() =) (n(s2) = n(sy) = -”f(e*sz —ei)(em 1 — e

1.7
- _115 E (602 — EGD)(E(s2) — EGsy)-
The formula
Of[z_e t_e=2-9] for t=s
(1.8) Em®MEE) =y ,
%[e—z(s—r)_e.—'“] for t=s

is also true, and therefore
2
E [(n(t2) —n(t))(E(s) = E(s)] = %(e“l—e“')(e*“‘ —e~2)

= Ef(n(s)—n (s))(E() - ¢ (’r))]
From (1.9) and (1.7) we see that the process An(¢) + &(z) — &(z o) is one of

(1.9)

mdependent increments and is normal, i.e. a Wiener process, as was to be proved.

From a theorem formulated by Baxter [1] it follows that

(1.10) lim

max (f; — te—1)—0
where 0 =, <t <*-+<¢, = Tis a partition of the interval [0, T]. The
one-dimensional stationary Gaussian Markov process can, in general, be deter-
mined by three parameters, m, Gg and A (where m = E¥(2)); (1.10) expresses the
fact that the “diffusion coefficient™ is determined almost surely by one single
realization, and therefore, because of the formula o? = 2)«1?, the number of un-
known parameters is two (either m and A, or m and og). In this special case we

need not recall general theorems to prove (1.10); elementary reasoning could also
provide this result.

21 [6 (Tlc) - é(fk— 1)]‘2 = O—g‘ . T : (Wlth probabrlrty 1)

Simple calculations give us the following equation:

o
2 " int

= U< €
e
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therefore the spectral density function of the process has the form
2

1
felw) = 2n o A

§2. The likelihood ratio. Sufficient statistics and their distributions

In another interpretation, formula (1. 10) expresses the fact that the mea-
sures P| and P, in the corresponding spaces of realizations of the process £
o<t < ), Wthh are of the stationary Gaussian Markov type and have “diffu-

sion coefficients” of. * 05, , are mutually singular.
The space R, of realizations £(t) (0 <t < T) can be understood as a Car-

tesian product of the real line £(0) and the space of realizations n(t) = &£(f) — £(0).

Let W denote Wiener’s well-known conditional measure with parameters (0, og)
on the space of functions defined on the interval 0 < # < T, and let L be the
usual one-dimensional Lebesgue measure. Let ¥ =L x W. When P stands for
the measure belonging to the stationary Gaussian Markov process with parameters
m, X and og, then P is absolutely continuous with respect to V and its Radon-
Nikodym derivative with respect to V is (see Striebel nn

ap [ i 1 { /1 {2 LAPE U
2.1 _— = ——— €X So1 — (44 -+ xSo2l(>
@D dv n oy P ot 2 2
where
2.2) k = AT,

501

T
1 : .
(@3) g, = 5 (@ —mPHEM -} s = f (@O —my dr.

It is now clear that for a known m the quantities s3; and s3, form a sufficient

statistic for A or og When A is known and m unknown, we can rewrite (2.1) as
T

. A £(0) +&(T) 31/ ' }
%:‘/; —Gl?exp{A—i —2m [f—T,—qu To,é(t)dz

£2(0) + (1)
o [1+2] LTy fc<t>dt+—r———}

(see Grenander [1], p. 65) and thus see that the weighted average of statistics

(2.5) . (o)+1§(:r) / tdr
-2

STATISTICAL EXAMINATION OF MARKOV PROCESSES. I 209

i.e. the statistic

(2.6) m¥ = —
142
2

forms a sufficient statistic of the unknown parameter m.

When the parameters 7 and A are unknown, we can rewrite (2.1) in the
form

dpP ]/ A1 A | 1
(2'7)W = ;'?c 28y {— O'z; st — 5 (Tg T+~ 2 #s5 +(m— my)’ + = (m—mz) ”

where
= S L@ -mPHED) - m} = Lo,

(2.8)
= %/[f(t)—mz]z dr.

From (2.7) we conclude that the system m,, m,, s%, s% forms a sufficient
statistic.
The transformation

(2.9) t=tT, ¢=&c¥T

enables us to treat the special case 7= 1 and o, = 1 only, instead of the general
case; here N = X\ « T = k and therefore in the case of a known m the realizations
of the process are characterized by only one parameter; this is independent of the
choice of a time unijt. In what follows we shall often assume that the transforma-
tion (2.9) has been made and instead of \ we shall simply write k. In such
cases (2.1) has the simpler form

' ; 2 1 1 2
(2.1) ;exp —x S01_’§+5%502 .

Formally, (2.1) and (2.1") can be “obtained” simply as follows.
Let E£(r) = 0; then £(0) has the density function

2

; 1 n on A I
(2.10) Jeoy(x0) = —==—e¢ 2 =]/ = 1 e % .
7!0': T O‘{
On the other hand, from (1.1") we can write the following formula concerning
the ‘functionals’ of densities of the processes {(¢) and £(7):
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0 / dCz} { /(def dz)l}
BXp — —1 = eX ~: 7
{ 20’@ dt 20'5
(211) T T T
:exp{- 12 [/i‘f-z—+2z/édé+12/éz(z)dz]}.
20’§ P dt § P

When considering a diffusion process n(f) with coefficients m(x, ) and
b(x, t) we may approximate the density function of the variables ngy, ny, ..., m,

by
2
n—1 _ < i+1—Xi 4;
p(¥o, o, X,) = Po(Xo) ig (27 (i, 10)] v exp{ 2 ‘=2 l 4; a,] b_n},

where

tisi—t = Ay ni=n(t), ai=a(x;, 1), bi=b(x;, t), t,=T, t;=0.

The sum obtained reminds us of the integral

T
1 [ |dn odt
) / [E‘“(x’ ‘)] b(x, 1)
§
It is known (see Doob [1], p. 494) that
o1 1
/6015 = —2~[€2(T)~52(0)l—5 Tat.
0]

From (2.11), taking (2.10) into account, we get (2.1"). However, a rigorous
proof of these simple ‘calculations’ is much more difficult; the reader can check
this statement not only in this context with formula (2.1) (see Striebel [1]), but
also in the case of other proofs (see, for example, Prohorov [1]).

In what follows we shall give the distribution of sufflcwnt statistics

&(o)+<:m f £y d,

...,

= () P HET =P, sh = f (E(t)—m)*dt.

For the sake of simplicity let m = 0; then the characteristic function of the

above random vector is
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- 1
?,V/lez(%z—ZTagzioe4)4 )

, o, .
E exp {ioy my +iot, gy + icgmy +ioys3,} =

1
EAICENE
_expl{_a1a3ag+a3agT oy _ia3l+oc2a3_g§2_}.
2 ” —2Ta§ joty 2 % —‘ZTO'g ioy
iy 07 T ] —e-V#=2Tolix
. __IT.C_( +e _Y-2Tet “’4)4_1043% R ° 1.
V7-~2Tac ioty
(2.13)
(— ToFio, +Vu? —2Totio, ) eV~ 2T, — (s — Totia, —Vn? — 2Tativg)

1. (P(O‘z ’ (X4)

142 210’21(1
1/ 2 2Ta¢la4

) (x — Tafiocz + l/%z ——2T0;21'—oc4) — (% - Tofioc2 — Va2 — 2Totio, )e—v’xt—zrag i, ]}

where Tip (o, 00)
] T T
@(oy, 00g) = 77 eV =2Te}ia, (5 — Totio, + Vu? —2Taf oy )
(2.14)
1 I Y — T
—7ze —Va2—2To}ia, (%—Tafiocz—l/xz —2To}io, )?.

From (2.13) and (2.14) it follows that the characteristic function of m,
and m, is

o} [T+ e —1
1 ot (l4e~ o (l—e~* ot i
(2'15) exp_——é‘ Cx% C( 41 ) +ala3 _C(T/lze ) +a% ‘%2 - . ]

while the characteristic function of 52, and S%z is

1
2.16) - V—ez(x — 2T} 104)4

1
[ (o5 2t4)] B
When x = AT — 0, the characteristic function of (\/_m1 R \/sz, )\sm,
02) has the form

(@i +a3)? na?

2.17) [1 + ;] o 20—0oZin) 6T 12

T +o(%)
{1 — o i, + [(1 — 62 io,)2 + 1 202 1;4]}2
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and therefore when k —> O the random variables 7, and S(z)1 form an asymptotic-

ally sufficient statistic.
ProoF oF (2.13). Let

. 2 2 n By
m(ln) - 61‘2*—511 S(On{ — 61+€" m(ln) = ;épAt, Sgg = Z’éi'At:

where

== ¢ —é[i_l T], (=12 om and = e = 1—Adt+o(4n).

n n
Evidently
Eel(alml )+a23=)1)+d3m2 +a43<()§))
(2.18) _n _" t ——[XA"X* XC*]
= (@n) 2o (1—$7) dxy ...y,
where
a; —p 0 0 0
—p a —f 0---0
P T B B S B
"Te2-py | : e 2(1_;;2)
N IR S
0 0 ---—8 a

a, = 1—ioaf At, a = 2(1 ——/IAt~zoc4cr< At + 22 (A1) + o(41)),
I'O(_l
2

oy At

ioy At

iory
2
Meanwhile we made use of the fact that the density function of random

variables £, ..., £, has the form

n—1

(2.19) fé"”"‘:"(x"'”’x"):(2")_2"_"(1‘52)_T6XP{ 2(11 P

A =B x + é’(xi—ﬂxi—l)z]}’

or, in matrix form,
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n—1

fe Gy s %) = Q) T (142 7

(2.19") .
. - 1y ,
""p{ 2=y X}
where
I —p 0 o - - - 0‘
|-p1EB B 0 - - -0
R = 0 —f I_H.;’Z —p -0
0 0 1+ =8
0 0 —p 1
and
X1
X:(xl, ey Xn)’ X*: :
X,

Fromula (2.19) can easily be obtained by taking into account that &,
satisfies the difference equation

(2.20) Cutr = BE 4 Lur s

where {, is a sequence of independent normally distributed random variables
(white noise) and 05, = (1 - *)o?, where oE has been simply denoted as o2.
The functional determinant of the transformation (2.20),i =1, ..., n, equals 1,
and therefore (2.19) is a simple consequence of the independence of the variables
GE=1,...,n).

Let the numbers d,, ..., d,, satisfy

a1d1 ﬁdz :—2—O'C At
— pdy +ad, — fdy = inye7 (A1)?,
(2.21) :
= pPdy_y+ad,—pd,., = i“30g2(At)2,
—pd,_ +a,d, = —2——04Az
then the system can be written as

(2.22) XA,,X* XC* = YA Y* D

n?

where
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D, = ardi +a(d; + ... +d—) +ards —2B(drdz+ ... +dudy_1)

(223) di(ayd, — Bd2)+d2(ad2 Bdy —Bd3) + ... +d,_ (ad,_ — pd,_, — pd,)

; n—1
+dy(@yd,—Bd, ) = SH(dy+d)oF- At +iny 0} (40 3 d.
2

A particular solution of (2.21) is

o2
AP L L =2, ...,n—1
h=d= g, (TR ).
while the general solution has the form
(2:24) d; = d+ 0., +0,1, (=1, ...,n),

where u, and u, are the two roots of the equation ﬁuz —au— =0, ie.

P

= — = 1—AtYA% —20%in, + o(41),
(2.25) R
Uy = _"__“23_—_ = 1+ AtV22 20} in, +o(41).

6, and 6, can be determined from the first and last equation of (2.21),
which means that

. . 2
B ) _'1a3a§At(A—za2cr;)).
6, = (‘2’““” AZ—2atin,

- 2.

ayuly — Py~ —(aruz— Puz)
* _ 2 n—-1
(aruy — Pud)(asids — Bus™ ") — (aruz — Puz)(arr — fur ™)

(2.26)

6. — i_ocl624t_‘ia3of.4t(l—ioczaf) '
22 A2 —20%ia,
n -1
ajuy — Pui —(atui — i)

' (a1 us — But)(ar i _—ﬁu'é’l),— (a2 — Pud)(aruds — i) '

According to Cramér’s theorem (see Cramér [1], Chapter 24)

n 1
/...fexp {—%XA,,X*} dxy...dx, = (2n)7IA"lf2,

therefore (2.18), by virtue of (2.22), will become
’ 1 1 _Da

270 (1—f?)72|B,| Ze2eidr,
Let us first determine the limit of exp(D,, /ZOEAZ‘) as n — o After simple
calculations we obtain
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ayuy — pui = At(A—iotay + V22— 20;2 iy ) +o0(41),

IRy . [ — . .
ayils — puli Y = T2 (A—io¢a, — V2> —20Zin, ) +o(L),

V12262 ia
TV 2 2(7; ia, (}.

ays—pus ' =e —icgay, + VAT —20F iy ) +o(l),

and therefore

lim. _ 1] ous0ttodaf T
H—on 20' A’ 2 )«2—20221.054
+{i°‘1 fag A+o0, Ucz] “ial o7 4 ity 6} e T 1— e~ TV3-2efis,
___———2————_2__ = Ot —_— IO(3 O'; e
2 A2 —20tin, 2 2 : V3% —26}1a,

Q@. 28\(/1 ioko, + VA2~ 20¢io, )e -2atie] (3 — i, 0f — —Viz— — 20} iy )}
(p(ai’n TO(4)

ial 2 l‘al "/-‘_ﬁ— .
+ [——— of + 5~ ofeTV P-20ting iy gf —

1 TV&T 202 la,
2 2 ’

VA2 =262i 207 zoc4

(A —iofo, +VAF = 205 ofio, ) — e~ TV =2a%ia, (- itt, 07 — VA2 —20%i 20 oy oy )
Py, Toy)
When calculating |B, |, it should be mentioned that
(2.29) | B,| = a3l B, »|—2B%a,|B,_;|+B*| B,-4l,

where l§nl satisfies the difference equation

(2.30) |Bu| = a|By_i|~ | Bu-2|
and therefore
(231) IBn! :05101+(X202,
where v, and v, are the roots of equat10n v?2 —av + % = 0, while « L and a,
can be obtamed from the conditijons IE | =a and IB | = a2 - ﬁ2 We thus
have
— Uy — V2

(2‘32) %1 = L ) - Uy — 0, .
Finally,

n-—-3 n—3 —~1/2
(2.33) gj-12 = Y _ppp_ Y2 _ p272
v l ol o, —0, [010% B?] v —0, [a, v, — 7] .
Because
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b, = 1 — 24t +AtVA? —202i%, F.0(Ab),
v, = 1_AA;—Az1/A2—2agia4 + o(40),

we get
av,—p* = At(l—afioc2+l/12—20gioc4)—I—o(At),

ayv, — 7 = Ar(h— oo, V7 =207 ios ) + o (A1),
13 U D o,

| 172 = TR o),
and therefore
= AT
1 2Va(r— 20¢i0,)e :
(2.34) 1—p»2|B,"% = 1+o(1)).
(1— %18, S Ty (1 o)

From (2.27), (2.28) and (2.34) follows (2.13), which is what we wished to

prove. .
This procedure represents one way of determining the characteristic func-

tions of the functionals m,, m,, sgl and s(2,2. Other possibilities could be sug-
gested when considering the differential equation of the conditional characteristic
function (under the condition that £0) = x); this equation has a unique solution
(as was demonstrated by Dynkin [1]), which can be found.

We can write

(2 35) u(T x) - E {ei(alml+a2$31+a3Tmz+NTs;2)lf(o) } .
- ' > - ) =xf*

It clearly follows that

by (xl.-x+lx£)2_

(T+AT ) = | ¢ 24T} [u(T, x)—{—%
“ T YandT oy ) 1

(x—xy)

X1=x

‘ io
2 Qc_l%x)_z_{-,._](1+ioc4x2AT)(1+ioz3xAT)[lf—zl—(x1—x)
ox? xX1=x
2.36) ! ‘
. 2 1 -
w‘% (x; —x)2+ ] [1 —72((x1 —x)2 4 2x(x; — X))

2
._%.2(4)52()(1 —x)+ )—l—] dx,.

For AT — 0 we get the following partial differential equation for w(7, x):
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2

2 .
Ou _ 1 0% 0 [—x(l%—iocz)——%}—ku[xz [liq2+ioc4—gi2—]

u

6T~ 2 ax? +5;
]

Later in the paper we shall deal with the solution of a similar equation, but for

now it will be omitted.

(2.37)

§3. Estimation of parameters and their distributions

If X is known, then the maximum likelihood estimator of the expected
value can be obtained from (2.4) as

.
o)+ EM)+A | E(D)dt
G o J |
"= 24T ’

m is normally distributed with parameters (., ¢, ), where ) P

2 _;j — - ,i :
Ol_ﬁé g(zm-?-‘ﬁ?ﬂw_f ﬁi)”‘n)
(see Grenander [1], p. 215)."

This estimate is of minimum variance because the likelihood ratio dP/dV

forms a complete system of functions in the sense of Lehmann and Scheffé 1]
in the case of an unknown m.

Let m = 0, and let X (or og) be unknown. When considering (2.1) and

dpP 1 A2 1 1
log +710g3?~;5[sc2n—§0c2 T+ 3 ATs52

—_— =
dv ¢
the maximum likelihood estimator of A will be the solution of the following
equation:
% |z, —Lorr|-ams2, =0

(3.2) 25 |01 T g o T ATss, = 0.
or the following equation for 67 (we set of = oZ/2)):
(33) ‘ 4_ |52 ___I_O-ZT 62_2625(2) = 0.

. O¢ 01 2 4 4 2 o2

It can easily be shown that the only positive solution of (3.3) is given by

(3.4) oF = 1/2(s§, — 1/26¢ T)+ 1/2V(s3, — 1/20 T)* + 2Ta}s53,.

For simplicity let us denote d = 1 /2(s(2)1 -1 /20§T). wa we can easily obtain
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P{62<yo?} = P{d+Vd*+1[2Tc}s}, < yoi}

3.5 204 24, *®
=F J’zo'f °2+ya€2 501‘<y +17.

From (2.16) we can see that the random variable

27
] +—=-s3
y y 052 01 yo'g 01
has asymptotically normal distribution as k¥ —> o and that the estimate 6% is
equivalent to the estimate s3,. The following theorem holds true (assuming that

OE =1 and T = 1, i.e. that transformation (2.9) has been carried out).

THEOREM 3.1. For m = 0 and Kk —> oo the estimate 53, ~ Ut is asymp-
totically efficient, and the distribution of the ratio (53, — Ug)/sg,_,\/LZ/K tends to
the (0, 1) normal distribution. |

p——
PROOF. Straightforward calculations of the mean and variance yield the
following:
. Es§, = O'g

(3.6) Varsd, = — (2"“ e —1).

The characteristic function of s%,2 is given by

f(@)

14
) [1 B 4!0(0;; ] o2
3.7 %

- — 2
' Aio xl/l— dia o'é 4io, '-*‘Vl-ﬂﬂé Y
1+l/1—-——a§ e * l——at
%

and (see (2.16)) the characteristic function of (s3, — 07)/s3,v/2/k tends to
e@2/2 95k —> oo, j.e. it tends to the characteristic function of the normal dis-
tribution. On the other hand, as K —> o we have 3(2)2 - o? in probability, and
therefore, according to Cramér’s theorem (see Cramér {1}, §33.3), the theorem
holds. Since the likelihood system of functions (2.1") is not complete (we shall later
deal with this problem), an unbiased estimate of minimum variance for o% (or
for k) does not exist. An estimate is called asymptotically efficient when its
asymptotic distribution exists and coincides with the asymptotic distribution of

the maximum likelihood estimate.
Next let of = T = 1. From (2.16) it follows that the characteristic func-
tions of 2k s02 and KS , have the following form as k¥ — O:

(3.8) |
f(alv CIZ) 1—[0( __210, )1/2 +0(;/)

STATISTICAL EXAMINATION OF MARKOV PROCESSES: 1 219

which means that s2, and s2, are asymptotically equivalent. From (3.8) it fol-

lows that s3,/0% = 2ks2, has the x? distribution with one degree of freedom as
k —0:

(39) P{Sg‘x} Vo /“'2 _”2"}’_1/ /“Z'Zdy

For values of k which are neither too large nor too small we must use the
statistics s3, and 53, to estimate k (or o}). Confidence intervals for k can be
constructed by using (3.5) and determining the distribution of the random vari-
able 0, = k252, /y* + ks}; /y. The characteristic function f of this variable is
(see (2.16))

Sy (@)
2 1/4 )
2 [1 ————ioc] el?
010 ;
o 1 )2 — i 2 —x|/ 1——ia
[[1—E+|/ 'l—%ia] e]l [1———V1——1a] e V * 1
¥

For an arbitrarilly chosen level a and for og the equation

(3.11) Pp{6?=x} = u

has a unique solution x = ¢(o§ . Its inverse function
(3.12) 1 (x) =,(x)

can also be uniquely determined and therefore gives the limits of a confidence
interval, which means that identically in Og

(3.13) Paé{aéél//a(ﬁz)}za.

For k — o or k — 0, these limits are determined by the corresponding
distribution. A

Effective determination of the limits of a confidence interval in the one-
dimensional case has not yet been demonstrated. In the case of complex Gaussian
Markov processes the relevant calculations for the ‘damping coefficient’ K have
been carried out in the Department of Probability Theory of Moscow State
University under the guidance of A. N. Kolmogorov (see Aratd, Rykova and
Sinai [1]).

When m and X (or ag) are unknown, we obtain the maximum likelihood
equations from (2.7) as follows:



220 M. ARATO

,
%(3% —1/202T) —ATs3 —(m—=my)? = AT(m—mz)* =0,
3.14 ; ‘

9 2m—m,)+AT(m—my,) = 0.

The solution of (3.14) is very complicated, but it is nevertheless worth
mentioning that the estimates 7 and A are related by

2m, + nm,

(3.15) o=

As we shall see later, when dealing with estimators for og (or N), it is
common to work with such statistics which do not depend on the initial point
of the process; for example, 53, s2, (m, —m,)* might be such a system. For a
large « is is not difficult to find a suitable estimate of the parameters m and \.

If we again write of=T=1, the following theorem can be proved.

THEOREM 3.2. For k —> o the estimates m ~ m., and og ~s? are

simultaneously asymptotically efficient, and the distribution function of the
random vector »
My —m 53— o}
23 s3V2n
tends to the normal distribution with parameters (0, 0, l(l,: (l’l).

ProoF. Simple calculations yield

2063 (x+e*—1)

2 H

Em, = m, Varm, = "

L)

o , 20
(3.16) : R [1 +
T2 | . 8 . )
Vars} = 7‘5{2-[-—}; (e=%— 1)'—|—;3—(%+e —1)2
4 - o
———;7(4%+2%e"‘—7+8e*>f~_e~2x)}__

From (2.13) it follows that the characteristic function of the random vector

m, —m, s2, has the form

Lo w2202 (1 , 1 . 262 .

X

as k —> oo, and therefore its coordinates are asymptotically normally distributed. 7

According to Cramér’s theorem mentioned above, and because m, — m and
Sg2 og in probability, the asymptotic distributions of the vectors

2 2
$42 — O¢

ny—m
1/ 203 ' ’ 2
V—;i (x+er—1) o ]/;
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and
2
my—m  s3—0¢

252 7 2
53 l/—;
coincide, q.e.d.

For arbitrary values of T and o? —which is important in applications—the
theorem has the following obvious corollary:

THEOREM 3.2". For k = AT —> o the estimates m ~ m, and \ ~
a§/2s§ = A are simultaneously efficient, and the distribution function of the
random vector

m,—m A—i g} —s3

s — or —
20'5' —iT - 2/1 2 2
1/—-—12 77 AT+e "= 1) e | 77

tends to the normal distribution with parameters (0, 0, |3 9|).

For k — O the statistics m, and m, are asymptotically equivalent, which
can be seen from their characteristic functions.
The statistics s? and s2, given by
1
st= 4 EM-¢OP,
(3.17)

I

1 1

52 0f Eo-coyd—( [ Ew-co)d)
P .

are asymptotically independent both of the parameters m and x and of the
statistics m; and m,, when ¥ — 0. This means that in this case the parameter
m is completely free, and we cannot set a lower limit on the parameter k (or an
upper limit on o).

A wellknown theorem in mathematical statistics says that if & 1900 &n
(n > 2) is a random sample from a normal population with parameters (m, 0),
then, with an arbitrary degree of confidence, a finite confidence interval can be
constructed (Crameér [1], p. 563). This means that there exist functions
ﬁ(xl, oo, x,) and A(x,, - x,); also for an arbitrary degree of confidence
a > 1/2, for which

P{i(E,, .., &) =m) =a, Ph(Ey, ...y E) <} >

holds uniformly with respect to 7 and ¢. The functions z( ) and &( ) are
independent of 6. When n = 1, i.e. there is only one observation at our disposal,
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such finite functions # and % do not exist (naturally assuming that A(ec) > — oo
and A(— =) < o),

Stationary Gaussian Markov processes, satisfy the following assertion (assum-
ing that T = o, = 1):

THEOREM 3.3. Let o> 1/2, and let u(%) and u(%) be real-valued function-
als (which may assume values — = or + %) on the space RE’ which are continu-
ous in the C[0, 1] metric(}) and which satisfy the conditions

Pm=p®)=a
P{m<7()} =
forany mand k (—oo <m <oo, k> 0). Then
P{u(¢) = — oo} =f(, 0)
P{(8) =+ =} =%, ),
where f(x, &) does not depend on the choice of these functionals (under the
common assumption that inf, () > — o, supﬁﬁ(-l— o) < oo, or that in case of
shifting the functional changes its value by a quantity equal to this shift), and
f(xk, ) — 1/2as k — 0.

THEOREM 3.4. Let o> 0, and let k(£) be a positive functional defined
in the space RE and continuous in the C[0, 1] metric. Let it satisfy for any m
and k the condition P {k = k(§)} = o Then

P{x(&)=0}=g(x, a),

where the positive function g does not depend on the choice of the functional
(under the common assumption that k() = K(— %) = ) and gk, a) —> 1 as
k — 0.

REMARK. For k — oo the functions f and g tend to zero for any fixed
s < 1. This is a consequence of Theorem 3.2.

ProoF oF THEOREM 3.3. Because of the symmetry it is sufficient to
prove the theorem for u(¢). For a bounded functional the inequality P{m <
u(®)} = a cannot hold true for all m and k, because when () < K < oo we
have

Py AK=p(&)}=0.
For sufficiently large values of ¢ there exist £,(f) = — k > — oo, independent of
U, so that g(§) < ¢ when §(f) < £y(f) forall 0 <7< 1. Let

(1) The continuity of functionals assuming infinite values is to be understood as con-
tinuity induced by the topology of the real line, closed by points — = and + .

STATISTICAL EXAMINATION OF MARKOV PROCESSES. 1 223

[ ={&i@=c), Iy={E—n1+==6),

~where 0 <8 < 1/2. Evidently I' D T'}, P(T") = P(T',) and

(318) Pc,x{6<ﬁ(§)} = I;Pc,n{r}él;Pc,x{Fl}'
By using

AP /% N | '
=Y Lo b nto— 02— 120116 ) 0~ (6@ o))

—wtn? [ (- dr])

we get

' dar w20|' 1/ % rxo— - Fixi -~ (0-0?) .
aspeett = [qpar = 1= [ Femem m N
B 1 I . -

Let ’ o
Iy (B EE Rl 0= 151 n 1 = () S 0O =,
whére 0 < e < &/2, € is arbitrary, and )
Iy = {f:OSéutI;IICf(t)~€(O)I<%“i "‘%—i+6+%—£<f(0)§§0(0)—""-'-5-
By using the formula

: 7 pmae
dW=1—-2xt} Ze 2 ,
(3.20) / * Vn €

Is

Which is valid for Wiener processes (see Doob [1], p. 392), we get the inequality

‘ [ ?%[(M—C)z*("o_ﬂ.z] dWse—x"“(x‘HlCl")/dW%e—wn(”J"'clxD‘ '
e = - .

(3.21) r o o .
. ( V'z _x2 ]
128} —e .
s .

Let ®(x) denote the normal density function with parameters (0, 1); then

/‘/;;— e X0 gy = @%Vﬂ(fo(())—c—z‘“ f— @1V 2 (— x‘“"—c-{—x“)f'.
ra ’ ' ' -
(3.22)

From (3.19), (3.21) and (3.22) we obtain

V= *f —gd—e _ XE Z—%—-zf Yol E0
(3.23) ?C,x{rlj%[l 2](1 )(1 2 ]/n.e ][@{VZ%({O(O)

—e—n = {2 (= w1t et nI)]L
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Hence as k — 0 we have

Pewlc=p@)=1=P, (I'}= 5 +eq, for x<nty(sy),

and for an arbitrarily small €, > 0, which proves the theorem.

Theorem 3.3 can be reworded as follows: When the parameters m and
K (or o?) of a stationary Gaussian Markov process are unknown, it is impossible
to construct finite confidence intervals for m using continuous functionals. Later
we shall deal with the problem of infinite confidence intervals (without any
restriction concerning k). Their construction is similar to the one used for x
(or og) in those cases where m is known; nevertheless those special properties
characterized by Theorem 3.3 must be used.

COROLLARY. From the proof provided we can see that for any € > 0
there exists A(e) such that for small values of K
- 1 SR
sup ‘Plrl,k{#(é)>”l}£—+/1%02 .

My <%y 2

Thus we can make an estimate of the behavior of the function f(k, ).

The proof of Theorem 3.4 is similar to that of Theorem 3.3. According to
this theorem, no nonzero lower limit can be constructed for the parameter k
with any degree of confidence.
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