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ON THE STATISTICAL EXAMINATION
OF CONTINUOUS STATE MARKOV PROCESSES. IV*

MATYAS ARATO

r Introduction

In this paper we shall deal with results which are connected with estimates
of parameters of n-dimensional discrete stationary Gaussian Markov processes and
their density functions. Textbooks (e.g. Grenander and Rosenblatt [8]) give
these estimates and their densities under assumptions concerning the eigenvalues
of a matrix A4 (see below, formula (1.2)). This means that we have to have some
knowledge concerning the process itself, and particularly concerning the matrix
4, beforehand; this, in practice, is usually not the case. In this paper 1 shall out-
line a treatment which, on the one hand, enables us to reduce certain special
cases of the general case to the one-dimensional real or complex case (with sim-
ple eigenvalues), and, on the other hand, enables us to treat the solution of the
general case more easily. To write the matrix 4 (or Q in the case of differential
equations) in the Jordan form requires some preliminary nonstatistical investiga-
tions. To the extent that this is not possible, the solution of particular problems
becomes very complicated, and a very long sequence of observations is necessary
to get a reliable estimate of the parameters (let us recall here that the calculation
of eigenvalues of a matrix involves serious numerical difficulties). I shall show
which of the parameters can be well estimated (i.e. from fewer observations with
greater accuracy). I am also including results I obtained earlier concerning suffi-
cient statistics of the processes we are dealing with. The results concerning the
theory of n-dimensional stationary processes can be found in the recent book by
Rozanov [11], which will often be cited, sometimes without special reference.
The basic results of this paper formed part of my dissertation [4], but so far they
have not been published.

This paper does not refer to any practical task; I mention first of all the
significance of application for communication theory and for economics (see e.g.
the examples given in the work by Quenouille [10]).
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Discrete n-Dimensional Stationary Normal Case

§1. Systems of stochastic differential or
difference equations with constant coefficients

Any n-dimensional regular stochastic process £(¢) = {Ek(t)}z=l of the
Gaussian Markov type—similar to the one- or two-dimensional case—satisfies the fol-

lowing stochastic differential equation:
(1.1) ' de(t) = Q * ()t + d5(0),

where Q = {qij} f' i=1 denotes a square matrix whose eigenvalues A; satisfy the
conditions Re A; <0 and {(#) = { $(D} Z=1 denotes an n-dimensional Wiener
process; EAL,(£) = 0 and EAS(e){(r) = At - s, where the matrix {s;}];- is
positive definite. The matrix Q is uniquely determined (see Doob [6]).

The process &(ke) (€ > 0; k = 0, £1, . . . ) represents a discrete stationary
Gaussian Markov process, and therefore it satisfies (for the sake of simplicity we
pute=1)

(12) gk + 1) = A(k) + {(k + 1),

where ¢(k) is a sequence of independent Gaussian random vectors. The eigen-

. x;
values p; of the matrix A4 and the eigenvalues A; of Q are connected by p; = e"i.
When a linear transformation of R” is effected by means of a nonsingular

matrix S, we obtain matrices Q' = SQS ™! and A" = SAS™! corresponding to Q
and A respectively, and the corresponding random variables £' = St will satisfy

(1.1 dE'(r) = Q'E'(t)dt + (1),

(12 Ek+ 1) = AEK) + (K +1),

respectively, where ¢’ = S¢. With an appropriate choice of S we can bring 0" (4")

to its simplest form. In general, an arbitrary matrix cannot be transformed into
a diagonal matrix, but any matrix can be transformed into the so-called Jordan

form.
A matrix of order m is called a Jordan elementary matrix if it reads as fol-

lows:
A1 0 --- 0
0o A1 )
. ) 1
0O .. .. .A\

A matrix B is called a matrix of Jordan type if it consists of one or more Jordan
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elementary matrices, all placed along the main diagonal, and the remaining ele-
ments are equal to zero.

We shall call a sequence of vectors 7, . . . sy, i ER", P =-1,...,m,
a chain belonging to the eigenvalue X of the matrix B if hy #0,Bhy = \ny, Bh,
=My, +hy,...,Bh, =\, + My—y- The following theorem, showing that
any matrix can be transformed into Jordan form, holds true (see, for example,
Pontrjagin [9], §34).

THEOREM. There exists a basis of R" consisting of all the vectors belong-
ing to one or more chains defined by the matrix B. If B is a real matrix, the
chains forming the basis can be chosen so that those corresponding to real eigen-
values are real and those corresponding to complex conjugate eigenvalues are com-
plex conjugate.

The mapping defined by B can be rewritten in the coordinate system de-
scribed by the above theorem; the new matrix describing this mapping is now of
the Jordan type. After rewriting equations (1.1") and (1.2") in the Jordan form,
these equations read (after deleting the primes)

dg, (1) = N g, (Dar + £,(t)dr + ds,(2),
dgy (D) = N Ey(Ddt + £5(D)dt + di, (D),
(1.3)

dég, () = A &g, (D)dt + dby, (1), ‘ _
ey 11(0) = Nk (DAt + &g o (DA + dEge 41 (D

g, (1) = NE,(dt + dE . (2);

A gk + 1) =p5,(®) + 5K + ¢,k + 1),

fi (k+ 1) =p & (k) + & (K + 1),
Epr1k+ 1) = Pakky+1(k) + Exp 42 (k) + §pe 41 (K + 1),

Lk + 1) =pk,(0) + ¢,k + 1),

respectively. In such cases we may use the results established in the one- or two-
dimensional cases without any difficulties, because our system of equations has

been decomposed into equations describing real or complex processes. Further,
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supposing that the above transformation into Jordan form is always possible, we
shall deal with one Jordan elementary matrix only.

- §-2. Sufficient statistics
Let us calculate the density function of a finite realization of the stationary
Gaussian process satisfying the following stochastic difference equation:

(2.1) KO + a6t = 1) + - + g 82— p) = {@).
Let us suppose that E£(f) = O and that the process {(¢) is a sequence of indepen-

dent random variables (which are of course normally distributed). The covariance
matrix of the random variables £(1), . . . , £&(V) is symmetric with respect to both
diagonals because of the stationarity of the process; the same holds true for its

inverse matrix, denoted by R fv_l- The density function of the variables £(1), ...,

E(NV) will be
P15 - - - Xy) = @OV PRI T P exp (=% (XyRY X5}

The transformation

Xy = Xty
Xp == Xp

" = 2
Xp+i Fay Xyt FaX e = Zpege
Xy a Xyt FTANN-p = Iy

(the determinant of which equals 1) gives, when the independence of the two
groups of variables (£(1), . .., &) and {(p + 1), .. ., {(NV)) is taken into con-
sideration and the assumption of independence is used,

PE(1),0r k@) § @+ 1reeed N1 5 Xps Zp 1 o+ 25 2)

N

— —%_—(N-p) __1_ —1 _] N 2
=(n) 2 IR ™ ”‘”‘p% 2[(XpRp X5)+o§p>;1 z]s

from which it follows that

= —Nf2 -1/2 _—(N-p)
Peciy,.t)&1s - - Xy) = @M V2R |17 20 (NP

1 N
X exp -1 (XPR;IXI‘;) += Z O +ax,  +--+ apxi_p)z-l ,
2 Ug- p+] -

From (2.1) we can calculate all the elements of the matrix R ;l if we use its
above-mentioned symmetry. Let a, = 1; then
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ah aoay Ao, «. Aodp 0 0..0 }
2 2
aody ay+ay dody+-ayay ... Aolp. 1+ a1 dp Ao, 0..0
2 2 K
apa; apay+aya; ao+a|+a§
Rﬁ‘ _ . r p:'l
No= dodp aoap—1+a[ap ees 20‘2 2 ad;yq. ..
1 1
(2.2) 0
. : . 2
0 : ‘ ap

which means that the r;; element of R5! has the form

0, , for |i—jl=>p+1
p—1i—il '
2 @lyypjog for Ji—jl=p+1, p<i,j<N-p+1
£o
23 , - R .
i O iy oy for i<p,i=j
L= 0
S argogys  for j=isp.
k=0 ’
Moreover,
(2:4) B} = IRy a7,

According to a well-known theorem of Dynkin [7],

log p(X, a) —log p(X; a°)

forms a minimal sufficient statistic for the family of distributions p(X, a) when
a® is fixed. Taking this theorem and the above form of R 1(,' ! into consideration,
we obtain o ‘ -

 THEOREM 2.1. If a stationary Gaussian process £(t) satisfies (2.1), then the
system

Nep o N-pii N R )

- . - 1 - - e . - . . -
2 XD, D XiXilgy ey D NiXips NUHXN, XX+ XyXyog, e XX,
p+1 p+1 P+t

2,2, L o ; 2, .2
+x~.\’~_p+[, .\1+.\;V_1, eery '\2'\p+’\N—l'\N-p+ll""'Yp+‘\N'p+l)

of the sample x, . . ., x5 (N > p) forms a minimal sufficient statistic.

We may quote the well-known fact (see, for example, Rozanov [11]) that
the spectral density function of a process satisfying (2.1) is a rational function
of e’ whose numerator is a constant. We may ask whether in general it is possi-
ble to find a sufficient statistic of a process with a rational spectral density
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function. The following example shows that such a statistic (containing less then
N elements) in general does not exist. Indeed, let us consider the process

E1) = ap8(t) + a8 - 1),

where {(¢) is a sequence of independent normal random variables. Let E&(r) =0

and

EE(’)S(’—D Uy ay

2 n .

¢ = EE° (1) = (ao+¢'1) Ef (t), ¢ 0.;2 tl(’n e
Evidently E£(1)g(z — 7) = O for |r| > 1. The density of the random variables £(1),

. » £(NV) has the following form:

ag

N

- -5 -_l- l al *
Pty s ) = 05 (2m) 7 |Byl 2 exp {_Tffk,gxbuyiyj ,

where B;l = {b; }
be found that

j=1 is the inverse of the correlation matrix B,. It can easily
i

bt = (=1~ foU=it|B; ]| Bn- J]lB T |
for i<jand B; = (u'+l — ub"1)/(u, —u,) (the inverse matrix is, of course,
again symmetric with respect to both diagonals). Note that |B | satisfies the dif-

ference equation
|Byl = |By- 11—0 IBN- |

and u, and u, are the roots of u? ~u+p?=0,ie.u, =(+/1-4%)2

and u, = (1 - V1 = 4p2)/2. Since for example the functions b¥, (=1, - - . , N)
as functions of p are independent, such a system of functions w1th XisenosXy
as independent variables, which form a sufficient statistic, cannot exist (see
Dynkin [7], §2).

In the n-dimensional case let us consider the homogeneous Gaussian

Markov process satisfying
TN = AL =D+,

where A = {0}, 1, §0) = {5}, §(O) = {§,(0}/ and
Eg'j({)z()

' 8, for 720,
BG40 = 0. for t#+0,

where the sequence {(¢) is independent.
The correlation function B(7) of the process £(¢) has the form

(2.5) B(1) = A% B(0),
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where
(2.6) B(0) = A - B(0) - A* + B(0).

If 4 consists of only one Jordan elementary matrix and Bs,(O) is a diagonal
matrix, then B(0) can be determined by using the following method: Under the
above assumptions (¢) satisfies

£, (D) =pE, - 1) + 5,00,
En_l(t) ='p£n_1(t -1+ Sn(t -+ fn_l(t),

El(t) = 9510 -1+ Ez(t -1+ §1(t)-

By multiplying the first equation by £,(¢ — 1) and by £,(1), and calculating the
mean in both cases, we obtain
EE"(’)C"(’) = .\'"
BE, (1)< (f— 1) = of7,, where f,,=E¢2

? sn

/’nrr = QZ'/fnn + Sns ﬁml = I—-_z’l ‘
By again multiplying the first equation by §y—1(8) and £, _, (¢t — 1) respectively,
and forming the mean, we obtain

Eén([)g.:’n——l([) =0 Eg n(l— l)éw-l(’)»
B, (& (r=1) = 0 EE(—1)¢, (11,

respectively. By using these results, multiplying the second equation by ¢ 1)
£,(t), £,—1(t) and £,(¢r — 1) and forming the mean value again, we obtain

E (i (1) = 5,15
B, (&= = 0

2

‘ (1-0%*’

| B, (- NeO =g o' =

‘ b (06 (= 1) = 0F,o s oo s
uornea (1= 00 = 5y o8,

By this method all the elements of B(0) can be calculated.
We have been assuming that the components of the process ¢(¢) are inde-
pendent, and at the same time that the determinant of the transformation of the

variables £(1), . . ., V) into £(1), §(2), . . . , §(V) according to (1.1) is equal
to one; therefore



276 M. ARATO

STATISTICAL EXAMINATION OF MARKOV PROCESSES. IV 277
p;(l)““.;(N)(-\')19'-°:x1N.: le""yx.’.N; ~'~;xul’--~,an) n (ai])2 1
— ”
o . | “xo"ﬁii'*'z% s, > o=
T3 "7 exp -1 j= i i
= @) F Ryl 2 exp{——z- XRy X*} j
. . n . Q.0
' ro_ ij ik, " .
Q.7 | N} ~ G =B+ 3~ @ =0, fork#i k#0;
- _(N—])n n 2 =1 j
2 .
= pg(,)(x“, ...,an)(27t) ‘[1 5 (2_]1) 1+ (aﬁ)2 (aji)z n aji + aik
N-1 % 1 . i j#Ei J . : j=1 ]
§ 2
- €Xp {‘“ s o (X1 — S Xy j— .. — 0 X,;)
J=1iFr &5 .. e
b = __Ki, b = — ik, ) n
where ‘ i = S s ik — ?’ B(O) = {6ik}i,k=l'

n 1
- - 1
— 2 2 —_— D ¢4
(28)  Prty(X11s s Xa) = 2n) 2 [B(0)] ‘CXP{ 2 X B(0) Xx}- Hence the system

The above relations give us N ) N N—1 o
Z xi]" Z xilfxizj’ Z xilfxi2j+l9 L 1,1, = 1,... s 1,
j=2 j=1 j=1

) N N-1
(2.9) [Ryal = IB(O)I-[, [ S(J ,
=
2 2 .2 2
where the matrix Ry} is Pl oo X Xins - oo X X1 X015 X11X315 - 75 X1 Xpys
n .
o bll 0 ..... ‘e 0,. 0;2 h.z 0 cereiens 0 ...(I;,, bln 0 .. 0 ‘ x2lx31, .. ,lex"l, e ,xn__l lxnl
bll ([ll bll ......... 0 b;z ”12 blz tes tav e 0 “es [);" “‘" b“‘ ......... 0 1
;. : v : will be a sufficient statistic.
0 a, by O diz bys tdyy 1”1’" Let us investigate the special case A4 = (_;‘ ﬁ) as an example. Here evi-
0 by aj. O ajy dis biv dyn dently X
ajy b{; 0 ... 0 0 wuy bhyy 0 ... 0 ... At‘— —agfCOS wr  sin cr
by ay2 bis 0 0 by ayy baa 0 ' =e —
2 ) sin wr  cos wr
0 u:,', tyy by and
- s O
byy w3s... BO) = __l___ ’
: _ , 1-a2-p2\0 s
(I;“ b;u 0 0 0 Uyp bmv 0 0 i
hin Uyy b;n e 0 0 brm yn [’nu U‘ where
: ) h :
0 ety A’)], 0 s Uy nit A2 2y 4. . ,
0 /J: u’{' 0 by By = Z[S‘«(I @+ A 2/1'0(5,22] * (.s[SZ(l —ol /)2):2‘1/;"‘2]
A by, " pt—02 . ’
(2.10) ﬁlzzlzzzaﬁ_ﬁl‘aﬁ+sl2 ,
with the elements , : 1—a? 4 2 )

By, = OB e+ B4 25,1+ p[s, (1 — a2+ ) — 2afs, )]
22 },2__52 !

emM=alt 2, taﬂw=—f-. r=(1-a®)?+ 2 (1+a2), §=p2(1+a2+p?),
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In particular, for s,, =0 and s;; =5,, =5

L s o)
BO=1—p (0 s)‘

The density function could be written down at least formally, even if the
components of the random vector ¢(k) are not independent, but the correspond-
ing relations are too complicated to be given here.

Later we shall have to determine the density functions of processes satisfy-
ing a differential equation of the Jordan type (with one block only). 1

Let £(7) = {£,(t)} 5=, be such a process. Then the matrix Ry, has the

form
Ay A O 0.0 0
A, Ay Ay 0.0 0 0
(2.12) 0 Au«ln~l An—-l" ’
Lo Al-in Am

where the matrices 4, are

;40 0 0 ... 0
ey
S8
2.13 )
( ) Ajjer = : ' e 0 s
8
0 1 0
3
Q
0 0
ay s,
¢ 140 ¢ 0
B \i s“ “‘l
0 ¢ 1+e’ 0
(214) A”: . S; S .
' I+ 0
—?; .
e 1
0 ‘}; s,
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In particular, for n = 2 we can readily calculate

(1-p%? p?
4= T T
sl(l-—,a‘)-i-s2 1

1__22 )
) P

ay, = -,
12 s, (1 -p2)? + s, 51
=P, (1= p +5,0+ 7] 1 p?
%22 = s [8;(1 = PP +5,] sy 8

In general, the investigation of the n-dimensional process £(z) satisfying the
difference equation

ED+CEC- D+ -+ CE— D) = 8()

seems to be quite natural as a generalization of the one-dimensional autocorrela-

~ tion scheme. We shall not deal with such processes in general, although the rela-

tions for the correlation matrix can be formulated similarly to the case of p = 1.

§3. Regression problems
Actually we most often observe not the n-dimensional process £(%), but the
process

() = C - h(r) + &)

where the functions h(t) = {h ()}, are known while the elements c,.] of the
matrix C = {cu} .::," are -unknown.

When - observmg the process n(f), the estunatlon of regression coefficients
¢;; forms one of the central problems of the theory of time series. In practice
the case occurring most often is that of polynomials or trigonometric polynomi-
als Az (¢). Using the above results, we shall deal now with maximum likelihood
estimators, and we shall mvestlgate some of their properties.

. Assuming that the equation describing a discrete process already has the
form (1.4), let us investigate the density of a process described by one Jordan

elementary matrix with real eigenvalue. Let us assume that the components of

the variable {() are independent, although such an assumption must always be

verified in practice. We shall not deal separately with the complex eigenvalue
case. Under the assumptions we have made, the conditional density of the ran-
dom variables £(2), . . . , £(V) under the condition £(1) = x(1) has the form



280 M. ARATO

N1 .
Cyexp — {Z [2 (xlj+l Qxyj— le) + (X2;+1 szj*xsj)?+---

1 i .
+2_S:_—2— (xn—1j+1 - an—lj_xn.i)z +2‘"T;‘i(xnj+l - Q'xnj)2 ]}'

The density function of £(1) can be calculated by using (2.6) and by determining
B(0) (Ei',? =5;). In the preceding section we have seen that the conditional den-
sity function is

102 1 022 [1 0%), 1 ),
Cyexp —‘2—{%)‘?1 +[s—+i——]'\‘21+ls—+§,—]x§1+--.+(s +& Xu +

1 2 2 3 n—1 n
1 2 1 2 . 1 2 :
— XN+ — XN ... — xi
+-"1 1N+S2 2N +s"xv+
20 20 20
+'" \'11le+ X31 X34+ .- Fo— X1 X
5y §2 Sn—t
1+02 'S 5 l+ »’“ ',
+—=* > it = Sl
1 2

”

20 "
—;— 2{ n1+1xni+

2 'S : - ~'
N % Xpp+1 X+ oon Z Xn- u+1«\’m'}-

Sn—1 1

N1
2(1 <
- ‘Zr Xgp41 Xyt
1

For the sake of simplicity we shall only deal with the conditional maximum
likelihood equations (under the condition £(1) = x(1)). In particular, let h(f) =
1=(,...,1),which means that we want to estimate the expected values my,

. » m,, of the process £(f). The conditional maximum likelihood equations are

the following:

2 2 20 2(1+Q
_.2_(\‘”—/1;1)——-(\,~——m1)—-—‘ (xp—my)—= 5
s

N~
.Z; (xy—my)
. 3

2 -1 : 2
-I~S0~ Z, [(xli_mx)'*‘(xun"”"l)]+ 3: 24: (x2—n1)) = 0,
1 i=1 b=

{1 02 2 20
-2 — = — — (X — M) — — (X — M
[s +S2](\’21 n,) Sz( 2N 2) ~"1( 11 D

- N-1
2 2(1 + 02 Nt 200G,
- ‘—0 (x33 —m3)— “(—b'—&—‘) Z (v my) + N % [(-\'1;'_”’2) + (Xgp4 =012
2.N_:| 2 - : o L
+— 2_/1 (Nqipymmy) b= _/: (vy; —mm3) = 0,
S >
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-1 + QZ 2 20 20
(e =) — = (ouw — 1) — = (Xt M) = = (N — Mg q)
=1 Sk Sk-]. Sk ,

231 +'Q2) ! 2075t f '
——T*Z (xk,»—rnk)+~ 3 [(\A, m,) 4—(A‘k_1i+,—/)1k)]
& 2 . S
- | 2N
\ > Ki—rivr =Mt 5 2 (N —mye,) = 0,
-1 T ST

1 0? 2 20
—2<S +s_>(xn1 —mn)_s—n—(an _mn)ﬂs—n:(xn—l,l —mn—l)

n—1 n
2(1 + p?) Nt
_—-n_— Z (xm —my) +_ Z [(xm M) + Kpiyy ~my)l
2 —1

Sp— 1

Z Cpetirr ~Mp_y) =0
1

After simple but elaborate calculations we obtain the following system of equa-
tions: ‘
2 —1 (l 0)2 3
0 gx” {,!__._.—Q—\‘V}‘-—-——*X;J‘*‘ 5 Z szg
Sy 5y 5 1
=0l - 1-g)? (N=2)
:_“_@_ml_pg lAm2+£~——Q)—(N—2)mx“ P my»
5 Sy 1 ! vet
; —1 (1-0*'s
1 e*-e) -, 1-¢ e 1 e T8 Dixg
[q +—~-r—‘—~— Xy + rs‘;' x5t 5, X11 5 xynt+ 53 X3 + 55 ‘?—" 2
N . - -1
1 N 1‘ | Ng"t S l (I '—0) Q l’" +_Q___. my
— )2 N-2 N-2)
+ (l U) (N— 2)"'2__ .(_._,;',,__l my _,__(__;_,___. mys

85 X 22

2 = 1 0—1
L et e ® X Xe-1 + 8w
‘...m.ﬁrg ‘ un'f 5 - XkN +5u T M-y k~ 1N %

- ~ N
g 1 -9
(L?"@i 2 Z X~ u*— 2 t+u*(—*+
Sk 2 Skt
— N=2 'N-2
+"Q':l 'Wﬂﬂ“g‘—l* k+1+( Q) N-=-2)m— - Myq = My 15
Sk-1 Sk , Si—
| | o k 3 N-1
- - 1 (1—0)
"'?1'"—*{3] Xn1 -+ ¢ an+sQ Xne11—" - S = Xni
n n n—-1
S 1 e—(N— (N-)
S Np—pi = ( +( Q) (N— ] My_1s
Sa—1 2 Sk—1 .
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which, in fact, has the form

CiX = ayymy+agynz,
CoX = aymy +azmy+axym;,

CX = ayo Mgy + QM)+ Qi 4 1 M4 1
ce
CnX = Gpp— \Mp—1 t Auallin;

where the meaning of the constants is clear from the above system.
When all the variances are equal, for instance s; = 5, the matrix 4 of the

‘system b = A - m has the form

a b 0 0 0

b a b 0 0

0 b a b 0
4=1"

a b

0 b a

The inverse of 4 can be calculated by again using probabilistic reasoning.
In particular, when n = 2 the system outlined above takes the form

2 - -1 (1 -p)? N-1 N-1

P -p l-p p p 1
pt——xn*t x31 F 2 ity X Xy
53 51 2 5 5

_U-pPw-1) _(N—z 1'—p)
=—m, ) + my,

5 5y

1 p*-p 1-p p 1 (1 - p)* Nt
P Xpr ¥ XN T X T XN T 2 Xy
52 1 1 2

5y

5y Sy 52
1 N-1 p—-N-1 - 1)1 - p)?
- Zx”=——————ml+m2 ————.
5y 5 5 $1 Sz

It is worth mentioning that, contrary to the one-dimensional case, the ex-
pected value can be well estimated by the arithmetical mean of the observations

even in the cases when p has a value close to one. ‘
In this special case (n = 2) the unconditional maximum likelihood equations

are the following (omitting detailed calculations):

-0 (1—g?)> 1-o {a—l o(l =22 } .
——— - ot + e + \2
{ S s (=)t + 5, Xip b =g Xan 5, s (1—02) 4s,)7 2"

(-e2's' 1N _[d=er@-D (=)
+ Sy ‘;"‘ _S_ Lzl - ) +51(1_Q) + 52 e
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N=2 =0 o(l—-0?? ] '
S S, My,
$ st s (=00 ¥ s,

31 P =p (1—p)[s(1~p)2+s2(1+p)1z La-»
21 ) 5. 2N

5 So Sy [s1(1 - 2)2 + 32]

P__p=p) 1 a- p)2 A
+<s_“ X Tyt Z X2i ~ % Xy

1 5,(1-p%) +s, 51 5
p p1-p2 N-1

= | ——— — ‘Im
Sios;(1=p%)? +s, 51 !

s [_1 L AP0 =0 + 51 +p)] | V- 1) —a)’]m _
51 s208,(1 = 0?)? +3,] $2 :

If p ~ 1, then from the approximate equations the following estimations

can be derived:
1 N-—-1

m, “N-2 }2: Xap»

XN T Xy 1 N 1 -l X3y
™ ="N=3 tN—2 lez+(1v 2)7Z N2 N7

From this result it can be seen that, contrary to the one-dimensional case,
the estimate by the arithmetic mean is always good.

§4. Estimation of the elements of the matrix A

Let us suppose that E£(f) = 0 and the Gaussian process £(f) satisfies equa- '
tion (1.2). In principle, the maximum likelihood estimates of the elements of
the unknown matrix A can easily be made from observations of the process £(7) -
at ¢t =1, ..., N by using the corresponding density function. For the sake of
simplicity let us again consider the conditional density function, which can be
handled more easily, as well as the conditional maximum likelihood estimates
(we have in mind the n-dimensional analog of estimates of the so-called serial
correlation; cf. {2], §1). Let 4 = {q, }" j=1 and let the component variables
$(i) be independent, with E(5,(}))* = s; and E(§,l(i)§‘,2(k)) = 0 for j, # j,; then
the conditional density of the vgnables £(2), . .., (V) (under the condition £(1)
= x(1)) is

P2, ....S(N)(\.ll s ey Xons e s Xpgs oee s Xy [E(1) = x(l))
N-1

mN—1) n 2 oo
= (2m) : []1] SiJ exp {_ Z 2, (“u+1 Gy Xy j—Hp X ver "‘“inxnj)z}-

i=1 l.l"
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The maximum likelihood equations are

a logp v Yy
AT 2(/\},41 O X T Wy Xgp e — Uy Xy )Xy = 0,
e i=1 .
4.1) dlogp &
5 _[ —= x_/ ('\U+l U Xy j = Lig Ny — oo = iy Ny j) X,y = 0,
FAin
i= 1, RN

By considering new random variables

n,~1(N) = Nil (E;(l +1)- auE,(i) - 0‘,‘252(]') -t amén(i))El(f)
=1

N-1
2. S+ DEDD,
1

3 3 5

“4.2) Net
77,'2(N) = Z fi(]' + 1)22(]'),
j=1
1 N .

‘\/N -1 =1
and denoting the solutions of the system (4.1) for the observations £(1), . . . , &(V)
by &,,, these variables can be written as follows:

ij»
ni(N) = i/_-‘f‘“-»‘ ;2‘[(0'11 ;) E (N + @ =) (D + .. + C ain)‘::n(j)]‘:k(j)
(4.3)
ik=1, , N

using the relation
N-1

N=1 |
2 EUHDEGD) = 2@l D)+t ()60)
J = = :

which follows from (4.1).
The equation (4.3) can be written in the form

N-1 o o=
s &(NS()
nN) =V N1 G =) 5 D00
4.3"
-t }1\,_ ]('7'" U“,) ‘_/\:’ -L(_]\I/)S"l(j) i’k:I’ IR (S
1 —
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Equations (4.2) enable us to derive
(4.4) Enin(N) i, (N) =5 EE | () E1u())

using the properties of the variables {,(7).
On the other hand, when the eigenvalues of 4 are less than 1 the process is
ergodic, and therefore

N—1

@3 N"~ 1 2 ENED ~ BEDEG), k=1, . .. ,n,
i

with probability 1. v
The variables 7, (V) have asymptotically normal distribution (when N —
%) with covariance matrix

si {EE (D&, (DI 1y=1 = {Eng, Vg, (W)}

foray, (4, k=1, , n) fixed (see, for example, Rozanov [10]). By taking
(4.3") into conmderatlon and using (4.5) we can see that the variables (V)
(k=1, ..., n) depend linearly on the variables /N — I W@ o) k=1,...,
and, therefore, that they are also asymptotically normally distributed with covari-

ance matrix
s; {E&, (DE, (D}

The estimators 621.}. are evidently unbiased as well as consistent.
Let us note that the system

N—-1—-1 .
Z [E,(] +1) - ailil(i tr—=—1)—--- = Oti,,z?,,(i + 7= 1)]Ek(]) =0
j=1
Lk=1,...,n
for7=1,...,rcan be used instead of (4.1) to determine the estimates of Q-

We shall denote by &;, the corresponding estimators. In this way we obtain dif-
ferent estimates for different values of 7, and thus the following question arises:
For which systems shall we obtain better results when calculating expected values
of these estimates? As long as the system is of stationary Gaussian Markov type,
the estimates do not improve, but in systems which are not very different from
the ones mentioned (e.g. in the case of non-Gaussian systems) this approach
could be useful.. ‘

-So far we have dealt with the known procedure of obtaining estimates of
unknown parameters ;. We shall now consider the problem of reliability of
these estimates and the difficulties which may arise in investigating them. More
precisely, the problem is whether the eigenvalues of the matrix A can be deter-
mined using the estimates described above. This means, for example, whether we
can bring the system to the Jordan form for large values of N (and how large a
value of V for what accuracy).

n)
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For this purpose let us investigate, as a first step, the estimate of a single
parameter p of the n-dimensional process £(2) satisfying a system of the form
(1.4). From (2.12) it follows that the maximum likelihood estimate based on
the conditional density function 4 under the condition £(1) = x(1) will be

N—1 N-1 N—-1
DXy Xy T D XXt zl:xzixziﬂ
1 1

N_
—an —~1i m+zx m+l
1

From (1.4) it can easily be seen that

N-t No
Sl Tt L Enr Lt
1
- 1
Q—0 =7 " N—_'l 2
> 2 Gk
k=1 i=

and the expected value of the numerator on the right-hand side equals zero (be-
cause E£,$y;1q = 0). Therefore the estimate is asymptotically unbiased. For
large values of N, because of ergodicity, the denominator asymptotically equals

W-DZT ok, on the other hand, the expected value of the squared numerator is

2
Zs,05. Hence

— Z’skaf
E(VN- I(Qwe))z"'m? for N - oo,
In particular, when n =2 and 5, =5,
(1 -p?)

R e T F Y ()

(see [2], §2, where we had (1 — p?) for the variance of /N — 1(5 — p) in the
one-dimensional case).

As in the one-dimensional case, we have to investigate the asymptotic dis-
tribution of the above estimate for values of p which are close to 1. We have
seen in the one-dimensional case that for og =1 the estimate of p was uniformly
asymptotically normally distributed for =1 < p <1, while in the case of s = 1
this is by no means so. Especially for this reason we had to determine the distri-
bution of the estimates of the parameters in the case s = 1 for continuous-time
processes, and in the case ag = 1 we had to determine the asymptotic distribution
of the estimates of parameters of a discrete process. This distinction has to be
kept in the n-dimensional case as well, but performing the corresponding calcula-
tions is indeed very elaborate. On the basis of heuristic considerations we obtain
the following: the estimate of p is uniformly asymptotically normal for —1 <p <1
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in the case when ¢? = 1 and 03 = ¢ (# 1), while in the case §; =5, =1 this is
not true. The corresponding distribution of the estimates in the two-dimensional
continuous-time case will be given in another paper.
Turning back to the general case, we may assert:
From Theorem 3.3 of [1] and from the corollary of Theorem 5.4 in [2] it
follows that when all the eigenvalues of the matrix A in (1.2) are real and simple
and we have observed the process n(f) = £(r) + m, then it is not possible to con-
struct finite confidence intervals for the expected value m; for eigenvalues p,,
- -+ s p, nonzero lower confidence limits using continuous functionals cannot be
constructed.
This means, at the same time, that the values p 1 - -
tinguished,

- » p, cannot be dis-

To the extent that the matrix 4 has multiple and complex eigenvalues, the
arithmetic means are good estimates of the corresponding expected values, and
there is no need of givingA infinite confidence intervals.

We do not give the corresponding theorems.
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