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ON THE STATISTICAL EXAMINATION OF CONTINUOUS STATE
- MARKOV PROCESSES. II*

MATYAS ARATO

Introduction
The first part [2] of this paper dealt with continuous-time one-dimensional
stationary Gaussian Markov processes, although the observations are usually made
at discrete points; therefore we must now also investigate the discrete case from
the point of view of statistics. Contrary to continuous processes, the number of
unknown parameters now equals three: m, p, oz orm, p, og, where

m=EE(), ol=Var &), o= — oW =MHEG=D —m} ’
) o
2 2 .
oo=(1-0, (=12 ..).

In this paper we shall use the results obtained for the continuous case, and
therefore references to part I will often be made. :

It should be mentioned that the case of a known p and og has been investi-
gated by Luvsanceren [8], [9], the case of a known OZ and m by Linnik [7],
and the case of a known og also by Luvsanceren [8], [9].

In this paper we shall assume that all three parameters are unknown, and
we shall examine the behavior of various estimators.

I have already mentioned that a number of papers (see, for example, T. W.
Anderson [1] and the references given there) have dealt with the estimation of
the parameter p; a survey of these results will be included in the present paper.
It should also be mentioned that misformulation of the problem has often in the
past led to unsatisfactory results. ‘ ,

Some of the results obtained in this paper were included in my dissertation
[3], but the theorems and their proofs are published here for the first time.
Since the completion of my dissertation, new results have required further elabo-
ration and publication (see §6).
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1 —opo 0 0 ... 0
-0 14+0% —p 0 ... 0
. 0 —o 1+0? —9 0
R; = . ' - ’

O, 1+0% —o

L S —0 1

X—'m = (xl—m? s Xy =), (X_nl)* =

X, —m
The conditional density function of the random variables £(2), . . . , £&(n)

under the condition that £(1) = x, is
p(xz, ..., X, &(1) = xy)
(14) - (n—1) 1 =
=Q@m) * o7 Vexp {_?f, 2 (x.-—exi_l—m(l—a))z}.

Before investigating maximum likelihood estimators, let us deal with the
logarithmic derivative of the density. Let the unknown parameters be m, 0? and
P, and let us introduce the following notation:

' dlo 1 1 n ’
g _dlogp _ 1 [ |
: om o (xl )+ I+ é(xf“m—e(xf-l—m))},

QZ

: 1 ' J
sy gl 3 (vmm—o—my],

R = dlogp _(—-Do 0
| de 1-¢"  oi(1-¢%

1 n
+m ;’[xi—m—g(xi—l —m)(x;- —m)].

S la—m— oGy —myp

In the case of the unknown parameters m, 052, and p the corresponding
derivatives will have the following form:
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Time Discrete Stationary Normal One-Dimensional Case

§1. Distribution of observations and possible estimators

Theorem 1, proved in the previous paper [2], implies that the correlation
function R(n) of a stationary Gaussian Markov process is R(n) = p", n =0, 1,
..., where p = E{(¢(k) — m)(E(k — 1) = m)}/(Var £(k)). On the other hand
(see, for example, Rosenblatt [11]), &(n) satisfies the difference equation

(1.1) S+ —el(m) = {(n+1)

assuming that E&(m) = 0. Here {(n) is a sequence of independent normally dis-
tributed random variables, and {(r) is independent of £(n — 1). When Var {(n)
= of., the following formula evidently holds:

(1.2) o =(1-a")ct.

From (1.1) it foHows that for E£(k) = m the density function of the ran-
dom vector £(1), . . . , &(n) has the following form:

. : : n—1
Py, ..., §(n)(x19 s X)=(2m) o (1= QZ)_ kR

“€Xp

R PC PR A ~ L
(13) { 205 (1-¢%) [(x‘ m (1=¢)+ 3 (xi— 0%i-y —m(1-g)) ]}

=@n) "o (1= )" exp {~—1; [(x;—m)’(l pL
: 20'(; .

or in matrix notation

n~1 -

Pyt s X1, ooy %) =Q21) 05" (1— 03~ T
'exp{~—-————l (X—m)R"I(X—m)"“ '
20:(1—¢%) ’

where
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1— )2+ (n—2)(1 - g
Va g = (=OR+E=D(=0)
oy

2 .n
b'g N

(18) V 3) _ n—1 | 292
Var Hn - —Qz+(l—~Q2)z’

EHVH® = EEYHD =0,
2
po_ @ EHDH() eV2
H,” H, (2) 3)
6;(1—0 ) \/VarH \/VarH Vn[(n-—l)(l——- 2)+2@2]

As can be seen, when all three parameters m, OE, porm, 0;., p are unknown
the determination of the maximum likelihood estimators is very time-consuming,
and a successful investigation of their asymptotic behavior can hardly be expected.
Instead, we shall use an idea first arrived at by Wald, according to which we start
with a study of the asymptouc behavior of the quantities R(l) R(z) R(3) or
H(l) H(z) H(3) and only subsequently demonstrate that the solution of the sys-
tem of equations (when normalized by the corresponding variances) has the same
distribution, uniformly in unknown parameters, as the quantities R(l)/\/Var Ru;
R(z)/\/ Var Ra) and R(3 I Var Rz§j The normalizing factors, which are to be
multiplied by, will be precisely \/var RnU), VVar R,(,z) and v/Var R,(,3 ) respectively.

When considering the variances in (1.7) and (1.8) we immediately obtain
the result that for p close to one the maximum likelihood estimation of m is not
consistent in the case of (1.7), while in the case of (1.8) the variance does not
remain finite.

As we are mainly interested in the asymptotic behavior of estimates, it is
sufficient to consider estimates following from the conditional density function
(1.4). In this case, for example,

— )| 1—
gm - dloer(.b) _ (x, —m— (5 g —m)),
om 0;
(9) goo _logp(l) _ =1, 1 & o r—m)
Ba; 206 25; z

—_— 1 . -‘ . 1 n .
AP = 20ertl) - L 36 oy~ mi) (i — ).
. Oe o; 2 . ‘

Thus the corresponding system of maximum likelihood equations is simplified.
From the equations f_l-,(,l) =0, 17,(,2) = 0 and Hff) = 0 we obtain the following

relations between m, 6; and p:
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« dlog 1-—- d A
Hi“: anfp == Ung{(1+g)(xl~m)+;'(x,-—m—q(xzq“m))},
[4 .
O = dlogp __.n
" 60‘? 20'25

+%{(1—92)(x1—m)2 + i(x.-—'m—e(xi-l—m)y}r,- O
20; ; 2 n

dlog 1 » '
=P ___¢ 2+—2—{e(x1—m>2+2(xi—m—e(xi-x-m))(xf.t—m)-}.
09 1—90° o 2 ~

Using the above-mentioned formula E(¢() — m)§( + k) —m) = 0 for k >
1 and the characteristic property of normally distributed variables (provided

Ef, = 0)
EE 8,88, = EEEEEE 4+ EELELE + EE L, B¢y,

and after simple but lengthy calculations, we obtain

24 (n—2)(1—9)

var RV = ERPRY =

(1+0 ag
Var RP = ERPRY = 2,
’ 20’;

(1.7)

3) _ 3 p3) _ (n—1)(1+0%
Var R, = ER,’R, —————(1—Q2)2 s

ERVRY = ERPRY =0,

(n—Do

ERIRY = ————5—
st(1—¢”)

nnd similarly
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The estimate 62 has a x? distribution with expectation o§ and characteristic
function

(2.3) [, 20t i —%_ 207 i 7
o0 =[1 ) T = (12

Let m = 0; let o§ (or 052,) be known and p unknown. To obtain a maxi-
mum likelihood estimate we must solve a cubic equation, while on the basis of
conditional density function we obtain the following estimate from (1.9):

j 3Cixi~
@4) g2
n—1 2
2 X
1
The ergodic theorem yields
1 n—1 .
2.5) — %. 52(1)"0§

in the mean square sense and with probability 1, while the random variable

n n—-1 . n n .
‘(2-6).22’ é(z‘)é(i—_ D—e ‘1},7»62(1') = 22 SE—-D(E@) —et(i—1)) =;§ EGE—-1)L0)

has the variance (n — 1)1 — pz)og =(n- l)o;‘:. Hence it follows that the vari-
ance of the random variable '

Semte-n-eT €6

Vn-1@-0 =Vn-1 —
o ~ R0
Jroti-n-Z 0

- SO

i n—1

asymptotically equals 1 — e?.

The estimate p has a distribution which is asymptotically normal for any
fixed value of p; this follows e.g. from the results obtained by Volkonskil and
Rozanov [13]. This uniform asymptotic normality, however, holds true only
for the interval —1 + € < p < 1 — € (arbitrary € > 0). Thus confidence intervals
(upper and lower estimates) for p can only be constructed in an open interval
(=1, 1). Linnik [7] has dealt with the problem of estimators for p.

2. In case of two unknown parameters we shall mention only the case
dealing with m and p. When og =1 (this problem has been investigated by
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X=X +(1-0) 2%

i | TR S

&Cz = n_l_l ;"'(Xi—"%"@(xtq—’;‘))zs
G
Q == -

n
; (Xy-1 —M)*

If we assume that our sequence of observation is cyclical (i.e. x, = x,),
it follows from the above equations that m can be estimated by the arithmetic
mean, while for the estimation of p we obtain a so-called serial correlation coef-
ficient. These simplifications are not always permissiblej(') for instance for p —
1 the best estimate for m would be (x; + x,,)/2, as we shall see below.

From the form of the density function (1.3) we can obtain a sufficient
system of statistics belonging to such parameters in the form

r—1 n—1 n
’ Z 2 Z
{x1 +xn’ Z xiﬁx%+x'%-' 5 xl' ’ ) xixi'l}'

§2. Estimates of single parameters and their distributions
When only a single parameter is unknown we obtain the following estimates.
Let m be unknown. Its maximum likelihood estimate (cf. (2.6) in [2]) will
be n
%1 +xn+(1“9)22xi

2+(1-0(n-2)

3

2.1 m =

where m is normally distributed with parameters

)
™oV 2 rm-20—0)

Let m = 0; then o? has the following maximum likelihood estimate:

2.2) &g = ﬁz—){(l —0))x? + ;"‘ (i — QX.'-l)Z}.

(})Papers dealing with statistics of processes often, however, contain much simplifica-
tions (see, for example, Anderson [1] and the references mentioned there), and it is there-
fore necessary to show the interconnections with the present paper.
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the following characteristic function of (R{}), R(?), R(®)y.

j;l(tl’ tz, t3) = E exp {itlkfgl)"}‘itZRs;z)"'it3.iz$,3)}

X—m)Ry ' (X —m)*
(3.1) /f { (1—9)( MR (X —m)

+ity RP+it RP +its izf.”} dxy...dx,

= c,,exp{ ,;4/ +ztag|/ In—:e }/ fexp{——[YA Y+ — YA*]}dy, dy,,

where
o =t
(32) ¢ =(@2n) 2o;"(1—¢) %,
Y=X—m,
ag b 0 0.. 0
b a b 0.. 0
0
(3.3) A = bab 0
0 a b
0 b a,
and

@ =1 [1— 2t e ]
' a§(1—92)~ Van -~ V(n—1)(1+¢d)

B 5 21t2)+ 4ity0 ]
‘= G'g(l—g) [( +Q)( Von V(n—l)(l-*-ez) '
(34) b = -1 [Q[l—‘ 2it2] lt3(1+92) ];

21— o) V2n )T V=D + o)
e
| 20t .
T algel T wlaroRTe=20—0l
c

Let numbers d, (i = 1, . . . , n) be chosen so that

e
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Luvsanceren in [8] and [9]), it has been shown that maximum likelihood esti-
mates have an asymptotically normal distribution uniformly in the interval —oo
<m<o,—1<p <1 with a covariance matrix

V 1+¢ |
%Y 25xm-2(1—-0

0

1— 0?2
Vn—D(1+¢)
The proof is based on the fact that the quantities R,(,‘) and R,(f) have asympto-
tically a normal distribution uniformly in the corresponding interval. However,
when 032. = 1 (this case is closer to physical reality as well as to the continuous
case) the uniform asymptotic normality of the distribution in the relevant in-
terval —oo <m < oo, ~1 < p <1 does not hold (see below, §5). It should be
mentioned that in a narrower interval —oo < m < oo, —1 + € < p < 1 — € uniform
asymptotic normality follows from general results (see, for example, Volkonskil
and Rozanov [13]).

The distinction between the cases az =1 and of, = 1 becomes clear when -
we compare the corresponding variances in (1.7) and (1.8).

§3. Distribution of the derivative of a liklihood function

To investigate the asymptotic behavior of maximum likelihood estimators,
let us first investigate the properties of the distribution of the random vector
(RS,1 ), Rf,z), R,(f' )) for n — o0, We shall use the following notation:

(1) (2) :
R = Rn oy - Ra p(3) = _oon

—=—=, R , R = e mees.
TR T Rk T N kD

THEOREM 3.1. The characteristic function f,(t,, t,, t3) of the random
vector (R(l) R(2) R(3)) converges as n —> oo for any t,, t, and t; uniformly
to the characteristic function of the normal distribution with expectation (0, 0,
0) and with correlation matrix

1 0 0
_ V_E_.
e 1+¢%|>»
2
0 -—QI/ e 1

convergence is uniform when —o < m < o, 0 < GE KK<oognd -1<p<1,
where K is an arbitrary fixed constant.

PROOF. The form of the matrix (1.3) and formulas (1.5) and (1.7) give
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. n . n—1 D
by, 8, 83) = C,expy—it — — gy 7l
Sa(tys 12, 83) 6 P{ lzl/ 2+”3Q|/ 1+92+2}
: 1 ;
-/.../exp {——iXA,,X*}dxl...dx,,.

Since (see, for example, Cramér [5], p. 136)

f f exp {- % XA,.X*} dx, ...dx, = Quyi2|4,|- 12,

it follows that
(unﬁmnbm—awﬂﬂAlmwﬂ}WV “”4A+2+ }

From (3.3) it becomes apparent that

(3.11)

(3.13) Nl = ay[du2| ~2b2ay | Ay |+ 5% Ay_sl,
where IZ"I satisfies the difference equation
(3.14) | du| = @l Ay | — 52| An-2].

It can now easily be shown that

(3.15) ‘Ianl = o 0] + o202,
where v, and d v, are roots of the equatlon v? —av + b? = 0, while from the
conditions IA | =aand IA | = a® — b? we get
(3.16) o = vy , oy = — Uy .
vy — U, v, — U,

By substitution in (3.15) and (3.13) we get the following two expressions:

(3.17) | i Pttt
", vy -0,

3.18 1 n— -

( ) [4a] = 0, [vy 3(1111’1--b2)2-—vz 3(alvz—bz)Z]

U1~3(a1vz —-b2)2 [1 ~ (12]"—3 (@, 0,— bz)z
i UA

vy —02 (ayv,—b2)*"

To simplify calculations, let us write

) frfl)(tla t2, t3) = exp{%},k

236 M. ARATO

aydy+bd;, = ’%,

(3.5)

bdy+ad,+ bd, =(1~g)-§,_

bdy_y+ad, +bdy 3 = (1-0) 7,

bd,,_1 +ald,, = d

>
Under the transformation y; = z; — d,, the expression YA, Y* — YA* becomes
—d,
3.6) (21— dys oes 2o d) 4,
Zy — d,
where

Dy =aydi +a(di+ ... +d>_)+ad; +2b(drdz+ ...+ d,_ 1 dy)

(3.7)

= f@+ay+ 85995,

The general solution of (3.5) is

(3.8) d‘. = d-+61ui1+02ui2, )

where |

(3.9) d= Lllg)_c
2(a+2b)’

and u, and u, are zeros of the equation bu® + au + b = 0. The quantities 6

and 6, can be determined using the first and the

a uz + buz

last equations of (3.5):
—(aruz+ bu3)

¢ :(———da +b]
1 2 @, +0) (ayuy +bui’)(a1uz+bu2

(3.10)

asuy + bu1

)= (asti2+ bu%)(al ut +buy” l) ’

—(ar ] +bui™?)

) =(£_da +b]
! 2 ('1 )‘(a1u1+buf)(a1u2+buz

On the basis of a new solution, say z; —d; =
becomes

h— (aluz+buz)(a1u1+b" h”

x;, the characteristic function (3.1)
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n-1 _n-t n—1 n—1 t3(1-0%
N R (R Do R A ity it QV — 3
vy = 0¢ (1-09) exp{ 2V2n 3 1+0* 2(1+0)
(3.20) oty 1t -1 QZI%}[1+£3_
2) 2 n 1+¢ Vn

It can easily be calculated that

21t2 . 21'!2 Q M4
a v} —p? = ———— =21 +2it (1—- — 7
o m:(l—e) [( ] U V) Va-na+e)  n

2t, M
vl-—v2=i[l_ a: +=31,
(3.21) oil V2o om
1 M,
0 (W —o )V = |1+ =5
; 1( 1 2) 0_2(1_92) [ '/n

avi—b? = ————5——".
o ci(l-¢) n
From (3.21), (3.20) and (3.18) we get

1 #n-1 £ 20t,t
&, ta, t3) = exp |—it, —2—;—»232”—#~23+ ___n_g_z.i*_ [1+V_
]/2—“_—1(14‘92)

(3.22)
The asymptotic behavior of f{!)(z,, t,, t3) can be discussed as follows. From

(3.7)—(3.10) we obtain

.Dn 2 (2d+61u1+02u2+91u1+02u2)+ [( ___2)d
1—-u)? 1—u5? c2(1 Q)
2 ] 2
+0,u} 1—u, +0,u3 1——u2] 4(a+2b)[2+(n 2)(1-9)]
2 .
4( +2b)[a+2b (l 9)(a1+b)]-g,,(t1,t2,t3),

where

' -2
0
n—-1 1
gn(tla t29 t3) = {[1 +u1 +(1 Q) —u, ] c

—2

a2 1= 9

+[1+u2‘("“’+(1 Qus"? 1 ] 2
. — Uy
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1 n—1 n bl
Pt ) = 14 F o (1— oY) 2 ""‘P{“"”V’;“L a0 1n+—elz}’

and let us deal with the asymptotic behavior of the two functions separately. In
what follows, M; and ]l—l, are constants, while the variables ¢,, ¢, and ¢, belong to
an arbitrary finite interval T, x T, x T which is uniformly bounded for p €
(-1, 1) and 0} € (0, K].
From (3.4) we obtain
vy ~—*[(1+ 2)[1~ 2’3]+ 4o
or(1- V2n) V(-1 (1 +¢?)

2ty 412
A Z’V[l Vzn] | (n—1)<1+92)]’

1 2it 4it, 0
= ———— 1 2y |1 =2 S 1 S
= ey [0+ Vzn)+V(n—1)(1+92)

2ty 4t2
‘(1" 2)‘/[1 l/?.n) n—l)(1+92)]'

For a sufficiently large n we obtain
[1~ 2it, ]-2= 1+ 4it, Ml

(3.19)

and V2n Vzn n
2 ; 1/2 2
[1+ 413 [1+ dity +i{l)] S W S Y
(n—1(1+0% V2n  n =D+ n32

and therefore (3.19) can be written as

1 2it, 2ity 0 2(1-90%» M,]

" RA-0) [ Vi Vaohared +(n~—1)(1+el>+??ﬁ]’
(3.19" .
0 = 1 | 2t 2ity 0 _ B(1-gY) _I__Itﬁ].
oi(1=3?) V2n  Vin—1D(+0d) (—D(A+e>) n3?]

Using the series log(1 + x) = x — x2/2 + 6x3/3, where 181 < 1 for x| <%, on

the basis of (3.19") we obtain

n—-1 n—1 . .

- —(n—1) "7 n—1 2lt2 2Qlt3

vy 2 =g¢ 1-—- ex {—- [——

' o e e T Venar e
(1= %) dot,t; 1 (gt_ L 41 ] N Ms]}

(m—1)(1+e?) V2u(n—-D(1+e) 2 (r—1)(1+e%) n??

and therefore
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where
n—1
u1 el 1 x &
— =Mo =1, |uy|~®~V=Mo=1.
Uy
Similarly ,
n—-2 :
a; +bu1-—(a1u1 +‘b)u1 _ 2.‘_
u, . — = 0y M14,

(ay +buy)(a,u, +b) —"llz—_‘z‘ (ay + buy)(a  uy +b)

which follows from the relations

_ 1 M
| =Mz =1, v, =—; . [1+ i’].

gy (1'—9 ) Vn
From equations (3.24) for u, and u, we obtain the quantities
n— 1-— 12
Loy (1= Q)uy ——
1 1—u, =M
) Y =. 155
327) I+o +(n—-2)(1-90) .
n—-21
14+u; " P+ (1-o)us 2l
1 . l—uz = A_416,
1+ 2+(n-2)(1-0)
which are uniformly bounded. Thus from (3.27), (3.26) and (3.23) we get
: D, = —1} (1+ )
(3.28) Vn
Ml zlts
—t2[1+ ] [Ms M1+ Mys- M14],
U ) Ve -D T+ ey
and finally
3.29 D, 1 M7}
(3:29) 4 f,f”(tl,tz,ts)=€XP{2}“‘exP{““} 1+ l/% ]

From (3.12), (3.22) and (3.29) we obtain the following result for the character-
istic function of (Rr(zl), R’(,Z), R,(,3)):

PN 2)
f;l(tlstZat3):j: )(t19t2at3)'fn( (1, 22, 13)

(330) 3 1 z‘3 20t,t4 M
= exp{————-— + — |1+ —]-
2 2 V2(1+0?) Vn

Hence as n —> o the functions fn(tl, ty, t3) converge in;any finite interval of
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Thus B
] -y R S (1 N -
(3.23) Vn)  2+(1-0)(n—2) V) V=11 +0d)

s 8, (t st ’t)'
Targ et

Because u, and u, satisfy the relations

v v |
B2 wy=-2, w==T4 w,m=1 |ulsl, jyl=

it is easy to show that

| 1 2it, \? 2it 0
au +b_—~~———————[[l——_2} + 2it [ 2
v o;(1-¢%) V2n } Y 2n V(n—l)(l-i—g

au+b= 1————L——-—-M3_,
b 6.:(1—@) n

M,

a1+bu2=a1—~vl =— .
(3.25) g¢-n
a1+bu1=al—v2=—]—.2— 1— Zl_tj +_Aﬁ],
O¢ ]/2n n

vy _ _&]

o) [Q Va b’

bgz_l;“r{~g+£{;], where M;#0 for =0.
ot (1—g%) Vn

Let the uniformly bounded quantity 1 /04(1 - p2)b? - v,a,) be denoted by
Mg and the quantity nas(] p2)(B? - v,a,) by My; then

(aiu, +b)—(a, + buz)uz_("—l)

n 2

(al +bu1)(a1 Uy +b) - u" ) (a]_ +buz)(a1u1 +b)
(3.26) 2
_ M- (M.) ~
I—Mlo[—e-!-Tj—] [J]Ms
g -
1- 2 - M, 2. 222

2
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We could calculate with no difficulty the derivatives in (4.3), but we shall not
write down the corresponding formulas. With the substitution

_ o3 (1+ 00)
m= Mo = "V2+(n°—2)(1°—;ao)’

2 2 ’2]/2
0 — 09 = )00 ;’
1— 02
0= =12 ®__,
V(n—1)(1+¢3)

and after dividing the first equation (4.3) by 0,v/1 + pov/2 + (n — 2)(1 — p,,),
the second by (1 — p3)og+/2n and the third by (1 ~ p2)a2v/(n — 1)1 + p2),
we obtain the following system:

. oL 1
(1) —
R I ) T B R
4.4 . @ 1
4.4) Rf,2)+y oL, ___0,
6a¢ On(l—Qo)
- oL® 1
3) " . =0
Rt b =D +ad) T

It can easily be shown that

oL 1 _
om o 2+ (m=2)(1—g,)
LY 1

dag lo n(1—gq) ’

LY 1 .
9o o of(n—=1(1+¢3) ’

where convergence should be understood as convergence almost surely as well as
uniform convergence on the set —eo <m; < o0, 0 < 0(2, SK<»,-1<p, <1
The remaining terms in (4.4) tend to zero almost surely and uniformly on the
above-mentioned set in the true-parameter region.

For large n the quantities IR()] and IR(‘)I/IR(’)I Lji=1,2, 3 are
bounded in probability and uniformly in the same set, as follows from Theorem
3.1. Therefore the system
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the Cartesian product 7, x T, x T to the characteristic function of the normal
distribution, uniformly in —ee < m < oo, -1 <p <1,0< ag < K < oo, The
proof of the theorem is complete.

By rearranging the corresponding formulas the rate of convergence can
also be determined.

84. Asymptotic distribution of maximum likelihood estimates

Using Theorem 3.1, we can now investigate the asymptotic behavior of
the maximum likelihood estimates as given by the solutions of the equations

(4.1) RV =0, RP=0, RP=0.

Convergence of distributions is understoed in the following as weak con-
vergence (see Gnedenko and Kolmogorov [6]). We now prove

THEOREM 4.1. The system of equations (4.1) has almost surely as n —>
oo a solution m(§y, . . ., §,), 03(Ey, - ., £,), By, - - -, §,) such that the dis-
tribution of the random vector

(m._m)‘/zﬂn—z)(l g) 62— G‘)al/ﬁ G o) V(r1—111(1+92)
3

s:(1+0) 2’ 0*.

converges to the distribution of the random vector (ﬁf,l), Eﬁlz), Ef?)) asn—>
oo, gnd this convergence is uniform in the region —oo < m < o, 0 < og <K<
o -1<p<1

ProoF. Let us take
L =(1+9a:RP =0,
[P = 21— )t R? =0,
LY = (1-¢)0: R =0,

which is evidently equivalent to the system (4.1). The left-hand sides in 4.2)
are polynomials in the variables m, og and p; their Taylor series about the true

(4.2)

value; mg, 02,0 and p, of the parameters are as follows:

aL(l) (1)
L )(mo,ao,eo)+ (m—mo)+aL" (e—go)+...=0,
Mo, 03,00 0 my .03, 00
8L‘2) ; .
4.3) LP(mo, a2, 20)+— ) (rr—mo)+ =0,
Ma,835,00
aL(3)
A Y(mo, o5, (m—mgy)+ ... = 0.
"'o»"cz)»’.’o -
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|

100
0,0,0; 010
001

as K —> oo,

The proof proceeds in the same manner as in §3. The quantities v, and
b, in (3.19) will, however, have the following form:

1 2it it 201 — o2
. 1) =_2_[1+ 2 [1~ z__] it;20¥1—¢
h 2ag~( &9 V2(n—-1) * Vn—1

v 2it 2 4iot 2it — o021t
+(1-3)lf1- _*2_]_ Yoty [1_ it 41— 23
| Q){[ 26-0)  Vo-Di-e) | o) wot |}

B 1 . . .
b= [(1 +07) (‘1- 24tz ]+ it:20)1—¢?

o V2(n—1) Vn—1
_ 5 2it 2 diot, 2it 4(1 — o2) 2 11
V2(n—1) Vin—1)(1= g% V2(n—1) * n—1 Tl

When considering (3.20) it can be seen from (5.1) that the normality of
the asymptotic distribution holds only for x —» oo,

For k — oo we obtain estimators equivalent to the maximal likelihood
estimators when considering the following:

- 1z ~2 A2\ A2

m=—2¢&k), a6; =1~
52 1= 3EM, 6 = 1-)5

o= 3 '
where k

(5.3) 1 n
nk) = L) —m, 5 =— 3 4' k).

n =1

Simple calculations give us
. 2 2
Emt =m, Var m = S—+~2iﬁ+o[i ,
n 1—p9 n n

(5.4)

s 1 . 1—g?
E(Q—-e)=0[—J, Var § = 2 +o(1J,
n n n

N 1 - 2(1 — 9?)?
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1—81+... = 0,
(4.5) 1 —62 + eee = 0,
- 1'—‘33"{"--- =Y,
where
x y I
B =zm &B2= r®’ b = Ok \

for large n with probability arbitrarily close to 1 has a solution eg"), eg”), eg”)
which uniformly on the set —c0 <m < oo, 0<0(2, KK<ew, —-1<p<1 be-
longs to the interval (1 — &, 1 + &) (with arbitrary §). Hence the limit distribu-
tion of the variables

5 =e RO, 3, =epRD, z=ep-RY
for n — oo coincides with the distributions of 1}”(11)’ 1?5,2) and ES?), because
e,(") =1(i =1, 2,3)as n — oo uniformly in the region —c < my <o, 0<
03 <K <,-1<p, < 1. The proof of Theorem 4.1 is complete.
The relations

A 2 —2)(1—go
= Gy || 205

2 2, 1 ]/n
yn=(an_60)'a_g '2';

V(n—1) (1 +ef)

1—-0}

Zp = (én - QO)

show that the estimators 5, and 6,2, are uniformly consistent, which is not true
for m,,. ‘
Using Theorem 4.1 and Cramér’s theorem ([5],p. 281), confidence inter-

vals for m, ag and p can be constructed.

§5. Results obtained for discrete analogues of the continuous-time case
As we mentioned above, we have a case corresponding to the continuous-
time one when the parameters m, a? and p are unknown. Here the assertion
concerning uniform asymptotic normality of quantities Hg) (see (1.6)) is not
true. Nevertheless, two theorems concerning Hf,") can be proved; these theorems
correspond to Theorems 3.1 and 4.1 when k = (1 — p?)n —> oo,

THEOREM 5.1.  The distribution of the random variables ﬁff) =
Hff)/Var Hf,i) (i =1, 2, 3) tends to the normal distribution with parameters
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o 17 L 20 ey __1_1/?" D
=-)/2 +2a§]/: la-aea o) 2 S R0

e ool T LT (E@ =R +ED A
({(f l)_m)Q]z}_—V;+20§ l/n (1-0%)s: + VZ‘n-of B

coincides with that of {,, for n —> e. The solution of the equation {* = 0
yields the estimator 632, when one neglects a term of order O(l/x/r—z), which com- -
pletes the proof.

Theorems 3.3 and 3.4 in the previous paper [2] remain true also in the
discrete case when parameters m, og and p are considered to be unknown. To
verify this we only need to prove that continuous functionals of trajectories of
a discrete stationary Gaussian Markov process converge in probability to function-
als of trajectories of a process continuous at the corresponding points, and that

this convergence is uniform in the parameter space.
Let £,(#) (0 <t <T) be the polygonal function associated with the pro-

cess £(2), i.e.

k7|, (k+1 kT
oo a0 el 1)-¢[7]).

n

for

KT =kt lp =01, 01
n n

fiA

The following lemma is true.

LEMMA 5.1.  Let £(t) be a stationary Gaussian Markov process. - Then uni-
Jormly in —e0o <m <0, 0 <A A, (and 27\0? = o? = constant) the following
inequality is valid:

2 2
(59) P{ sup 16(0)=£(@)] =) = 270+ % D08
Vt']<d & :

Proor. Formula (1.1) in [2] shows that

EO=E) ==1 [ewas+ [ @t

“and therefore
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Similarly, the following theorem can be proved:

THEOREM 5.2. As k —> oo, the estimators Fi ~ m, 8§ ~ o? and p ~ p
are asymptotically efficient, and the distribution of the random vector

~ ~A2 2 ~
m—m o; — 0y e—e

(5.5) e ) m—————, e
- l—po n n n

tends to the normal distribution with parameters

The following theorem can be proved in an even easier manner.

100
010

'hqa
001

THEOREM 5.3. As n —> oo the estimator Bg ~ og obtained from (5.2) is
asymptotically efficient, and the distribution of the ratio

A2 2
(5.6) 9~ 0L
22
“Von

tends to (0, 1) normal distribution.

PrROOF. We have seen in §2, (2.3), that the characteristic function of the
random variable

+ S [E@-m—o(tG-D—m)]2}

Hence {,, is asymptotically normally distributed as # —> oo, On the other hand,
p— pand M — m in probability, and therefore according to Cramér’s theorem

has the form

[5] the asymptotic distribution of the random variable
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_ " Tk
(6.1) mn=n+1k2[ ]

a value »n exists such that the variance of m,z is minimal. But condensation of
observation points over all limits is of no use. This can be illustrated as follows:
Let 7= 1 and o} = 1, and let m be estimated by m, = (£(0) + £(1))/2 and by

= fol £()dr. It can now be clearly seen that (se¢, for example, formula
(2.15) in [2])

6.2) 1+e-* Ate r—1
Var my =T, Var m, =—‘73———..

We have Var m, < Var m2 for 0 <A <2 and Var m, < Var m, for A> 2.
Therefore, when T = 1, GE =1 and X <2, the estimator m, is better than m,
(both are equally good for A = 2).

The problem of estimating the variance of the process can be put in a
similar way. Let us assume m = 0, and let us estimate the variance by

(6'3> = n+1 2 (kT]

What is the value of n with the minimum variance in this context? Let us again
take T =1 and og =1, and let us compare the variances of '

1
(6.4) | | s;z:m}fz—(i), s2=f€2(f)d’-
' 0

We easily obtain
- Var s2 = 6*(1 +e-2%) = ¢* (1_'_8_%2)
(6.5
Var 52 = (e'“—}-2/l——l) = 40'8 (e a2+i__ IJ

Simple calculations show that Var s1 < Var 5% for 0 <A < 1 (or for 02 > 1%).
Difficulties arise here, since 02 is also an unknown parameter, and, moreover, the

variables 53 and 5% do not have normal distributions; therefore the above esti-

mates can only be used as approximations.
When we have to choose, for a given A, the length of the interval for which
the extimator

. 0)+ &(T
mr=6()§€()

or the estimator
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’ ” - I 3 2
E{, sup K@) -¢@)P)=2E 1,:153P<a"1,,,f é(s)dsl !

f dc(s)l

<25f E (L) ds+ 2025 = 07467 + 2025,

+2E
(5.10) { S?}f«s

Using the Cebysev inequality, we obtain (5.9) from (5.8). The case of A —> oo
would require separate discussion; but, as the results in [2] show, in this case
confidence intervals can be constructed, and therefore we can now leave it aside.

Lemma 5.1 ensures that the assumptions of Maruyama’s theorem [10] are
satisfied; this means that the following theorem is valid:

THEOREM 54. Let £(f) be a stationary Gaussian Markov process, and let
£,(t) be the corresponding polygonal function (5.8); further, let f(t) and g(t) be
continuous functions on the interval 0 < t < T such that f(0) < £(0) < g(0).
Then

511 IMPUO=6,0)=g(), 021 T} =P{f()=E(®) =g (), 0=1=T}

uniformly in — <m <o, 0 <A A,
From Theorem 5.4 immediately follows

COROLLARY. Let £(t) be a stationary Gaussian Markov process, let
h(&@t)) and h(£(t)) (0 < t < T) be continuous functionals and let € be a positive
real number such that

(5.12) P{h(E(®) <m<h(E@®)}=1—c.

Then for any €, > O there exists (uniformly for —oo <m <o and 0 < XA < },)
an integer n, which depends on € and €, only, such that

G13) P{h(E,(0) <m < h(G @)} >1—e—ey.
This result, considered in conjunction with Theorem 3.3 of the previous
paper, means that in the discrete case no finite confidence interval can be con-

structed.

§6. The problem of condensing observation points
We have seen in §2 that the maximum likelihood estimator for m is the
weighted average of the statistics £(1) + £(n) and 77! £(i). We could therefore
expect that in estimating the expected value of the process £(¢), observed in the
interval [0, T, by
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f@+f[—§—j+¢(r)
3

m, =

is better, the corresponding variances

0.2
Varm; = -—2—(1+¢_)'T)

: 4
Var m, = %_ (1 +_§_ e)-rr_*__i e“m]

give us the following inequality for T

6.6 AT
(66) 3+ 5e-4T=8e 2.

In the general case, let R(7) be a twice differentiable correlation function
of the process £(¢), and let its second derivative be bounded on the interval
(0, 7). Then the following theorem holds true.

THEOREM 6.1. If, in addition, the correlation function R(r) of the process

£(2) satisfies the condition
T

/R(‘E) [1 ——2;—) dr>0,

0

then among the estimates (6.1) there exists one ( for finite n) which is of mini-
mum variance.

It would be useful to find similar conditions also for variance estimates.
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