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Abstract—Recent problems in robotics can sometimes only be
tackled using machine learning technologies, particularly those
that utilize deep learning (DL) with transfer learning. Transfer
learning takes advantage of pretrained models, which are later
fine-tuned using smaller task-specific datasets. The fine-tuned
models must be robust against changes in environmental fac-
tors such as illumination since, often, there is no guarantee for
them to be constant. Although synthetic data for pretraining has
been shown to enhance DL model generalization, there is limited
research on its application for fine-tuning. One limiting factor is
that the generation and annotation of synthetic datasets can be
cumbersome and impractical for the purpose of fine-tuning. To
address this issue, we propose two methods for automatically gen-
erating annotated image datasets for object segmentation, one for
real-world and another for synthetic images. We also introduce
a novel domain adaptation approach called filling the reality gap
(FTRG), which can blend elements from real-world and syn-
thetic scenes in a single image to achieve domain adaptation.
We demonstrate through experimentation on a representative
robot application that FTRG outperforms other domain adapta-
tion techniques, such as domain randomization or photorealistic
synthetic images, in creating robust models. Furthermore, we
evaluate the benefits of using synthetic data for fine-tuning in
transfer learning and continual learning with experience replay
using our proposed methods and FTRG. Our findings indicate
that fine-tuning with synthetic data can produce superior results
compared to solely using real-world data.
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I. INTRODUCTION

MODERN robotic applications often need to function
in dynamic environments, where certain aspects, such

as illumination, clutter, and object occlusions, are constantly
changing [1], [2]. Data-driven approaches, such as deep learn-
ing (DL), are commonly utilized in these scenarios. Robots
can assess their environment based on visual data processing
performed by DL models, providing them the required flexi-
bility to operate under dynamic circumstances. The robustness
of these models can be described as their capability to
adapt/generalize to a range of settings with different envi-
ronment factors [1]. Models which can generalize to a large
variety of settings with different lighting, clutter, etc., condi-
tions are considered more robust than models which are not.
In this article, we inspect two ways to achieve good general-
ization. One is through the use of continual learning [2], [3],
where generalization comes from accumulating knowledge
over time in a dynamic environment while avoiding forgetting
the previously acquired knowledge [3]. The other is through
transfer learning [4], [5], which relies on training datasets that
force the models trained on them to generalize well. We show
that both approaches can benefit from using synthetic training
data for increasing model robustness, with the help of rep-
resentative experimental setups for object segmentation and
image recognition for robotic tasks.

For both approaches, the training data has great signifi-
cance as it directly influences the generalization capabilities
(and thus the robustness) of the trained models. It has been
shown that models trained on a dataset coming from a source
domain adapt to a target domain better if the source and tar-
get domains are similar [5]. Variations in the data distribution
of the training set can also help the trained model accommo-
date the difference in the data distributions between the source
and target domains [6], [7]. This suggests that training datasets
that contain samples from the same or a similar domain the
models will be used in and which incorporate sufficient varia-
tions in the data distribution are likely to result in more robust
trained models. However, data collection with a real-world
robot setup can be highly time consuming and expensive due
to the sheer amount of data needed to incorporate variations to
obtain robust models [8]. Furthermore, since many DL-based
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solutions use supervised learning techniques, training datasets
often have to be annotated [9]. However, the manual annota-
tion of the data is also very time consuming or practically
impossible, especially in complex tasks, such as semantic
scene segmentation or instance segmentation, which are often
required in robotic applications. In addition, DL models are
also known for their need for extensive training datasets. As
a result, collecting and annotating the training data can be a
massive roadblock to developing new DL-based solutions for
robotics.

It is easy to see the great potential of using automated
means for data collection/annotation and synthetic data for
training DL models. Synthetic data can be generated rapidly
and inexpensively with automated annotation, incorporating
arbitrary variations in the data distribution. However, synthetic
data for training DL models comes with a tradeoff by intro-
ducing a discrepancy between the domains from which the
training data is generated and in which the models will be
used. Consequently, models trained on synthetic datasets may
not be able to adapt well to real-world data, even if they per-
form well on synthetic data. This phenomenon is known as the
“reality gap.” Overcoming this challenge (often referred to as
“bridging the reality gap” [1], [6], [7]) is crucial for leveraging
the benefits of synthetic datasets and ensuring that DL models
trained on synthetic data are robust and generalize well to the
real world.

There are two primary techniques for bridging the real-
ity gap, regardless of the synthetic data generation approach.
The first one is to create a synthetic dataset similar to a
real-world dataset [10], [11], [12], [13], [14]. In the case of
synthetic image data, this is achieved by creating photorealis-
tic images. The other approach is domain randomization. This
technique introduces unrealistic levels of variation in the syn-
thetic dataset, which forces the models trained on such datasets
to ignore the effects of the randomized factors and thus to gen-
eralize to the real-world data as well [6], [7], [13], [14]. Many
approaches focus on what aspects and to what extent photo-
realism or domain randomization should be used and whether
these two methods could be combined [13], [14], [15].
However, these approaches still try to bridge the reality gap,
“building from only one side,” by improving synthetic data
generation. In this article, we propose a novel method, which
we call filling the reality gap (FTRG), that takes advantage
of an automated real-world dataset generation technique and a
corresponding synthetic data generation pipeline and aims to
overcome the reality gap by blending real-world and synthetic
components inside images. With FTRG, we have complete
control over which parts of an image come from the real-world
data and which ones come from the corresponding synthetic
images. Furthermore, real-world and synthetic parts can also
be overlayed on top of each other by taking advantage of
the alpha channel of the images. By continuously modify-
ing the opacity, we can achieve a seamless transition between
real-world and synthetic image components. In our experi-
ments, we demonstrate how this approach can yield superior
results when fine-tuning models for object segmentation over
using datasets that contain images that are either completely
synthetic or coming from the real-world dataset.

The benefits of using a synthetic dataset are often discussed
from the aspect of transfer learning. It is well established that
pretraining on a large synthetic dataset and then fine-tuning on
real-world data can be superior to training only on real-world
data [12], [16]. For example, Nowruzi et al. [16] explored
the benefits of having a synthetic dataset in addition to real-
world annotated data for object detection. In their experiments,
they trained an SSD single-shot detector [17] with MobileNet
as the backbone [18] from scratch on a dataset containing
both synthetic and real-world data. They found that the addi-
tional synthetic data significantly reduced the need for training
on real-world samples (10%, 5%, and 2.5% of the original
real-world dataset was used). Additionally, when training the
model from scratch, synthetic pretraining and fine-tuning on
real-world data outperformed simply training the model on
a mixed dataset (consisting of both real-world and synthetic
samples).

Creating a synthetic dataset is often seen as an alterna-
tive when one lacks a large annotated real-world dataset for
pretraining. This article focuses on the benefits of using syn-
thetic data for fine-tuning when an automatic real-data labeling
pipeline or an already annotated real dataset is available. We
consider the typical case when a pretrained model is already
available, and only the fine-tuning step has to be completed.
We show how synthetic data can improve the fine-tuning steps
of transfer learning approaches for robotic manipulation and
the training of continuous learning methods using experience
replay for image classification.

The contributions of this article include the following.
1) A real-data labeling procedure for robotic manipulation,

which can automatically generate instance segmentation
masks for images of real-world scenes.

2) A Blender-based annotation tool which can automati-
cally generate instance segmentation masks for rendered
synthetic images.

3) Experiments showing how synthetic rendered data can
help boost the performance of continual learning meth-
ods using experience replay.

4) A novel way of creating a mixed reality dataset combin-
ing our automatic annotation techniques. This method is
called “FTRG” as it combines synthetic and real-world
data seamlessly.

5) Experimental results showing the benefits of using syn-
thetic data in the fine-tuning step of transfer learning in
instance segmentation, showcasing the potential of the
FTRG method.

II. RELATED WORK

Novel techniques employing synthetic data have shown
encouraging results in tasks that were previously deemed chal-
lenging, including transparent object detection, robotic cloth
folding, and object rearrangement using visual data [19], [20],
[21], [22]. One particularly successful approach, Dex-Net 2.0,
leverages synthetic point cloud data and analytic grasp met-
rics to train a grasp quality convolutional neural network
(GQCNN) for robotic grasp prediction [23].

Liu et al. [24] proposed a synthetic dataset generation
pipeline for robotic picking with a vacuum gripper based
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on RGB-D data. They utilized Blender, an open-source 3-D
computer graphics software [25], for generating photorealis-
tic synthetic images and a learning-based (GAN) approach
for overcoming the reality gap. They evaluated their approach
against the popular Dex-Net 3.0 benchmark [26] and reported
its performance on a real-world robotic picking setup. Their
results revealed that the proposed approach can deal with
multiobject picking and challenging novel objects (transpar-
ent, or small objects) robustly. Many recent scientific results
utilize similar GAN-based image-to-image domain adapta-
tion approaches to overcome the reality gap [27], [28], [29].
Contrary to these solutions, FTRG takes advantage of real-
world images directly rather than relying on a learning-based
approach to extract features that transfer well to the real-world
domain.

Similarly to the solution of Liu et al., Denninger et al. [30]
also utilized Blender for their synthetic dataset generator,
BlenderProc. BlenderProc is entirely Blender-based and can
generate photorealistic rendered images and corresponding
segmentation, depth data, surface normals, etc. The potential
of BlenderProc is demonstrated in indoor scene segmentation
examples, but it could also be adapted to robotic tasks.

Greff et al. [31] introduced Kubric, a synthetic dataset gen-
erator utilizing PyBullet [32] and Blender. It is an extremely
versatile framework that can generate photorealistic renders
and various annotation types, such as segmentation masks,
pose, optical flow, surface normals, etc. Several models trained
using synthetic data generated from Kubric have been shown
to achieve outstanding results in various fields, such as
point tracking, semantic segmentation, salient object detection,
pose estimation, etc. [31], which proves its effectiveness and
flexibility.

Our synthetic data generation pipeline also utilizes Blender
to create photorealistic renders and corresponding annotations.
However, instead of creating an extensive framework, such
as Kubric or BlenderProc, we aimed to keep our solution
lightweight and implemented it as a Blender addon. This
allows it to be used with no additional installation steps
(only Blender is needed) and allows the pipeline to be used
for potentially limitless scenarios (not limited to robotics
solutions).

A. Photorealistic Synthetic Data

Dvornik et al. [33] proposed the so-called copy–paste
method for augmenting image datasets for object detection.
Their approach utilizes object segmentation annotations to
crop object instances from a set of real-world images and paste
these cropped instances into other real-world images. They
achieved significantly better model performance by utilizing
the copy–paste strategy if the instances were placed consider-
ing the visual context. They used a CNN to model different
object categories’ visual context and used this network to guide
the instance placement.

Li et al. [34] also utilized the copy–paste method. They
proposed a sim-to-real framework for training object recogni-
tion and localization DL models for industrial robotic bin pick-
ing. They used photorealistic synthetic images, corresponding
depth data, object segmentation masks, and 6-D object poses to

train their models. They found that even though their generated
synthetic data looked photorealistic, it still lacked the fine
details that can be observed in real-world images, such as
uneven illumination, object deformations, etc. As a result, they
proposed a semi-synthetic dataset inspired by the copy–paste
method. They manually cropped instances from real-world
images and pasted them in real-captured backgrounds (hence
the visual context was correct without the need for a context
modeling technique). They showed that models trained on a
mixed dataset containing images from their photorealistic syn-
thetic and semi-synthetic datasets outperformed models trained
using either only synthetic or semi-synthetic images. They
showed that DL models trained with their framework could
be directly applied to real-world samples without fine-tuning
them on real-world data and achieved superior performance
compared to state-of-the-art methods.

A similar approach can be seen in the winning solutions at
the Amazon Robotics Challenge (ARC) 2017 [35], [36]. They
both utilized semi-automated methods to generate segmenta-
tion masks for images of novel objects from multiple views,
which were later used to construct a semi-synthetic dataset on
which their models could be fine-tuned quickly.

FTRG takes this concept further by combining synthetic and
real-world images. Instead of pasting the cropped real-world
object instances on top of real-world backgrounds, with FTRG,
we take advantage of a real-world and multiple corresponding
synthetic images with the same camera–object alignments and
camera setups but different textures and lighting. This allows
us to mix and match different parts in a single image (e.g., real-
world and synthetic objects in a single image with synthetic
background). Instead of simply cropping and pasting different
parts in the images, FTRG makes use of opacity, with which
we can continuously control to what extent a certain part of an
image is synthetic or real, thus creating a seamless transition
between synthetic and real images.

Schwarz and Behnke [37] proposed Stillleben, a synthetic
dataset generation pipeline for training DL models used
for perception tasks in robotics, such as semantic segmen-
tation, object detection, and pose estimation. Contrary to
the copy–paste and similar approaches which facilitate 2-D
synthesis, Stillleben utilizes a synthetic 3-D scene to gen-
erate high-quality rendered images for known objects with
corresponding segmentation masks, depth data, surface nor-
mals, etc., in an online fashion. The authors emphasize that
Stilleben can be used online, enabling its usage in life-
long/continual learning. However, this property limits the
quality of the rendered images. In order to overcome this chal-
lenge, Benedikt et al. utilized the GAN-based CUT approach
(from Park et al. [38]), an image-to-image translation model,
to adapt the synthetic images from Stilleben to the real-world
domain [27]. They trained the RefineNet semantic segmenta-
tion model (proposed by Lin et al. [39]) from scratch. They
showed that the model trained with the dataset utilizing their
domain adaptation approach achieved higher intersection over
union (IoU) scores with narrower distribution when compared
to the model trained on images directly from Stillleben.

Our synthetic data generation pipeline also utilizes a 3-D
synthetic scene. However, while Stillleben uses OpenGL to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON CYBERNETICS

generate rendered images quickly, our method utilizes Blender
Cycles, a photorealistic renderer. This means that our approach
can only generate offline synthetic datasets, but in return, it can
provide better-quality rendered images. In our experiments, we
demonstrate how using an offline-generated synthetic dataset
can still be advantageous in the context of continual learning.

Martinez-Gonzalez et al. [10] and Garcia-Garcia et al. [11]
introduced a photorealistic synthetic data generator for indoor
semantic scene segmentation and robot manipulation using
unreal engine and virtual reality (VR) technologies. The DL
models trained on their data showed promising qualitative
results in monocular depth estimation, 6-D pose estimation
for synthetic samples, and 6-D pose estimation [10]. Their
results suggest that VR technologies can help bring real-
ism into synthetic scenes, such as realistic robot interactions.
In the FTRG method, we aim to leverage the same princi-
ple. However, instead of “borrowing” real human actions to
replace the synthetic robot interactions, we borrow parts of a
real-world scene to replace parts of our synthetic scene in a
mixed-reality setting.

Roberts et al. [12] created Hypersim, a photorealistic syn-
thetic dataset for indoor scene understanding. They emphasize
the use of publicly available 3-D assets. According to their
research, most synthetic datasets only provide rendered images
rather than 3-D assets, limiting their use cases’ flexibility and
potential for future development. They also highlight that their
annotation pipeline is not tied to the rendering process, which
makes it possible to generate or change the annotations of
a scene without rerendering it. Our method for generating
annotations for synthetic data is decoupled from the scene
preparation and the rendering. It allows the approach to be
used for any scene, not limited to robotic manipulation, and to
change the annotations without rerendering. For our scenes, we
only used publicly available free 3-D assets. In comparison, the
preparation of Hypersim came with a cost of $57K, of which
$6K was used to purchase the required 3-D assets, although
their scenes are of much higher quality and the number of 3-D
assets they used is much higher than ours as well.

Roberts et al. also conducted experiments to show the sim-
to-real performance of models trained on Hypersim. Their
experiments revealed that Hypersim pretraining could improve
the semantic segmentation performance on NYUv2 [40] com-
pared to pretraining on PBRS [41]. However, it did not
improve performance compared to pretraining on SceneNet
RGB-D [42]. They attribute these results to the fact that
PBRS contains an order of magnitude more samples than
Hypersim, while SceneNet RGB-D contains two orders of
magnitude more samples. They imply that the reason why
Hypersim is still able to yield comparable results to these
datasets is because of its better photorealism. They also sug-
gest that there could be a tradeoff between photorealism
and the amount of data needed to achieve good sim-to-real
performance. This means that datasets with less but more pho-
torealistic data could be on par with more extensive but less
photorealistic datasets. This is in accord with the findings of
Huh et al. [43], who investigated what makes the ImageNet
dataset [44] suitable for transfer learning. They showed that
increasing the number of classes or the amount of pretraining

data beyond a certain point did not bring significant benefits
for transfer learning. These results indicate that an additional,
small amount of well-chosen/good-quality data can improve
transferability more than simply increasing the size of the
dataset. Even though these findings are for the pretraining
phase of transfer learning, they are also promising for the
fine-tuning phase since the generalization capability should be
preserved as much as possible during fine-tuning. In contrast,
the size of the fine-tuning set should be kept as small as pos-
sible. In response to this, in our synthetic dataset generation
pipeline, we aim to create high-quality photorealistic rendered
images.

B. Domain Randomization

Domain randomization introduces unrealistic levels of vari-
ation in the synthetic dataset, which forces the models trained
on such datasets to ignore the randomized factors’ effects and
thus generalize to the real data as well [6], [7], [13], [14].
Nonphotorealistic synthetic images were shown to be useful
for training object segmentation models for robotics in recent
approaches [45], [46].

Tobin et al. [7] showed that a DL model trained on a large
quantity of low-fidelity rendered images could be successfully
deployed in a real-world scenario. They randomized camera
and object positions and lighting conditions while they used
unrealistic randomized environment textures. Their experi-
ments demonstrated that a DL model, which was exclusively
trained on their domain randomized synthetic data, was able to
detect simple geometric objects in a real scene. Furthermore,
the detections were also accurate and reliable enough to be
used in a robotic grasping pipeline.

Tremblay et al. [6] presented that the domain randomiza-
tion technique can also be used for bridging the reality gap
in more complex scenarios. They showed that DL models for
vehicle detection on the real KITTI dataset [47], which were
trained on their domain randomized data, could compete in
performance with other models trained on the Virtual KITTI
dataset [48]. In our experiments, we utilize domain random-
ization by assigning unrealistic textures to the objects in the
synthetic scene.

Seeing the success of photorealism and domain randomiza-
tion, a logical question arises: Can they be combined to get the
best of both worlds? Tremblay et al. [13] proposed combining
the two approaches for bridging the reality gap. They used
photorealistic synthetic images in combination with domain-
randomized ones. They showed that DL models exclusively
trained on such a synthetic dataset could achieve state-of-
the-art performance in robotic manipulation. Our experiments
also inspect the effects of combining domain randomized and
photorealistic data for fine-tuning.

Eversberg and Lambrecht [14] examined whether and to
what extent it is worthwhile to implement photorealism ver-
sus domain randomization techniques in a synthetic dataset
for an industrial object detection task. They used Blender
to generate the synthetic dataset. Their experimental results
suggest that domain randomization techniques outperformed
higher realism for the background and clutter objects (which
are not related to the object of interest). For the object of
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interest, realistic textures and realistic lighting affecting the
object resulted in better performance than domain randomiza-
tion techniques. Similar to their solution, our synthetic data
annotation pipeline also uses Blender, and we build upon
their findings to determine how the blending of real-world
and synthetic data should be done in our FTRG approach.

Prakash et al. [15] introduced structured domain random-
ization. They aimed to generate domain-randomized synthetic
data but keep the structural context of the environment. For
example, a conventional domain randomized image dataset
for vehicle detection would place the vehicles, the camera,
and other environmental objects in the scene according to a
random distribution. In contrast, in a structured domain ran-
domization dataset, the vehicles are placed on roads, so the
structural context of the environment is preserved. They com-
pared photorealistic approaches, such as the Virtual KITTI and
the GTA V dataset [49], a domain randomized dataset [6], and
their structured domain randomization approach. Their experi-
ments showed that models trained on a dataset with structured
domain randomization could outperform models trained on
photorealistic or domain-randomized synthetic data. They sug-
gest the advantage of structured domain randomization comes
from the trained model having a better understanding of the
scene context than models trained on conventional domain ran-
domized data while also being exposed to a similarly large
variation in the data distribution. Our FTRG method can be
considered as a variation of structured domain randomization,
where the environmental context is given by the arrangement
of objects in the actual scene, and the randomization is applied
to the texture and lighting of the objects.

Instead of trying to preserve environmental context, a more
effective approach might be to do the inverse and identify and
randomize the environmental factors that affect a DL model’s
performance, as proposed by She et al. [2] for continual
learning in robotics.

C. Continual Learning

Continual learning techniques aim to overcome the chal-
lenge of an ever-changing environment by continuously updat-
ing the prediction model as new data becomes available [3].
A great challenge for continual learning techniques is catas-
trophic forgetting. It happens when already acquired knowl-
edge is lost (forgotten) due to training the model on new
observations. There are multiple approaches to overcome
catastrophic forgetting, such as introducing a regularization
term, enforcing architectural changes in the network structure,
or keeping a working memory of previous training data for
experience replay during training [3]. In our experiments, we
inspect the experience replay approach.

She et al. [2] aimed to identify the factors influencing
the prediction accuracy of continual learning algorithms for
robotics. They created a benchmark dataset, OpenLORIS
Object, which explicitly contains quantitative information on
environmental factors, such as lighting level, object pixel
size, clutter, and occlusions. They used the train–test accu-
racy matrix to evaluate the trained models, from which they
derived metrics, such as backward transfer (BWT) and forward
transfer (FWT). BWT characterizes how well the model can

solve previously seen tasks. This is a measure that continual
learning techniques need to consider to avoid catastrophic for-
getting. On the other hand, the FWT characterizes how well
a model performs on yet-unseen future tasks. This is closely
related to model robustness. Their results suggest that one rea-
son for the poor performance of continual learning approaches
is their struggle with transferring knowledge to new tasks and
scenes. This is most apparent in the FWT measure since BWT
is usually improved due to techniques that try to avoid catas-
trophic forgetting. We hypothesize that a small number of
synthetic data could improve the FWT of certain continual
learning approaches. The findings in identifying the environ-
mental factors that affect DL performance are accounted for
in our solutions, where we explicitly include randomization of
said factors in our synthetic datasets.

Using synthetic data in continual learning is not unheard
of. Synthetic data can be used during their evaluation pro-
cess [50], meanwhile, generative models are often used to
enrich available data based on past experiences and thus
prevent catastrophic forgetting [51], [52]. However, to the
best of our knowledge, a combination where synthetic data
with implicit domain knowledge is used for experience replay
instead of a generative model is yet to be seen. Such a
system can automatically generate synthetic scenarios ahead of
time. For example, suppose lighting conditions are expected to
change during the operation, but the model did not encounter
samples with different lighting yet. In that case, synthetic sam-
ples can be generated with different lighting conditions and
added to the experiences encountered by the model. Our exper-
iments show how such a system could improve the FWT of
continual learning with experience replay and its effect on
BWT and overall accuracy.

III. METHODS AND TECHNIQUES

A. Real Data Annotation Pipeline

Our real-data annotation pipeline can generate instance seg-
mentation masks for real-world images automatically. We
maintain a virtual counterpart of the significant elements of
the real scene, such as the camera and the objects. The virtual
scene is a digital twin of the real world, so the virtual cam-
era and objects reflect the pose of their real counterparts. This
setup enables us to compute the segmentation masks for the
objects in the virtual scene and then associate these annota-
tions with corresponding images taken by the camera in the
actual scene.

The generation of instance segmentation masks relies on
computing the perspective projection of 3-D points on the
objects’ surfaces onto the image plane. We use the formal-
ism as described in [53], according to which, the perspective
projection x̄ = (u, v, 1)� of a 3-D point (given in the world
frame) wX = (wX,w Y,w Z, 1)� is described as

x̄ = K� cTw
wX (1)

where K is the matrix containing the intrinsic parameters of
the camera. These parameters can be determined by camera
calibration. Our solution used the OpenCV library [54] for
the camera calibration, with a printed A4-sized checkerboard
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Fig. 1. Real data annotation setup.

pattern. Without the need for additional calibration steps,
we were able to achieve sub-10-pixel average accuracy (in
1920×1080 resolution images) for projecting 3-D points onto
the image plane, which resulted in human-level annotations.
� is the projection matrix, which has the form of [I|0], where
I is a 3×3 identity matrix and 0 is a column vector of 3 zeros.
cTw is the 4 × 4 homogeneous transformation matrix describ-
ing the transformation between the world and the camera
frame.

Let P(wX) denote the perspective projection of the point
wX, F = {wX1,

w X2, . . . ,
w Xn} a set of points to form a

face, R(wX) a ray coming from the origin of the camera
frame and going through the point wX, and wXO

all all the
possible points on the surface of the object O. For creat-
ing segmentation masks, each object has to be associated
with a selected, finite set of points on their surface: wXO =
{wX|wX on the surface of O}, wXO ⊆ wXO

all. The power set
P(wXO) contains all the possible (not necessarily meaningful)
faces for object O, for a given set of surface points wXO.
Polygons can be formed in the image plane by projecting
each point of a face: PolyF = {P(wXi) for wXi ∈ F}, and
using the projections as the vertices of the polygon. A set of
faces FO ⊆ P(wXO) have to be chosen for object O, such
that all the projections given by P(wXj) for wXj ∈ wXO

all
fall inside at least one polygon of PolyFk , for Fk ∈ FO,
but projections P(wX), where R(wX) does not intersect the
object, do not fall into any of the polygons from PolyFk , for
Fk ∈ FO.

In the case of a simple cube, for example, the selected set of
surface points should be the vertices (wXO = vertices), while
the selected faces would naturally be the set of six faces of the
cube (FO = faces). When projecting the points of the faces,
one would get six tetragons in the image plane. It is easy to
see that for any point on the cube’s surface, the projection
would fall into at least one of these tetragons. Any other point
which is not on the surface of the cube and also not between
the camera and the cube or behind the cube (so the ray from
the origin of the camera frame going through the point does
not intersect the object) would get projected outside of all the

tetragons. Thus, merging all the tetragons into a single polygon
gives us the segmentation mask for the cube.

However, for objects with complex shapes, the manual
selection of surface points and the manual definition of faces
is not feasible. Luckily, a very common virtual representation
for 3-D object models is the standard triangle language (STL)
format. This representation defines a 3-D surface model of the
object, given by an object mesh consisting of triangles formed
by vertices. As a result, we can directly use the STL style rep-
resentation of an object by defining wXO = wTo

oXO, where
oXO are the vertices in the STL format (they are defined in
the object frame), and wTo is the 4 × 4 homogeneous trans-
formation matrix describing the transformation between the
object and world frames. FO can be selected according to
the triangles in the STL representation. In common robotics
scenarios, it is usually assumed that a 3-D model of the
objects is available or can be easily created. A photogramme-
try application can also be used to acquire a 3-D mesh as such
methods are becoming increasingly accessible with a mobile
phone [55]. In our synthetic dataset generation pipeline, we
utilized Qlone [56] for scanning clutter objects. Using the
STL representation of the object mesh also has the advan-
tage that one only needs to measure the pose of an object
relative to the world frame, from which wTo can be deter-
mined, instead of measuring every individual point relative to
the world frame wXO.

The transformation matrix cTw from (1) needs to be mea-
sured before the annotation procedure. In our setup, we utilize
an industrial robot and attach the camera in a known, fixed
pose to the robot’s end effector. As a result, the transforma-
tion between the camera frame and the robot’s tool center
point (cTTCP) will be fixed regardless of the robot’s pose. The
transformation between the robot TCP and the world frame
(TCPTw) can be obtained from the robot controller at all times.
Thus, the transformation between the camera and the world
frame can be written as cTw = cTTCP

TCPTw.
Fig. 1 shows our setup for the automatic annotation of real

data. The preliminary steps needed for the annotations are as
follows.
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1) Acquiring object meshes in STL format (oXO for all
objects).

2) Camera calibration (determining K).
3) Attaching the camera to the robot (measuring cTTCP).
4) Placing the objects in known poses (measuring wTo).
After the preliminary steps, the data collection and auto-

mated annotation can be carried out. We move the camera
with the robot to a set of pregenerated target poses scattered
in a grid pattern on the surface of concentric spheres centered
around the scene. At each pose, the robot stops, and the cam-
era takes an image of the scene. The current pose of the robot
TCP relative to the world frame is attached to the image as
metadata. Based on this pose, cTw can be determined, and the
object masks can be computed.

However, generating the segmentation masks for each object
individually is not enough. Since multiple objects are present
in the scene simultaneously, occlusions also have to be consid-
ered. In most cases, a simplistic approach, such as generating
the segmentation masks for the objects in the order based
on their distance from the camera and allowing these seg-
mentations to overwrite each other, would be enough. On the
other hand, such an approach would not be able to handle
complex occlusions where objects could interlock. We pro-
pose an algorithmic solution that deals with such occlusions
(Algorithm 1).

As seen from Algorithm 1, each object gets a unique color
ID (RGB values). The algorithm starts with an empty segmen-
tation mask M, with five channels. The first three channels are
used for color (RGB representation), while the other two chan-
nels store the information about which triangle of which object
the given pixel belongs to. The algorithm goes through each
object in order and projects the vertices of the triangles in the
object’s mesh. We use O and T to represent the object and
triangle which are being projected. After projecting the ver-
tices of a triangle T , we check which pixels fall inside of the
projection of T . Then, for each of these pixels, a test is per-
formed, which can have three possible outcomes. If the color
of the pixel is black, it can be colored with the color ID of
O. If the color of the pixel is the same as the color ID of O,
it means that the pixel was already marked as one belonging
to O, so nothing needs to be done. If the pixel was already
colored but with the color ID of a different object Õ, it has
to be decided which color the pixel should have. For this pur-
pose, we can look up the triangle T̃ of the object Õ, based
on the last two channels of the mask and call the IsOccluded
function on the two triangles T and T̃ . This function returns
true if T is occluded by T̃ , in which case nothing should be
done. Otherwise, the pixel can be colored with the color ID
of the object O. The IsOccluded function determines whether
there is an occlusion by first checking trivialities (all vertices
of one triangle being closer to the camera than the other’s) and,
in nontrivial cases, using the SignedVolume function. The com-
plete definition of the IsOccluded and SignedVolume functions
is in Algorithms 2 and 3, respectively, in the Appendix.

This method has the limitations that occlusions with
intersecting objects and occlusions involving objects with
significant size differences (one having much larger triangles

Algorithm 1: Generate Masks With Occlusion
input : Image shape: [w, h, 3], List of objects:

O = [O1,O2, . . . ]

/* Init annotation as black image */
Init: M = zeros((w, h, 5));
for O ∈ O do

for T ∈ O.triangles do
/* Projection as in (1) */
vi

1, vi
2, vi

3 = Project(T .vertices);
temp_img = zeros((w, h));
/* Get internal pixels of the

triangle */
P = Where(DrawTriangle(temp_img, (vi

1, vi
2, vi

3),
color=1) == 1);

for p ∈ P do
if M[p][0 : 3] == [0, 0, 0] then

/* It was background before

*/
M[p][0 : 3] = O.color_id;
M[p][3] = O.id;
M[p][4] = T .id;

else if M[p][0 : 3] == O.color_id then
/* It is the same object */
Pass;

else
T̃ = O.GetTriangle(M[p][3], M[p][4]);
if IsOccluded(T , by = T̃ ) then

/* T̃ occludes T */
Pass;

else
M[p][0 : 3] = O.color_id;
M[p][3] = O.id;
M[p][4] = T .id;

in their object mesh compared to the other) may not be
handled properly. These situations, however, can be considered
marginal concerning a system for automatically generating
segmentation-type annotations.

Fig. 2 shows some example images demonstrating the seg-
mentation masks generated by our automatic real-data annota-
tion pipeline. The images belong to an instance segmentation
dataset with different numbers and types of objects, clutter, and
illumination. We use this dataset to train our baseline model
and test all the models in our experiments on the benefits of
using synthetic data for fine-tuning.

B. Synthetic Datasets and Automatic Annotation

Our synthetic data generation pipeline uses the open-source
3-D computer graphics suite Blender. For our experiments,
we created two synthetic scenes. One is a tabletop envi-
ronment containing objects available at our laboratory for
testing the FTRG method. We refer to this scene as the OE
scene. The other replicates a scene from the OpenLORIS
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Fig. 2. Examples of automatically annotated real images.

Object dataset [2] for comparing continual learning model
performance with and without synthetic data for experience
replay. This scene is the synthetic counterpart of one of the
real scenes in the OpenLORIS Object dataset, so we refer to
it as SynLORIS. Both scenes were prepared with the scope of
a fine-tuning dataset in mind. Although the prepared synthetic
datasets demonstrate specific tasks, they are representative in
the sense, that without additional complexity in the data gen-
eration pipeline, similar results could be achieved in other
similar kinds of tasks as well.

1) OE Scene: The OE scene has two types of objects of
interest, the 3-D printed “OE” logos (which the scene was
named after) and standard DIN EN ISO 10642 M8x55 type
bolts (later referred to as bolts). The scene also contains clutter
objects of clamps and pliers, which were photo-scanned in our
laboratory using the Qlone photogrammetry application. The
scene’s background is a planar surface serving as the tabletop.
The arrangement of the OE logos, the bolts, the clutter objects,
as well as the distance of the camera from the background
plane were randomized.

We created photorealistic and randomized textures for our
objects and the background and used realistic lighting. For
the photorealistic shading of the tabletop, we used an image
texture, the clutter objects used the textures acquired from
the photo-scanning, and the OE logos and bolts used shaders
created using Blender. The randomized textures were created
to be unrealistic for the purpose of domain randomization.

From this scene, we generated 2500 images (OE synthetic
dataset). Table I details the dataset composition. It contains
images generated using five different settings, each with a
training and validation split (400 and 100 images). The images
from the first, second, and fourth settings utilize photorealis-
tic textures, while those from the third and fifth settings use
randomized textures. This means 60% of the images in the
dataset use photorealistic and 40% use randomized textures.
The images generated from the first three settings only show
the OE logos, while the ones from the last two settings also
contain bolts and clutter objects. Apart from images from the
first setting, all other images were created with randomized
lighting conditions, which make up 80% of the images in the
dataset (light intensity and color were randomized, but the

TABLE I
COMPOSITION OF THE OE SYNTHETIC DATASET

Fig. 3. Example rendered frames from the OE synthetic dataset.

values were kept within realistic bounds). The number, posi-
tion, and orientation of the OE logos, the bolt and the clutter
objects, as well as the camera’s distance from the table, were
randomized for each image, resulting in a unique arrangement
of the scene.

Some example rendered frames of the OE synthetic dataset
can be seen in Fig. 3. It displays rendered images with
either photorealistic or randomized textures for the OE logos,
bolts clutter objects and the background, different lighting
conditions, and randomized object and camera placement.

2) SynLORIS: The SynLORIS scene was modeled after a
real scene from the OpenLORIS Object dataset. We attempted
to reconstruct a similar environment by replicating the place-
ment of the desk and background elements, as well as the
direction of the lighting. We also aimed to use 3-D assets
that resemble the real objects and textures, but we limited
our selection to freely available 3-D assets from BlenderKit’s
library. For this scene, we did not aim to create very high-
quality photorealistic renders and the perfect recreation of the
objects. As for the OpenLORIS Object benchmark, the images
are resized to 50 × 50 pixels, so the fine details would have
been lost anyway.

In the SynLORIS scene, we introduced variation in two
factors mentioned in [2]: 1) illumination and 2) object pixel
size. There are three sources of illumination in the scene:
1) an HDRI; 2) an area light representing the light coming
in through the window; and 3) a point light source above the
table. In order to change the illumination, both the power of
the lamps and the strength of the lighting from the HDRI were
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Fig. 4. Synthetic images rendered from the SynLORIS scene.

modified. The variations in the object pixel size were emulated
by moving the camera closer and further from the object along
a manually defined 3-D spline.

Similarly to the single-factor experiments in OpenLORIS
Object, we also created nine tasks for the illumination fac-
tor, each with a different illumination level. For each task,
we considered seven different objects (a small subset of the
objects in the OpenLORIS Object dataset, which all use the
same scene). We rendered 30 synthetic images for each object
in each task. The camera path was the same regardless of the
object or the task. In total, the generated dataset contains 1890
rendered images (9 tasks, 7 objects per task, and 30 images
per object). Fig. 4 shows some of the rendered frames. We
use the SynLORIS dataset in our experiments to show how an
image classification model using experience replay can benefit
from synthetic data.

3) Blender Annotation Tool: For the generation of the
segmentation-type annotations in our OE synthetic dataset, we
created a blender annotation tool (BAT), a Blender addon.1

BAT can be used via a simple user interface (referred to as
BAT panel), located in its own tab of the “n-panel” of the 3-D
Viewport. The class for the background is added by default
with black color. The BAT panel can be used to create, delete,
or rename classes, change the color ID of a class or the col-
lection of objects associated with it, and toggle whether the
object collection should be treated as a collection of instances
or not.

BAT uses the viewport renderer OpenGL to generate the
segmentation masks. As a result, BAT only works if a GUI of
Blender is open. It cannot run in background mode. However,
the generation of the annotations takes significantly less time
and resources (two orders of magnitude in our experience),
and the rendering of the synthetic images can be completely
decoupled from the generation of the annotations. This allows
us to render the dataset on a powerful headless server while, in
the meantime, generating the corresponding annotations on a

1https://github.com/ABC-iRobotics/blender_annotation_tool

Fig. 5. Example BAT annotations for the OE synthetic dataset.

TABLE II
TRAIN–TEST ACCURACY MATRIX R FROM [2]; Tr REPRESENTS

TRAINING DATA, Te REPRESENTS TESTING DATA, Ri,j IS THE

ACCURACY OF THE MODEL TRAINED ON Tri AND EVALUATED

ON Tej , AND N IS THE NUMBER OF TASKS

separate system with limited resource usage. A few examples
of the generated annotations can be seen in Fig. 5.

C. Continual Learning Experiments

We conducted our experiments on continual learning using
the OpenLORIS Object benchmark by She et al. [2]. Their
paper introduced an evaluation method for continual learning
techniques based on the train–test accuracy matrix, which can
be described by Table II. They introduced the metrics FWT
which is the average accuracy calculated for the upper trian-
gle of the train–test accuracy matrix (marked in blue in the
table), and BWT, which is the average accuracy for the lower
triangle of the train–test accuracy matrix (marked in red in
the table). BWT characterizes how well a model remembers
previous tasks, while FWT describes how well a model can
adjust to new tasks after training on the preceding ones.

The results of She et al. showed that FWT is the most chal-
lenging to maximize for many continual learning approaches.
In our interpretation, FWT measures how well the trained
model can generalize to new tasks. Our experiments aim to
test our hypothesis that synthetic data, in the form of ren-
dered images, can help improve the FWT of certain continual
learning models. For this purpose, we use continual learning
with experience replay [57] and evaluate it on the single-factor
benchmarks introduced by She et al.

For our experiments, we use a selected set of seven objects
from the OpenLORIS Object dataset (bottle_01, bowl_01,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 6. Samples from our FTRG dataset. (a) Seamless transition from real to synthetic textures on a selected subset of objects. (b) Random texture for a
selected subset of objects of interest with real background and clutter. (c) Real objects in a synthetic scene with synthetic clutter.

cup_02, cup_04, ladle_02, paper_cutter_04, and scisssors_01)
as these are the objects for which we generated our synthetic
dataset SynLORIS as well. There are four factors in total:
1) illumination; 2) occlusion; 3) clutter; and 4) object pixel
size. For each factor, there are nine tasks with different lev-
els of the corresponding factor. We evaluate two models for
each factor. One of the models is only trained with data
from the original OpenLORIS Object training set, while the
other is trained with data from both the OpenLORIS Object
and the corresponding SynLORIS data. Both models were
given the same memory budget of 2000 and were trained
for 100 iterations on each task. We use the validation set of
the OpenLORIS Object dataset for the corresponding seven
objects for testing across all factors and tasks. We evaluate
each model for all four factors according to the same met-
rics, which were used by She et al. We report our findings in
Section IV-A.

D. FTRG Method

FTRG combines our automatic real-data segmentation
pipeline with our synthetic data generation and annotation
method to create rendered counterparts to real-world images.
This allows us to blend different elements of the real and syn-
thetic scenes (such as the objects of interest, the background,
or clutter objects) in a single image. By controlling opacity,
we can influence how much the virtual scene is blended with
the real one, creating a seamless transition between reality and
the synthetic environment. According to its purpose, the name
of our method is FTRG.

FTRG starts with creating a real dataset with our automatic
real-data annotation pipeline. Then, a synthetic counterpart of
the scene is built in Blender, and based on the images from
the real dataset, the camera pose, its motion, and its internal
parameters are determined by the motion tracking module of

Blender. After rendering, the real and synthetic images can be
seamlessly blended using Blender’s compositor workspace by
layering them on top of each other and continuously adjusting
the opacity of different parts of these layers based on the auto-
matically generated segmentation masks. For our experiments,
we created an FTRG dataset by combining different elements
of the real and synthetic images (e.g., real background with
synthetic objects and synthetic background with real objects).
The labels for the FTRG dataset are “inherited” either from the
real or the synthetic scene (using BAT). Fig. 6 shows possible
ways to blend synthetic and real data in the FTRG dataset,
showcasing the seamless transition between real-world and
synthetic image components.

In order to show the effectiveness of this method, we com-
pare the detection results of Mask-RCNN [58] networks which
were fine-tuned using the FTRG method, and others which
were using photorealistic synthetic data, domain randomized
synthetic data, or real images for fine-tuning.

The FTRG method is currently limited by the automated
real-world dataset collection approach because it requires that
the pose of each object in the real-world scene is known.
In simple tabletop scenarios, this can be ensured, but in a
more complex setting, such as robotic bin-picking, the exact
object poses are very hard to determine. In the future, an
improved real-world data collection pipeline and advanced
camera tracking could solve this issue.

IV. RESULTS

A. Continual Learning Experiments

In our continual learning experiments, we compare the
performance of models using experience replay on the
OpenLORIS Object benchmark’s single-factor experiments.
One of the models only had access to formerly seen sam-
ples for experience replay, while the other had access to
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Fig. 7. Train–test accuracy matrices of image classification models, using
experience replay and data from the OpenLORIS Object and the SynLORIS
datasets; as evaluated by the OpenLORIS Object benchmark on all four factors
(brighter color means greater accuracy).

TABLE III
QUANTITATIVE RESULTS FROM OUR CONTINUAL LEARNING

EXPERIMENTS. VALUES PER CELL FROM TOP TO BOTTOM: ACCURACY,
BWT, FWT, AND OVERALL ACCURACY (AS DESCRIBED IN [2]))

samples from the SynLORIS dataset. Fig. 7 visualizes the
train–test accuracy matrices of the models for all four factors
for qualitative assessment. The train–test accuracy matrices are
represented as images, where the intensity of a pixel reflects
the value of an element of the matrix, with 0 being black and
1 being white.

It is important to mention that the SynLORIS dataset only
includes variations in two factors: 1) illumination and 2) object
pixel size. The effects of this are visible in Fig. 7, where
significant differences in the train–test accuracy matrices can
only be observed in the illumination and object pixel size fac-
tors. In these cases, the model which had access to synthetic
samples outperformed the model which was only trained on
real samples. Table III shows our continual learning experi-
ments’ quantitative results, using the metrics She et al. intro-
duced in [2]. The first row (m1) shows the results of training
models exclusively on the OpenLORIS Object dataset. The
second row (m2) shows the performance of models which
were trained on data from both the OpenLORIS Object and
the SynLORIS datasets. Notice how the models trained on
real and synthetic samples had significantly better FWT for
the illumination and object pixel size factors than models that
only used real data.

B. Synthetic Data for Fine-Tuning and FTRG

Our experiments demonstrate the effects of synthetic data
for the fine-tuning phase of training a deep neural network. We
also highlight the benefit of using the FTRG method compared
to using only photorealistic synthetic images and/or domain
randomization.

TABLE IV
PERFORMANCE OF MODELS (MAP @ IOU≥ 0.5) EVALUATED ON FIVE

RANDOMLY SELECTED SUBSETS OF OUR TESTING SET

We trained multiple Mask-RCNN [59] models for instance
segmentation, using different datasets and evaluated them on
the same test dataset.2 All the models had the same network
architecture and were initialized with the same pretrained
weights (pretrained on the COCO dataset [60]). We used
the same hyperparameters and a fixed number of training
steps to fine-tune all the models. We trained five models in
total and named each after the type of data used for their
training.

1) MRCNN-R: This model was fine-tuned using only real
data. The training dataset was annotated by our auto-
mated real dataset annotation method.

2) MRCNN-P: This model was fine-tuned using only pho-
torealistic samples from the OE synthetic dataset.

3) MRCNN-DR: This model was fine-tuned using only
synthetic images with unrealistic textures from the OE
synthetic dataset.

4) MRCNN-DR-R: This model was fine-tuned using both
domain-randomized synthetic samples from the OE syn-
thetic dataset and samples from the real dataset.

5) MRCNN-DR-P-R: This model was fine-tuned using syn-
thetic samples from the OE synthetic dataset (both
photorealistic and domain randomized) and real samples.

6) MRCNN-FTRG: This model was fine-tuned using the
FTRG dataset, which combines the real dataset with the
domain-randomized synthetic dataset using the FTRG
method.

For the test data, we collected real images using a variety
of scenes (different backgrounds and arrangements of objects),
clutter (level of clutter as well as types of clutter objects), and
illumination conditions. This test set was also annotated with
our automated real data annotation method. In Table IV, we
report the mean average precision (mAP) at IoU greater than
or equal to 0.5 for all five models over five randomly selected
subsets of the test dataset.

The results show that models fine-tuned exclusively on syn-
thetic data performed worse than the model trained exclusively
on real samples. However, models trained on datasets con-
sisting of both synthetic and real samples could significantly
outperform the model trained using only real data. This sug-
gests that using synthetic data in the fine-tuning phase of
training deep neural networks can yield superior performance
compared to training only on real data.

2Mask-RCNN implementation from: https://github.com/matterport/
Mask_RCNN.
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Algorithm 2: IsOccluded Function

input : Triangle: T , Other triangle: T̃
def IsOccluded(T , by = T̃ ):

if all(T̃ .vertices.z < T .vertices.z) then
/* T̃ is closer to the camera */
return: True

else if all(T .vertices.z < T̃ .vertices.z) then
/* T is closer to the camera */
return: False

else
/* There is an overlap in z */
occluded = False;
orig = [0,0,0];
for ṽ1, ṽ2 ∈ Pairs(T̃ .vertices) do

for v1, v2 ∈ Pairs(T .vertices) do
/* Check if the sides of T̃

intersect the T -orig
tetrahedron */

if sign(SignedVolume(ṽ1, v1, v2, orig)) ==
sign(SignedVolume(ṽ2, v1, v2, orig)) then

Pass;
else if sign(SignedVolume(ṽ1, ṽ2, v1, v2)) ==

sign(SignedVolume(ṽ1, ṽ2, v2, orig)) ==
sign(SignedVolume(ṽ1, ṽ2, orig, v1)) then

occluded = True;
break;

else
Pass;

if occluded == True then
break;

return: occluded

The model trained on our FTRG dataset could outperform
all other models in four out of five cases. We believe the
slight improvement compared to the MRCNN-DR-P-R model
is because of the fact that our FTRG dataset contains sam-
ples with blended real and synthetic components, which helps
the MRCNN-FTRG model adapt to different real-life domains
easier.

V. CONCLUSION

Our results suggest that not only pretraining but fine-tuning
can also benefit from synthetic data for increasing the robust-
ness of models for object segmentation and image recognition
in robotic tasks, especially if quick and easy-to-use automated
methods are available for annotation and dataset generation.
This statement also extends to methodologies that utilize
a more dynamic weight-update strategy instead of transfer
learning, such as continual learning with experience replay.

We showed that a model trained on t.he FTRG dataset could
outperform models that only use entirely real or synthetic sam-
ples. As a result, investigating the effect of using the FTRG
method for pretraining is an interesting direction for future
research.

APPENDIX

See Algorithms 2 and 3.

Algorithm 3: SignedVolume Function
input : 3D points: a, b, c, d

def SignedVolume(a, b, c, d):
return: dot(cross(b − a, c − a), d − a)
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