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Abstract: Rate-limiting steps in the dark-to-light transition of Photosystem II (PSII) were discovered
by measuring the variable chlorophyll-a fluorescence transients elicited by single-turnover saturat-
ing flashes (STSFs). It was shown that in diuron-treated samples: (i) the first STSF, despite fully
reducing the QA quinone acceptor molecule, generated only an F1(<Fm) fluorescence level; (ii) to
produce the maximum (Fm) level, additional excitations were required, which, however, (iii) were
effective only with sufficiently long ∆τ waiting times between consecutive STSFs. Detailed studies
revealed the gradual formation of the light-adapted charge-separated state, PSIIL. The data presented
here substantiate this assignment: (i) the ∆τ1/2 half-increment rise (or half-waiting) times of the
diuron-treated isolated PSII core complexes (CCs) of Thermostichus vulcanus and spinach thylakoid
membranes displayed similar temperature dependences between 5 and –80 ◦C, with substantially
increased values at low temperatures; (ii) the ∆τ1/2 values in PSII CC were essentially invariant
on the Fk-to-Fk+1 (k = 1–4) increments both at 5 and at −80 ◦C, indicating the involvement of the
same physical mechanism during the light-adaptation process of PSIIL. These data are in harmony
with the earlier proposed role of dielectric relaxation processes in the formation of the light-adapted
charge-separated state and in the variable chlorophyll-a fluorescence of PSII.

Keywords: chlorophyll-a fluorescence; conformational changes; dielectric relaxation; light-adapted
charge-separated state of PSII; rate-limitation; temperature-dependence; waiting time

1. Introduction

In this paper we investigate special properties of the recently discovered rate-limiting
steps in Photosystem II (PSII) [1,2]. PSII is a multi-subunit pigment-protein complex em-
bedded in the thylakoid membranes (TMs) of plants, algae, and cyanobacteria. It uses
light energy to catalyze the electron transfer from water to plastoquinone and supplies the
reducing equivalents necessary to fix CO2. PSII is probably the most-studied light-induced
enzyme, not only for its relevance to biochemistry, being the only water-splitting and
O2-producing enzyme, but also because it serves as a source of inspiration for artificial
photocatalysis to produce H2.

The structure and the primary photophysical and photochemical functions of PSII are
well known [3–6]. The core complex (CC) of PSII contains the reaction center (RC) incorpo-
rated in the D1/D2 proteins, the α and β subunits of cytochrome b559, two integral antenna
proteins, CP43 and CP47, and the oxygen-evolving complex (OEC) [7]. The trapping of
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light energy and its transformation into electrochemical free energy occurs within the RC
complex [8]. In open-state PSII (PSIIO), upon illumination, a P680

+/Pheo− radical pair
is formed during the primary photochemical reaction, in several picoseconds due to the
electron transfer from the primary electron donor P680 to pheophytin (Pheo). Subsequent
electron transfer steps – from Pheo− to QA, the first quinone electron acceptor, and from the
tyrosine residue (YZ) on the D1 protein to P680

+, followed by the oxidation of the Mn4CaO5
cluster, leading to S2 state of the OEC – stabilize the charge separated state. PSII with all
QA reduced is considered the closed state of PSII (PSIIC).

The generation of the stable charge separation in PSII is followed by somewhat slower
electron and proton transfer reactions at the acceptor and donor sides, between QA and QB,
the primary and secondary quinone acceptors, and in the OEC, respectively. In TMs, the
linear electron-transport chain, via the cytochrome b6f complex and PSI, supply electrons
to the terminal electron acceptor CO2. Evidently, the continual operation of the electron
transport requires the repeated generation of charge separation in PSII, which can occur
only after re-opening the RC. The re-opening time of the PSII RC is determined by the
rates of the secondary electron transfer reactions, which occur on timescales between a
hundred microseconds and a millisecond [9,10]. Additional limitations in the operation
of the PSII electron transfer reactions, and thus in the re-opening time of the RC, are
imposed by the relatively slow (5–10 ms) charge transfer reactions of the cytochrome b6f
complex [11]. Because of this rate-limiting step in the electron-transport system, under
continuous illumination, PSII RC may be found with a high probability in a closed state,
especially at high light intensities. The effective turnover time of the electron-transport
system might be further increased under inorganic carbon limiting conditions, which can
hinder the operation of the photosynthetic electron transport [12,13]. For this reason, the
effect of illumination on PSIIC is of substantial interest.

In recent years, our understanding of the light-induced structural dynamics of PSII
advanced substantially. It is now well established that the secondary electron and proton
transfer events are associated with well-discernible reorganizations both on the donor
and the acceptor sides. Time-resolved serial femtosecond crystallography experiments
using X-ray free electron lasers revealed structural changes in PSII CC of Thermostichus
(Thermosynecococcus) (T.) vulcanus—around the QB/non-heme iron and the Mn4CaO5 clus-
ter [14–16]. Light-induced reorganizations around the QB pocket have also been shown to
occur in purple-bacterial reaction centers (bRCs) [17–19]. The crystal structure of PSII RC
shows large similarities to bRC, its purple-bacterial ancestor [20–23].

In our recent work [2], using FTIR spectroscopy to monitor the kinetics of charge-
recombination S2

(+)QA
– → S1QA in T. vulcanus PSII CC, we observed a three-fold increase

in the lifetime of PSIIC upon exposing them to a train of 20 single-turnover saturating
flashes (STSFs); PSIIC was generated by the first STSF of the train. The stabilization of
the charge-separated state was attributed to the gradual formation of PSIIL, the charge-
separated light-adapted state of PSII. Similar, but much more pronounced stabilizations of
the charge-separated state were observed earlier in bRCs upon continuous illumination
of the RC complexes [24–26]. These transitions, which were reminiscent of the Kleinfeld
effect [27], were ascribed to conformational memory of bRC proteins and the formation of
their light-adapted charge-separated state [28–32].

We also recorded variable chlorophyll-a (Chl-a) fluorescence transients (Fv) elicited by
trains of STSFs on diuron-treated isolated plant TMs and PSII CC of T. vulcanus. (Fv = Fm − Fo,
where Fm and Fo are the maximum and the minimum fluorescence levels, respectively; Fo is
associated with PSIIO; diuron, DCMU, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibits
the inter-quinone electron transfer in PSII and allows only one stable charge separation. In
accordance with Joliot and Joliot [33], we found that the fluorescence yield after the first
STSF, which leads to the reduction of QA, produces only an intermediate F1 level, and
additional STSFs were required to reach the maximum fluorescence level (Fm). We also found,
however, a peculiar feature of these transients of Fv: to induce sizeable increments from the
F1 level to the F2 level, relatively long ∆τ waiting times must be allowed between STSFs,
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revealing rate limitations in this process [1]. It is to be emphasized that the second and
consecutive flashes, which induce the F1-to-F2, F2-to-F3 etc. fluorescence increments, do
not generate any further stable charge separation, i.e., PSIIC is generated by the first STSF,
which produces the F1(<Fm) fluorescence level [1,2,33–35]. It has also been clarified that
the rate limitations do not arise from gating of the primary photochemistry: in DCMU-
treated PSII CC of T. vulcanus, additional excitations, after the generation of the stable charge
separation by the first STSF, produce only rapidly recombining P680

+Pheo− radical pairs, with
recombination rates orders of magnitude faster than the ∆τ1/2 half-waiting times [36]. Based
on these features and the strong similarity of the light-adapted states in bRC and in PSII, we
adopted the explanation offered for the light-induced stabilization of the charge-separated
state of bRC [37,38]. Accordingly, the light-induced formation of PSIIL was proposed to be
associated with conformational changes and dielectric relaxation processes, possibly combined
with the effects of local heat packages [1,2].

To understand the nature and physical mechanisms of these waiting-time-related
processes, and thus also the origin of Fv, which carries important information on the
functional activity and structural dynamics of PSII [39–41], systematic investigations are
required. We have already examined the effect of the lipidic environment of PSII and
revealed the shortening of ∆τ1/2, from ~1 ms to ~0.2 ms, upon the addition of plant
TM lipids to isolated T. vulcanus PSII CC; ∆τ1/2 values in intact T. vulcanus cells were
comparable to those in plant TMs [42]. These data have shown that the processes underlying
the light-induced transition of PSIIC to PSIIL depend significantly on the lipid content of
the RC matrix. In general, these data also suggest the role of physicochemical factors in the
RC complexes. Here, we studied the temperature dependence of the ∆τ1/2 half-waiting
times in isolated PSII CC of T. vulcanus and in spinach TMs. We also tested the possible
dependence of ∆τ1/2 on the number of STSFs applied. We found that: (i) although the ∆τ1/2
values in PSII CC are considerably larger than in TMs, their temperature dependences
follow a very similar pattern, with substantially increased ∆τ1/2 values at low temperatures;
and (ii) ∆τ1/2 appeared to be essentially invariant on the Fk-to-Fk+1 fluorescence increments
(k = 1–4), indicating the involvement of the same process during the light-adaptation of
closed PSII RC.

2. Results and Discussion

To characterize the gradual light-induced formation of the charge-separated light-
adapted state (PSIIL) from its closed state (PSIIC) and to gain information on the underlying
physical mechanism, we investigated the STSF-induced Chl-a fluorescence increments in
isolated PSII CC of T. vulcanus and spinach TMs in the presence of DCMU, which keeps the
reaction centers in closed state, being capable of accepting only one electron. Under our
experimental conditions, in the temporal interval of interest, the PSIIC-to-PSIIO via charge
recombination can be neglected.

2.1. Temperature Dependence of the Variable Chl-a Fluorescence (Fv) Induced by STSFs

Upon the excitation of DCMU-treated dark-adapted PSII containing samples—PSII
CC of T. vulcanus and spinach TMs—by trains of STSFs stepwise increments of the Fv Chl-a
fluorescence rise were observed (Figure 1), in accordance with our earlier data [1,2]. It is
also shown that both the F1 level and the number of STSFs required to reach Fm depended
strongly on the temperature: the F1 levels gradually decreased while the required number of
STSFs gradually increased upon the stepwise decrease in the temperature. With reasonable
agreement with our earlier observations [1], the F1 level in PSII CC at −80 ◦C did not
exceed 25–30% of Fm; at 80 K, this value was <15% [2]. In TMs, the decrease in the F1 level
at low temperatures was less marked (at −80 ◦C ~60% of Fm), but still well discernible.
Similar differences between the two samples were seen in the number of STSFs to reach Fm.
These differences might originate from variances in the molecular composition between
our cyanobacterial and plant PSII samples with different rigidities. In general, proteins
from thermophilic organisms possess higher dynamical stiffness than from mesophilic
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organisms [43]. This might explain the lower conformational adaptation of our PSII CC
when compared to TMs obtained from the thermophilic T. vulcanus cells and the mesophilic
spinach leaves.
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Figure 1. Temperature-dependent variations of the single-turnover saturating flash (STSF) induced
Chl-a fluorescence transients of DCMU-treated PSII CC of T. vulcanus (a) and spinach TMs (b). The
STSFs were applied 500 ms apart; at the end, blue laser flashes (multiple-turnover saturating flashes,
MTSFs) with different lengths and amounts were fired to ensure the saturation. The measurements
were performed using the PAM-101 based setup.

2.2. Temperature Dependence of ∆τ1/2

Figure 2 illustrates the peculiar feature of the F1-to-F2 fluorescence increments in
dark-adapted DCMU-treated T. vulcanus PSII CC at −80 ◦C. It shows a strong dependence
of the magnitude of the fluorescence increment on the ∆τ waiting time between the first
and the second STSF. This phenomenon has already been demonstrated on T. vulcanus
PSII CC, whole cyanobacterial cells, spinach TMs [1], and in samples with different lipid
compositions [42]. As discussed above, in the presence of DCMU, after the first STSF QA is
reduced, and the second STSF induces no further stable charge separation. Nevertheless,
after a sufficiently long ∆τ dark waiting time the fluorescence level elicited by the second
STSF increases (Figure 2). While these data are similar to those reported earlier on PSII
CC at room temperature [36], they reveal strikingly longer ∆τ1/2 values at −80 ◦C. This
prompted us to investigate the temperature dependences of ∆τ1/2 in T. vulcanus PSII CC
and spinach TMs.
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Figure 2. Kinetic traces of Chl-a fluorescence transients of DCMU-treated PSII CC of T. vulcanus at
−80 ◦C; the traces were elicited by double STSFs fired with the indicated time intervals between the
two flashes. F1,2 marks the fluorescence levels after the double STSFs and, where resolved, F1 and F2

show, respectively, the levels reached after the first and the second STSF. The measurements were
performed using the PAM-101 based setup.

To determine the temperature dependence of ∆τ1/2 half-waiting times between
the first and the second STSFs, we investigated the double-STSF induced transients on
DCMU-treated PSII CCs of T. vulcanus and spinach TMs at distinct temperatures between
23 and −80 ◦C, with a broad range of ∆τ waiting times between the two STSFs. Note that
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in Figure 3, we mark the increment induced by the second-STSF as F1,2, irrespective of
whether or not the F1 and F2 fluorescence levels were resolved at the applied time resolution
of the fluorimeter (cf. Figure 2). The half-rise (or half-waiting) times (∆τ1/2) of the F1-to-F2
increments were obtained from a logistic-function fit of the dependence of the fluorescence
increments on ∆τ (Figure 3). Table 1, in addition to the ∆τ1/2 values, contains data on the P
parameters (steepness) of the logistic functions, as well as on the Fv/Fm parameters, which
characterize the photochemical activity and structural dynamics of PSII [2]. The Fv/Fm
values in PSII CC were very similar to those obtained in our earlier studies [2,36]; in TMs,
they were somewhat lower than usual, also in the intact leaves used. Nevertheless, the
∆τ1/2 values at room temperature were very similar in all the TM preparations with similar
or higher Fv/Fm values [42].
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Figure 3. Dependence of the F1-to-F2 Chl-a fluorescence levels on the ∆τ time intervals between the
first and second STSFs at different temperatures in PSII CC of T. vulcanus (a), and in spinach TMs
(b) in the presence of 40 µM DCMU. Continuous lines represent logistic-function fits of the data
points, which are shown as mean values± SD (n = 3–9). Dotted vertical lines mark the ∆τ1/2 half-rise
time values, i.e., the ∆τ values corresponding to the 50% of the maximum F1-to-F2 increments at
5 ◦C (blue) and −80 ◦C (red). The fluorescence levels at each ∆τ were determined after the second
STSF; here marked as F1,2, irrespective of the resolution of the F1 and F2 levels (see Figure 2). The
measurements were performed on the PAM-101 based setup.

Table 1. Double-STSF induced (F1-to-F2) ∆τ1/2 half-rise times of PSII CC of T. vulcanus and spinach
TMs in the presence of DCMU at different temperatures. Measurements were performed, using the
PAM-101 based setup, on the same PSII CC batch and the same TM preparations at all temperatures.
P is the slope of the rise curve calculated by logistic-function fit of the data points, which represent
mean values ± SD (n = 3–9). Numbers marked with the symbol * are obtained from a global fit with
shared P (0.73); at low temperatures (≤−60 ◦C), the global fit was not satisfactory, and we allowed
free run of the fit. The Fv/Fm parameter values are also shown.

Temperature
(◦C)

PSII CC
∆τ1/2 (ms) Logistic Fit P Fv/Fm

Thylakoid
∆τ1/2 (ms) Logistic Fit P Fv/Fm

23 1.16 ± 0.40 0.73 * 0.80 ± 0.01 - - -
5 1.77 ± 0.39 0.73 * 0.85 ± 0.02 0.20 ± 0.04 0.73 * 0.65 ± 0.00
−20 1.37 ± 0.49 0.73 * 0.83 ± 0.01 0.42 ± 0.12 0.73 * 0.60 ± 0.01
−40 2.01 ± 0.45 0.73 * 0.83 ± 0.01 0.36 ± 0.09 0.73 * 0.56 ± 0.01
−60 3.29 ± 0.93 0.73 * 0.83 ± 0.00 0.80 ± 0.09 1.3 0.53 ± 0.02
−80 4.18 ± 0.89 1.15 0.83 ± 0.01 1.14 ± 0.18 1.03 0.50 ± 0.02

The effect of rate-limitation can clearly be seen in both samples and at all temperatures.
In PSII CC the ∆τ1/2 of ~1.2 ms at room temperature (RT) was comparable to those
determined in our earlier studies under similar experimental conditions [42]; the same is
true for the ∆τ1/2 (0.2 ms) of TM [42]. Despite the relatively large error bars, due to the small
increments and the error of the fits, it is clear that the ∆τ1/2 values are significantly larger at
low temperatures both in PSII CC and TMs (Figure 3); this increase in the half-waiting times
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is 3–5 fold in the two samples (Table 1). These data strongly suggest the involvement of
the same process, despite the different values at non-cryogenic temperatures (Table 1). An
interesting feature of these ∆τ dependent increments are that, as also reflected by increased
P values, the rise appeared to be steeper at−80 ◦C in PSII CC and at−60 and−80 ◦C in TM
than at higher temperatures. The origin of this difference is unclear; it might be correlated
with the fact that the increments at low temperatures originate from different phases of Fv
and may contain different elements of the structural dynamics of PSII.

For an easier comparison of the patterns of the changes of ∆τ1/2 at different tempera-
tures in PSII CC and TMs, we plotted the temperature dependences of the two samples
on different scales (Figure 4). These data show that the variations of ∆τ1/2, despite the
substantial differences at all temperatures, follow essentially the same pattern—suggesting
the involvement of identical or very similar physical mechanism(s). An interesting obser-
vation is that both curves appear to possess a “breakpoint”, which can be discerned at
−20 ◦C for PSII CC and −40 ◦C for TMs. The presence of these breakpoints is proposed to
originate from protein phase transitions. To support this hypothesis we invoke the works of
Garbers and coworkers, who, by using Mössbauer spectroscopy at cryogenic temperatures
on PSII-enriched membranes, observed “the onset of fluctuations between conformational
substates of the protein matrix at around 230 K” [44]. Furthermore, Pieper and coworkers,
by using neutron scattering, found a “softening” of the protein matrix in the temperature
range above 240 K [45,46]. The difference between the breakpoints in PSII CC and TMs can
be attributed to their different growth temperatures, which, as pointed out above, might
determine the conformational rigidity of the sample.
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Figure 4. Temperature dependence of the double-STSF induced (F1-to-F2) ∆τ1/2 half-waiting times
of isolated T. vulcanus PSII CC (blue) and spinach TMs (red). The data points are taken from Table 1.
The continuous lines represent spline interpolation of the data points.

It is also worth pointing out that the mobility of protein residues might modulate
the temperature dependence of the ∆τ1/2 half-waiting times. It was shown in hydrated
proteins that dielectric relaxation processes occur with different lifetimes and dominance at
different temperature intervals [47]. In addition to the roles of protein residues the mobility
of different water molecules in the RC matrix [41,48], either on the acceptor side [49] or the
donor side [50] of the RC, might also contribute to the temperature-dependent variations
of ∆τ1/2.

2.3. Temperature Dependence of ∆τ1/2 during Multiple Light Reactions

In our earlier work, we have shown that the rate-limiting step was present not only
in the F1-to-F2 fluorescence increment but also between later steps [1]. However, it was
not clarified whether or not the ∆τ1/2 half-waiting times depend on the number of flashes
during the train of STSFs. To answer this question, we determined the ∆τ1/2 values in PSII
CC for the F2-to-F3 and the F4-to-F5 increments at 5 and −80 ◦C (Figure 5). As shown by
these measurements, only minor variations of ∆τ1/2 can be seen. At 5 ◦C the half-rise time
of the waiting time was ~2.5 ms after the second flash and ~1.4 ms after the fourth flash
(for comparison, ∆τ1/2 after the first flash was ~1.8 ms). At −80 ◦C ∆τ1/2 values for the
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F2-to-F3 and F4-to-F5 increased to ~5.1 ms and ~4.4 ms, respectively; for F1-to-F2 ∆τ1/2
was ~4 ms. One can notice that the standard deviation of the data points of later steps are
higher, which is the consequence of the gradually smaller increments after each flash, thus
hampering the determination of the precise fluorescence levels. Nevertheless, it can be
safely concluded that the half-waiting times do not differ significantly along the grades of
Fv, suggesting the involvement of the same physical mechanism.
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Figure 5. Dependence of the F2-to-F3 (blue) and the F4-to-F5 (red) Chl-a fluorescence levels on the ∆τ

time intervals between the second and third, and between the fourth and fifth STSFs, respectively,
in DCMU-treated T. vulcanus PSII CC at 5 ◦C (a) and at −80 ◦C (b). Continuous lines represent
logistic-function fits of the data points, which represent mean values ± SD (n = 3–4); the calculated
∆τ1/2 values are also indicated. The measurements were performed on the MC-PAM based setup.

3. Materials and Methods
3.1. Growth Conditions

A thermophilic cyanobacterial strain, Thermostichus (Thermosynechococcus) vulcanus,
isolated from a hot spring in Yunomine, Japan [51] was grown photoautotrophically in
BG11 medium (pH 7.0) as a batch culture. Cells were grown at 50 ◦C under continu-
ous illumination with a white fluorescent lamp at a photon flux density of 50–100 µmol
photons m−2 s−1 [52], and aerated on a gyratory shaker operating at 100 rpm.

3.2. Sample Preparation

TMs were isolated from fresh market spinach (Spinacia oleracea) leaves essentially as
described earlier [53], with minor modifications. Briefly, deveined leaves were homoge-
nized in 50 mM Tricine (pH 7.5), 400 mM sorbitol, 5 mM KCl, and 2 mM MgCl2., and then
filtered through a nylon mesh, the resulting supernatant was centrifuged then for 7 min
at 6000× g. The pellet was resuspended in 50 mM Tricine (pH 7.5), 5 mM KCl, and 5 mM
MgCl2, followed by the immediate addition of a buffer containing 50 mM Tricine (pH 7.5),
800 mM sorbitol, 5 mM KCl, and 2 mM MgCl2 before centrifugation for 7 min at 6000× g.
The pellet was finally resuspended in 50 mM Tricine (pH 7.5), 400 mM sorbitol, 5 mM KCl,
and 2 mM MgCl2 and stored in liquid nitrogen at a Chl concentration of 2–3 mg mL−1,
until use.

PSII CCs of T. vulcanus were isolated as described earlier [54–56] and were diluted in a
reaction buffer containing 5% glycerol, 20 mM MES (pH 6.0), 20 mM NaCl, and 3 mM CaCl2.

3.3. Chl-a Relative Fluorescence Yield Measurements

Relative fluorescence yields were measured using a PAM-101 (Pulse Amplitude Modu-
lation) fluorometer and a Multi-Color (MC) PAM (Walz, Effeltrich, Germany). Fluorescence
increments of the samples were induced by STSFs (Xe flashes, Excelitas LS-1130-3 Flashpac
with FX-1163 Flashtube with reflector, Wiesbaden, Germany) of 1.5-µs duration at half-peak
intensity. When using trains of STSFs, the flashes were applied 500 ms apart. The frequency
of the modulated measuring light (low intensity and nonactinic) was 1.6 kHz in the case
of PAM-101, while in the case of the MC-PAM it was 1 kHz. To improve the accuracy of
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the determination of the STSF-induced increments of the fluorescence levels, we increased
the signal-to-noise of the measurement by switching the frequency of the measuring light
to 100 kHz 10 ms before the flash, for 50 ms with PAM-101, and 2 ms before the flash, for
20 ms with MC-PAM. With this limitation, the actinic effect of the 100 kHz measuring beam,
causing a slow rise of the fluorescence level, remained smaller than 5% for the detected
intensities; this was corrected by extrapolating the fluorescence level to t = 0 of firing the
STSF. The time resolutions applied were ~20 ms and ~0.13 ms, respectively, for PAM-101
and MC-PAM. With these settings, we determined the quasi steady-state fluorescence
levels, and did not record the fast-rising components of the variable fluorescence (cf. [57]).

The sample was placed on the sample holder of a thermoluminescence apparatus in
order to control the temperature. The timing of the flashes was controlled using a home-
designed programmable digital pulse generator. In the case of the PAM-101, the kinetic
traces were recorded using a National Instrument data acquisition device (DAQ 6001,
Austin, TX, USA) via a custom-designed LabVIEW software; in case of MC-PAM, the
program’s own software was used.

For Chl-a fluorescence transient measurements, the Chl concentration of the TMs were
diluted to ~20 µg mL−1 in the resuspension buffer, and that of the PSII CC to ~5 µg mL−1

when performing double- or multiple-STSFs with variable time intervals between flashes,
and to ~20 µg mL−1 when measuring STSF-induced fluorescence steps. DCMU was dis-
solved in dimethyl sulfoxide and added to all samples immediately before the fluorescence
measurements at a final concentration of 40 µM (the final dimethyl sulfoxide concentration
did not exceed 1%). Before the measurements, the samples were dark adapted for 5 min at
room temperature, then cooled to the required temperature and were then temperature
adapted for 5 more min.

4. Conclusions

The major goal of this study was to provide data to aid the better understanding
of the mechanism(s) underlying the gradual formation of the light-adapted state (PSIIL)
from the charge-separated (closed) state (PSIIC). As pointed out in the Introduction, this is
a physiologically important process: (i) because PSIIC can often receive excitations, and
(ii) because the PSIIC-to-PSIIL leads to the stabilization of the charge-separated state; further
(iii) as suggested by earlier studies, both in PSII and bRC, the process of light adaptation
reflects subtle reorganizations, structural dynamics, and conformational memory in Type II
RC matrices [35,41].

Here, we investigated the key features of the variable Chl-a fluorescence (Fv) induced
by trains of STSFs in DCMU-treated isolated PSII CC of T. vulcanus and spinach TMs. In
particular, we were interested in the basic peculiar characteristics of Fv, its dependence on
the waiting times (∆τ) between excitations; to obtain significant magnitudes of consecutive
STSF-induced fluorescence increments along Fv, sufficiently long ∆τ values are required [1].
Earlier studies have shown that the ∆τ1/2 half-waiting times (where the F1-to-F2 fluores-
cence increment reaches 50% of its maximum) depend on the lipidic environment of the
RC matrix [42]—suggesting determining roles of physicochemical factors in ∆τ1/2.

Here, we show (i) that the ∆τ1/2 values in PSII CC and spinach TMs display a similar
pattern of temperature dependences between 5 and −80 ◦C, with increased values at low
temperatures; and (ii) that the ∆τ1/2 values in PSII CC are essentially invariant on k (k = 1–4),
denoting the Fk-to-Fk+1 increments, both at 5 and at −80 ◦C. These data strongly suggest
that the underlying physical mechanisms are essentially the same during these processes.
In line with earlier conclusions [2,38], we propose that the formation of the light-adapted
charge-separated states in bRC and PSII depend largely on dielectric relaxation processes.
The protein matrix of PSII seems to reach the optimal dielectric environment gradually by
additional excitations, a process that is significantly hindered at low temperatures. Recent
studies have shown the involvement of a network of hydrogen bonds around some protein
residues and bound water molecules in bRC [58]; bound-water containing domains on the
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donor side of PSII RC might play critical roles in the dielectric relaxation processes, and
thus also in the variable Chl-a fluorescence [41].
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