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Ductins are a family of homologous and structurally similar membrane proteins
with 2 or 4 trans-membrane alpha-helices. The active forms of the Ductins are
membranous ring- or star-shaped oligomeric assemblies and they provide various
pore, channel, gap-junction functions, assist in membrane fusion processes and
also serve as the rotor c-ring domain of V-and F-ATPases. All functions of the
Ductins have been reported to be sensitive to the presence of certain divalent
metal cations (Me2+), most frequently Cu2+ or Ca2+ ions, for most of the better
known members of the family, and the mechanism of this effect is not yet known.
Given that we have earlier found a prominent Me2+ binding site in a well-
characterised Ductin protein, we hypothesise that certain divalent cations can
structurally modulate the various functions ofDuctin assemblies via affecting their
stability by reversible non-covalent binding to them. A fine control of the stability
of the assembly ranging from separated monomers through a loosely/weakly to
tightly/strongly assembled ring might render precise regulation of Ductin
functions possible. The putative role of direct binding of Me2+ to the c-ring
subunit of active ATP hydrolase in autophagy and the mechanism of Ca2+-
dependent formation of the mitochondrial permeability transition pore are also
discussed.
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Ductins in membrane-transport processes

In the ‘80s a 16-kDa protein was purified from the presynaptic plasma membranes of the
electric organ of Torpedo marmorata. The protein was called “mediatophore” because it was
shown to mediate membrane translocation of acetylcholine (ACh) in a calcium-dependent
manner. The active form of the mediatophore was an oligomeric ring, not linked by
disulphide bonds but it required certain native lipids for function (Israël et al., 1986; Israël
et al., 1988). It showed high sequence homology with the bovine chromaffin granule
protonophore and subunits of the proteolipid c-ring of the yeast vacuolar proton-
ATPase (V-ATPase) (Birman et al., 1990). It was also demonstrated that calcium-
induced occurrence of intramembranous particles was conditional to ACh release from
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proteoliposomes equipped with mediatophore (Brochier et al.,
1992). Although N,N’-dicyclohexylcarbodiimide (DCCD, a
proton-translocation blocker of V-ATPase, which targets carboxyl
groups within the membrane) was shown to bind to mediatophore,
it still had the ability of calcium-dependent ACh translocation,
suggesting that different protein domains were involved in ACh
and proton transport functions (Sbia et al., 1992). Calcium
dependence of mediatophore assembly and function seems well
supported (Israël et al., 1993; Morel and Israël, 2000; Malo and
Israël, 2003; Dunant et al., 2009; Fujii et al., 2012). However, recent
studies challenge the original c-ring fusion pore model about the role
of V-ATPase in membrane fusion processes (Poea-Guyon et al.,
2013; Bodzęta et al., 2017), suggesting a more complex scenario.
Gap-junction proteins from mouse liver plasma membrane and the
hepatopancreas of Nephrops norvegicus (arthropod) showed both
high sequence and structural similarity to the above proteins, and
their different relative orientation relative to the cytoplasm was
observed (Finbow and Meagher, 1992; Finbow et al., 1993). In
addition, the same proteolipid was found to be a constituent of
both the ACh releasing mediatophore and the V-ATPase in Torpedo
(Brochier and Morel, 1993), indicating more than one function of
some of the related proteins. Based on microscopic and
spectroscopic data we have provided evidence for a common
structure for a class of membrane channels, that we named
Ductins: The gap-junction-like structures isolated from Nephrops
norvegicus were composed of a 16-kDa polypeptide, and the
functional assembly was a star-shaped hexamer of the protein, of
a four trans-membrane alpha helix (TMH) per monomer topology,

arranged around a central channel (Holzenburg et al., 1993) [see left
drawing in Figure 1 for an illustration, based on (Pali et al., 1995; Pali
et al., 1997; Harrison et al., 1999; Pali et al., 1999)]. It was also shown
that the Nephrops 16-kDa protein could substitute for the subunit c
of V-ATPase in yeast yielding a functional hybrid enzyme
(Holzenburg et al., 1993; Finbow et al., 1994). It had been long
disputed but now it is established that subunit c (a Ductin protein)
and other subunits of the Vo domain of V-ATPase play direct roles
in some vesicle transport processes by facilitating membrane fusion,
via intra- and inter-membrane subunit rearrangement and
interaction with other fusion proteins, unrelated to the
acidification role of V-ATPase (Galli et al., 1996; Shiff et al.,
1996; Israël and Dunant, 1999; Di et al., 2010; El Far and Seagar,
2011; Strasser et al., 2011; Amendola et al., 2015; Couoh-Cardel
et al., 2016; Rama et al., 2019).

V-ATPase in autophagy

Intracellular and extracellular material destined for
degradation are transported along the autophagy, endocytic,
and phagocytic pathways, respectively. Their shared endpoint
is the many lysosomes (in animal cells) and usually a single
vacuole (in plants and fungi), where acidic hydrolases break
down proteins, lipids, nucleic acids, and carbohydrates into
building blocks for subsequent recycling and reuse in the
cytosol. Lysosomal/vacuolar hydrolases function optimally in
an acidic internal milieu (pH: 4.5-5.0), which is generated and

FIGURE 1
An illustration of the top view of the hexameric ring assembly (left) and separatedmonomers (right) of 16-kDa, 4 trans-membrane alpha-helix (TMH)
Ductin proteins in a membrane. The central pore, which can only form in the ring assembly, is shown with an outlined blue circle (left). The numbers
indicate the TMHs of the monomers in the sequential order. Lipids are shown as green circles, and the first shell or annular lipids contacting the protein
surface are shown in darker green. According to the hypothesis of this paper, binding of specific divalent cations shifts the equilibrium towards the
stable hexameric ring assembly (left) needed for both the pore, gap-junction and rotor functions of these Ductin proteins. However, inter- and intra-
membrane rearrangement, which is needed for putativemembrane fusion-related functions, is only possible in a loosely assembled or fully disassembled
state, assuming low concentration of the divalent cations.
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maintained by the V-ATPase complex. Considering the
fundamental, homeostatic role of autophagy and endocytosis
both at the cellular and organismal levels, the most important
function of V-ATPase is to promote these vesicle-mediated
degradation pathways, but very little is known about the
regulation of V-ATPase during these scenarios. Although the
non-ubiquitously expressed V-ATPase isoform ATP6V0D2/
subunit d2 was found to bind to Syntaxin 17, the
autophagosomal SNARE that others and we have identified as
a key competence factor enabling lysosomal fusion (Itakura et al.,
2012; Takáts et al., 2013), this Syntaxin 17-binding ATP6V0D2/
subunit d2 was found to be dispensable for lysosome acidification
as it promotes autophagosome-lysosomal fusion (Xia et al.,
2019). On the other hand since, at least in the above referred
context, a physical and functional interaction of Syntaxin 17 and
V-ATPase is firmly established and because ATPV0D is closely
situated to the c-ring of the Vo subunit, interaction of the latter
with Ca2+ may have a structural impact providing a mean for
regulation. Unlike Mg2+, which supports both ATP hydrolysis
and coupled vectorial proton transport of the purified
holoenzyme, Ca2+ has been shown to facilitate only its ATPase
activity. However, Ca2+ supports a coupled reaction having given
that the holoenzyme is membrane embedded and there is a
favourable membrane potential difference. There is no solid
explanation for these findings, but Ca2+ binding to the
holoenzyme most likely have a structural impact on the
V-ATPase, and may serve thereby as a mean for quality
control to support the coupled reaction only if the
holoenzyme is properly positioned into a membrane, a
regulatory role could not be exerted by Mg2+. This putative
mechanism may act on some of the Vo subunits such as Voc
(a Ductin, c-ring protein), as it is the part of the complex to
interact with the internal side of the membrane and may be
affected by membrane potential. We found that the V-ATPase
complex itself is dispensable for autophagosome-lysosome fusion
in Drosophila fat cells (even though its loss inhibits lysosome
acidification), and interestingly, the vesicle fusion blocking effect
of the commonly used V-ATPase inhibitor bafilomycin A1 could
be attributed to Ca2+ dyshomeostasis within cells (Mauvezin
et al., 2015). Thus, these data leave the question still open
whether Me2+ (or Ca2+ in particular) have any direct effect on
the V-ATPase in autophagy.

F-ATPase and the mitochondrial
permeability transition pore (mPTP)

The Ductin family also includes the c-ring protein subunit (c)
of the ATP synthase (F-ATPase). A 16-kDa Ductin protein (such
as, e.g., the 4TM Voc subunit) is basically a tandem repeat of the
8-kDa subunit c of F-ATPase (with 2 TMHs) based on sequence
and structure similarity between subunit c of F-ATPase and the
Nephrops and other 16-kDa Ductin proteins from different
species (Holzenburg et al., 1993). V-ATPase works in the
opposite sense as the better known F-ATP synthase, which
normally synthesises ATP on the cost of trans-membrane
delta pH (Borsch, 2013; Junge and Nelson, 2015; Nakanishi

et al., 2019; Noji et al., 2020). F- and V-ATPases are true
molecular motors, and the catalytic process (ATP hydrolysis
or synthesis) and proton transport are strongly coupled via
the rotary mechanism in both enzymes (Rawson et al., 2015;
Sugawa et al., 2016; Yamato et al., 2016; Ferencz et al., 2017;
Yanagisawa and Frasch, 2017; Kühlbrandt, 2019; Murphy et al.,
2019; Kubo et al., 2020; Noji et al., 2020; Pinke et al., 2020; Frasch
et al., 2022; Kishikawa et al., 2022). Mitochondria tightly regulate
the permeability of their inner membrane to maintain efficient
ATP synthesis. Stress events lead to dys-regulation of cellular
[Ca2+], which causes loss of the inner membrane potential, and
the process results in non-specific permeability transition pores,
metabolic dysfunction and ultimately cell death (Carraro and
Bernardi, 2016; Giorgio et al., 2018; Nesci, 2020). It is now
established that if mitochondrial F-ATPase becomes a
molecular target of Ca2+ it is one of the key events in the
formation of the mitochondrial permeability transition pore
(mPTP) (Nath, 2020; Algieri et al., 2021; Nesci, 2022a; Nesci,
2022b). The process of mPTP formation is complex and probably
involves dissociation of F-ATPase dimers, then the F1-Fo
domains, and it depends on many factors (Amodeo et al.,
2017; Bonora et al., 2017; Mnatsakanyan and Jonas, 2020;
Nath, 2020). Nevertheless, F-ATPase seems to be able to
accommodate all the key factors (including Ca2+, Mg2+,
adenine nucleotides, membrane potential, matrix pH, SH
oxidants and reductants, etc.) that regulate mPTP activity
(Giorgio et al., 2018). Several putative Ca2+ binding locations
on the F-ATPase and related effects had been proposed (Giorgio
et al., 2017; Mnatsakanyan and Jonas, 2020; Nath, 2020), but the
[Ca2+]-dependent c-ring assembly appears to be a key step in the
actual pore formation (Alavian et al., 2014; Halestrap, 2014;
Bonora et al., 2017; Neginskaya et al., 2019; Mnatsakanyan
and Jonas, 2020; Amodeo et al., 2021; Nesci, 2022a). (This
c-ring pore assembly is somewhat similar to the gap-
junctional arrangement of the V-ATPase Vo subunit c
homologue of lobster hepatopancreas (Holzenburg et al., 1993;
Pali et al., 1995).)

Putative Ductin binding site(s) for divalent
metal cations (Me2+)

Ductins can be defined as a family of homologous and
structurally similar membrane proteins with 2 or 4 trans-
membrane alpha-helices whose active forms are membranous
ring- or star-shaped oligomeric assemblies and they provide
various pore, channel, gap-junction functions, assist membrane
fusion processes and also serve as the rotor c-ring domain of F-
and V-ATPases. The multifunctional character puts the Ductins at
the crossroads of a number of key biological processes (Dunlop et al.,
1995; Finbow et al., 1995; Lautemann and Bohrmann, 2016). In a
series of studies, we have characterised the 16-kDa lobster gap-
junction protein as concern its membranous hexameric assembly,
interaction with lipids and inhibitors, and the membrane location of
some key residues (Jones et al., 1995; Pali et al., 1995; Pali et al., 1997;
Pali et al., 1999; Pali et al., 2004). Most importantly, we have also
shown that, as purified from the hepatopancreas of Nephrops
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norvegicus, the stable c-ring form of this Ductin protein contained a
Me2+ binding site that was occupied by Cu2+, that could be removed
by washing with EDTA. Titration with NiCl2 then yielded Ni2+

bound to the exchangeable Me2+ site (Pali et al., 2006). This site was
found to be situated closer to Cys54 (of TMH2) and the C5 position
of the lipid chains than to the C9-C14 fatty acid chain positions,
possibly in the outer ring of TMHs. Back then we had not identified
the function of this Me2+ binding site, but suggested that it might be
involved in copper homeostasis. Further experiments with inhibitors
and chelators (unpublished) suggested that Me2+ binding to the
lobster protein might have a stabilising effect on the ring- or star-
shaped assembly. It has been observed recently that excess Cu2+

caused the inhibition of vacuole fusion and V-ATPase function in
yeast. In addition, a Cu2+-specific chelator rescued fusion, whereas a
Cu1+-specific chelator had no effect on the inhibited fusion (Miner
et al., 2019) (although the chelators used might not have penetrated
inside the cells, which prevents excluding the possibility of the effect
of intracellular Cu1+). This observation is in an apparent
contradiction with earlier observations made on cucumber roots
where both the hydrolytic and proton-transport activity of
V-ATPase increased under copper stress (Kabała et al., 2013).
Importantly, copper induced transcription of subunit c of
V-ATPase was also observed, hinting that this subunit is a direct
target of Cu2+ and that the effect of copper treatment on V-ATPase
activity was actually the result of a compensatory mechanism
provoked by copper toxicity in roots (Kabała et al., 2014). In
addition, it is likely that the stabilising/destabilising [Me2+] effects
are not unidirectional and uniform for all states of the enzyme and
the c-ring (see below). For instance, in this case low effective [Cu2+]
is probably sufficient for shifting the equilibrium towards assembled
c-rings (ie., when Vo and V1 are dissociated) from monomeric c
subunits, and low [Cu2+] is conditional to structural flexibility of the
c-ring needed for assisting membrane fusion processes. On the other
hand, high(er) [Cu2+] might over-stabilise the c-ring preventing its
role in membrane fusion but promoting the formation of functional
Vo, but very high [Cu2+] might interfere with the intact enzyme
possibly through different binding sites/mechanism (for instance by
perturbing the Vo-V1 association). These observations also further
point toward a role of the V-ATPase in copper homeostasis under
un-perturbed, none-stressed conditions (Eide et al., 1993; Pali et al.,
2006; Schlecht et al., 2014). There have been further convincing
arguments provided for Me2+ binding sites present in the c-ring
(Ductin) assembly of the F- and V-ATPases, and it has also been
proposed that different cations can bind (Pali et al., 2006) and even
compete for binding sites on the F-ATPase under certain conditions
(Van Walraven et al., 2002; Giorgio et al., 2017; Nath, 2020; Nesci,
2022a). Therefore it appears that the Ductin Me2+ binding sites are
structurally flexible and not very specific.

[Me2+]-dependent regulation of Ductin
assembly and function

Systematic studies on the affinity profile of Me2+ binding to
Ductin proteins are still missing but strongly needed for a better
understanding of Me2+ effects on the function of these proteins.
Nevertheless, it is clear from the above overview that all the various
functions of the Ductin proteins have been documented to be

sensitive to the presence of certain divalent cations, most
frequently Cu2+ or Ca2+ ions, for most of the better known
members of the family. Given that we found a prominent Me2+

binding site in a well-characterisedDuctin protein, and in view of the
great sequence and structure similarity within the family, we
hypothesise that, in addition to the already known regulatory
factors, Me2+ can structurally modulate the various functions of
oligomeric Ductin assemblies via affecting their stability by
reversible non-covalent binding to them (Figure 1). Other
binding site(s) are still mostly un-identified and the detailed
mechanism of Me2+ effects on Ductin assemblies are not yet
known. However, it can be concluded that the sign of
the—stabilising or destabilising—effect of Me2+ binding to Ductin
assemblies depend on [Me2+] and on wether these assemblies are
part of an intact rotary ATPase or their proton-conducting
membrane domain, or the Ductins are free in a monomeric or
oligomeric form in the membrane. For instance, the activity of F-
and V-ATPases decrease at high [Me2+], probably because of
interference with subunit-subunit interactions, and high [Me2+]
might promote dissociation of the catalytic (F1, V1) from the
transport (Fo, Vo) domains in these rotary enzymes. On the
other hand, low [Me2+] is probably needed for assembling and
stabilising the c ring from monomers. Indeed, a fine control of
the stability of the assembly ranging from disassembled monomers
through a loosely to tightly assembled c-ring is expected to render
precise regulation of Ductin functions possible. For instance, in
V-ATPase and F-ATPase loosening or tightening the c-ring of the
rotor may decrease or increase, respectively, the efficiency of the
catalytic function and the rate of the proton translocation. In order
to posses a central pore, mediatophore and gap-junction Ductin
proteins must be in the assembled c-ring form (Figure 1, left), which
is promoted by binding of divalent cations. On the other hand,
Ductins participating in membrane fusion processes need intra- and
inter-membrane rearrangements and exchange of monomers, which
assumes, at least temporarily, a loose c-ring form or monomeric
Ductins (Figure 1, right), which in turn assumes low concentration
of any structural Me2+, whereas high [Me2+] prevents rearrangement
of the monomers. In addition, in the loose c-ring or monomeric state
the lipid-protein interface is different from the sealed stable c-ring
state (Figure 1), which renders different lipid-specific regulatory
effects possible. It is very likely that there is an affinity profile of the
binding site(s) for different divalent metal cations, but so far mostly
Cu2+ and Ca2+ were reported to affect the variousDuctin functions. It
should be noted that a direct Me2+ binding effect on Ductin
assemblies might be masked in vivo by other processes sensitive
to the Me2+. Therefore reconstituted systems should be initially
preferred for testing the above hypothesis and for further studies on
the details of Me2+ binding to Ductins assemblies. Finally, since un-
plugged c-ring pores in biomembranes are lethal to the host cells,
expression systems aiming at purification of Ductin proteins should
prefer low [Me2+], in order to prevent pore formation of the over-
expressed monomers.
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