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Machine learning framework 
to segment sarcomeric structures 
in SMLM data
Dániel Varga 1*, Szilárd Szikora 2, Tibor Novák 1, Gergely Pap 3, Gábor Lékó 4, 
József Mihály 2,5 & Miklós Erdélyi 1

Object detection is an image analysis task with a wide range of applications, which is difficult to 
accomplish with traditional programming. Recent breakthroughs in machine learning have made 
significant progress in this area. However, these algorithms are generally compatible with traditional 
pixelated images and cannot be directly applied for pointillist datasets generated by single molecule 
localization microscopy (SMLM) methods. Here, we have improved the averaging method developed 
for the analysis of SMLM images of sarcomere structures based on a machine learning object detection 
algorithm. The ordered structure of sarcomeres allows us to determine the location of the proteins 
more accurately by superimposing SMLM images of identically assembled proteins. However, the 
area segmentation process required for averaging can be extremely time-consuming and tedious. In 
this work, we have automated this process. The developed algorithm not only finds the regions of 
interest, but also classifies the localizations and identifies the true positive ones. For training, we used 
simulations to generate large amounts of labelled data. After tuning the neural network’s internal 
parameters, it could find the localizations associated with the structures we were looking for with high 
accuracy. We validated our results by comparing them with previous manual evaluations. It has also 
been proven that the simulations can generate data of sufficient quality for training. Our method is 
suitable for the identification of other types of structures in SMLM data.

Single molecule localization microscopy (SMLM)1–4 has become a widely used and accepted tool in molecular 
cell biology research5. By utilizing the localization of single molecules, previously unseen spatial resolution ( ∼ 
10 nm) has been achieved in the optical regime6. The raw data provided by SMLM is a point cloud, i.e. a list 
of spatial coordinates of the localized emitters, which is fundamentally different from the pixelated images of 
conventional optical microscopes. Consequently, the interpretation, quantification and visualization of such data 
require new approaches and solutions. Conventional pixelated images can be generated from the localization 
data7–11, however such conversion introduces a loss of information12–14. Therefore, the direct extraction of the 
relevant information from the raw localization data requires extra effort. Another hurdle of the interpretation 
of SMLM measurements is its labour intensity. Data evaluation often requires the analysis of data belonging to 
many identical structures. Selecting the structures of interest and analyzing them individually is time consuming 
and tedious if performed manually. To this end, object classification15 and structure averaging16 methods have 
been developed and made public recently. Machine learning algorithms are gaining widespread attention for 
the analysis of complex data17. Sometimes, it is difficult to write an exact algorithm that the computer can follow 
to solve a specific task. In such cases, one option is to use machine learning methods. If we know the possible 
response signal of the system for a given input, supervised machine learning can be applied. Otherwise, without 
prior knowledge, non-supervised machine learning algorithms can be used to find patterns in the data or label 
data points. Artificial Neural Networks (ANNs) are widely used in supervised machine learning. They are made 
up of artificial neurons that can receive and process input data, and subsequently provide an output. Neurons 
with similar functions are grouped together to form layers. The machine tunes the internal parameters of the 
neural network based on a known training dataset so that its output converges to the expected output. The data 
generated by localization algorithms are not directly compatible with most neural network constructs used for 
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image analysis, as they require an input of fixed size, which is less straightforward to achieve than with pixelated 
images. Attempts have been made to analyze localization data using machine learning18–21, however, the field is 
still highly unexploited. In this work, we have created a supervised machine learning workflow for the analysis of 
localization data, more specifically for the classification of localizations in SMLM images of sarcomeric proteins. 
Sarcomeres are highly ordered molecular assemblies, where the order can be exploited to precisely determine 
the location of proteins by structure averaging22. Structure averaging requires the selection of many correspond-
ing regions, which is a time-consuming task if performed manually. Our goal was to address this problem and 
develop an algorithm to automate the selection of structures to be averaged using the localization coordinates 
directly. It is worth emphasizing that we did not aim to select only the areas used for averaging; instead, we strived 
to select the localizations belonging to the structures we were looking for, in other words, our goal was to filter out 
from the averaging process localizations that do not form part of the structure. Here we present that our machine 
learning framework provides an efficient implementation of this task. The algorithm not only gives the location 
of the regions of interest with high efficiency, but also determines which localization within that area belongs to 
the structure to be analyzed. The developed workflow has been also validated with previously published manual 
evaluation results22. We argue that the work presented here can be generalized as a localization classification 
workflow that can be used to analyze SMLM images of other structure types too.

Results
Training data generation.  Supervised machine learning requires large amounts of labelled data. Since 
localization microscopy measurements are time-consuming, expensive and typically lack the knowledge of the 
ground truth, it is advantageous if simulations can be used to generate training data of sufficient quality. For-
tunately, several simulation software packages (SuReSim, FluoSIM, SMeagol, ThunderSTORM, TestSTORM) 
have been developed in recent years to study imaging artifacts, validate new algorithms or generate training 
datasets18,23–26. We used the TestSTORM test sample generator27–29 to generate the labelled training data. In addi-
tion to faithfully mimicking the measurements, the tool also ensures that various sample, fluorescence labelling 
or imaging system parameters can be changed at will. We simulated the dSTORM measurement of epitopes 
arranged in discs close to each other along a cylinder, since many sarcomeric proteins are arranged in this 
structure. These cylinders, which correspond to the myofibrils, lie on the cover slip during the measurement, 
perpendicular to the optical axis, so the 2D dSTORM image of the epitopes gives double-line patterns. Such 
patterns can be characterized by three quantities: the distance between the lines in the double-line objects (d), 
the distance between the double-line objects on the sarcomere strand (L) and the diameter of the disc-shaped 
structures forming the lines (D) (Fig. 1a). The approximate values of these dimensions were already known from 
previous measurements22, so these values were set accordingly in the simulations ( L = 3.4µm , D = 1.5µm , 
and the value of d was around 120 nm, depending on the protein) (Table 3). The simulated labelling and acquisi-
tion parameters were also set similarly as in the previous measurements (Tables 4, 5), and each generated image 

Figure 1.   Training data and performance evaluation using different feature vectors. (a) Labelled training data 
generated with TestSTORM (magenta: double-line localizations, cyan: noise points) and the quantities that 
characterize the structure ( L = 3.4µm , D = 1.5µm , d = 120–128 nm). (b,c) Average feature vector values 
for double lines and noise localizations computed from the training data for nearest-neighbor distances (b) 
and for the smoothed distribution of the directions of the neighbors (c). (d–f) The result of neural network 
classification trained on different feature vectors for one simulated double-line object using the nearest neighbor 
distances (d), the neighbor directions (e) and both the distances and directions (f). On the left, the result of 
the classification (dark magenta: localizations classified as part of a double-line object, dark cyan: localizations 
classified as noise) and on the right, the misclassified localizations (yellow: noise localizations classified as 
double-line object points, red: double-line localizations classified as noise).
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stack was evaluated with rainSTORM30,31. SMLM images of double lines and non-specific labels or noise were 
generated separately with varied densities and the localized coordinates were merged in such a way that noise 
localizations within 50 nm of the double lines were filtered out, as they would have been indistinguishable from 
the specific labelling and would have confused the training process. The dataset used for training had 626,347 
double-line localizations and 509,831 noise points. During training, 10% of these data were used as test data and 
another 10% were used for validation.

Calculation of feature vectors.  Feature vectors had to be assigned to each localization to provide int-
put to the neural network for the classification. These vectors have a fixed length and should characterize the 
localizations well. Williamson at al.18 used the distance of the first N nearest neighbors as the neural network 
input to identify cluster points. This work suggests that for a sufficiently accurate output, the last few elements 
of the vector need to be distances to noise points, which are localizations beyond the cluster boundary. Hence, 
the whole structure has to be encoded in the elements of the vector. However, this approach raised a problem in 
our case, as there were significant differences in the number of double-line localizations for different proteins. 
Consequently, for certain N values there were no noise points between the neighbors in relation to which we 
measured the distances in one dataset, while using the same N values in other measurement files the furthest 
neighbors were already localizations to adjacent double lines. In this way, the localization density of double-line 
objects significantly modified the form of the feature vectors associated with the localizations, which made train-
ing difficult. The goal was to create feature vectors belonging to double-line localizations which always include 
the distances to all elements of the actual double lines with some noise point distances at the end of the vector 
values, while keeping the length of the vector fixed. We also aimed to keep the number of computed distances as 
small as possible to reduce the learning time of the neural network. To solve this problem, we set the length of the 
vector (e.g. 350) and then divided the localizations into random subsets in which each double-line structure had 
approximately 300 localizations (Fig. 1b). In these datasets, we calculated the values of the vectors and used these 
vectors to classify the localizations and then summarized the results. We also took into account that the actual 
structure is dimensionally anisotropic, i.e. it has a preferred orientation. So the direction of the nearest neigh-
bors also provides valuable information about whether the point is part of a double-line object or a noise point. 
Therefore, we also determined the distribution of the N nearest neighbor directions using 12◦ ( 2π/30 ) sampling 
intervals (Fig. 1c). This distribution was smoothed with a kernel of size of 3 bins so that noise on the elements 
of the vector would not interfere with the training. It can be observed that there are two peaks in the averaged 
angular distribution of the neighbors of the localizations belonging to the double-line object, a characteristic and 
a weak one, with 90◦ relative orientation. These are the two preferred directions resulting from the structure. The 
main peak is due to the fact that the neighbors of a localization belonging to double lines are mostly localizations 
belonging to the same double lines with a specific orientation. The smaller peak is from localizations outside 
the double lines, which are mainly located along the sacromeric strand, which also has a specific orientation, 
perpendicular to the orientation of the double lines. The angular distribution of the neighbors of noise points 
shows only one peak, which is wider than the one for the double-line localizations. This follows from the fact 
that the neighbors of a noise point will also eventually be densely spaced double-line elements located roughly 
in the same direction. However, as the reference point is not part of the double lines or is less likely to be located 
in the line defined by the double-line object, the deviation of direction of these localizations will be larger. Since 
the direction can vary from structure to structure, we have shifted the global maximum of all distributions to 
an arbitrarily chosen value. In this way, the values of the feature vectors do not depend on the orientation of 
the sarcomere. We chose −π/6 for this arbitrary value, so that the characteristic main and minor peaks in the 
distributions do not fall on the edge of the distribution curve.

Performance evaluation.  To construct the neural network to perform the localization classification task, 
we used Keras32,33. It is a popular open source machine learning framework, which is easy to use but also pro-
vides great flexibility. We used an ANN with one hidden layer, and with this architecture the learning time was 
only a few hours (without GPU). This three-layer construction performed well when we used only the distance 
of adjacent localizations as input (95.8% true positive and 93.8% true negative), but had two weaknesses. First, 
localizations at the ends of the double lines were less likely to be classified as object elements, yielded shorter 
lines (Fig. 1d, first inset, the left ends of the lines are cyan). The reason of this shortening is that most of the 
localizations belonging to double lines are densely surrounded by other localizations, while localizations at the 
ends of the lines are not surrounded as densely by other localizations, and the distance between nearest neigh-
bors starts to shift towards larger values. Another weakness was that noise points adjacent to double lines were 
easily assigned to the double-line object (Fig. 1d, second inset, yellow dots). The neural network that used only 
the distribution of the directions of the neighbors performed worse (93.2% true positive and 88.3% true nega-
tive), but it was more efficient at finding object localizations at the ends of the double lines than in the middle 
(Fig. 1e). It was also more efficient at classifying localizations adjacent to double lines as noise. These observa-
tions make sense if we consider that at the ends of the lines, the directions of the nearest neighbors are more 
characteristic around a given angular value, which is a strong indicator for the classification, while towards the 
edge of the lines the angular distribution of the neighbors’ directions broadens rapidly. Interestingly, the two 
vectors exactly compensate for each other’s weaknesses. Therefore, their combination could be used to create a 
feature vector to improve the performance of the neural network. For this, the vector containing the distances 
of 350 neighbors was concatenated with the 30-element vector containing the distribution of the directions of 
the neighbor localizations. Thus, a feature vector of size 380× 1 was assigned to each localization. In this way, 
we achieved a classification accuracy of 98.6% true positive and 96.4% true negative (Fig. 1f). In addition, as the 
traning process takes less than a day using only CPU, while segmentation and classification of a single double-
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line structure takes around one minute, we can conclude that this approach is a robust and highly efficient way 
to reveal the double-line structures.

Validation by experimental data.  To validate our method for the segmentation of sarcomeric structures 
in the localization data, we had to run the created algorithm on a series of measurements of sarcomeric proteins 
in which we had previously determined the distribution of epitopes by manually segmenting the double-line 
objects22. From the measurements, we selected three proteins that were stained with varying quality, Capping 
protein alpha (Cpa), Tropomodulin (Tmod) and Projectin (P5). Of these, the Cpa antibody provided the low-
est quality images, where the double lines were almost unresolvable. In contrast, the two lines could be clearly 
separated in the case of P5, while Tmod staining represents an average quality. Thus, the samples were selected 
with the goal to test the performance of the algorithm on low, average and high quality localization datasets. 
Visual comparison of the captured images and the resulting dataset of the three proteins can be found in the sup-
plementary Information (Fig. S1). However,the problem with real measurement files that we do not know how 
many subsets of the data need to be created so that each subset contains the right number of localizations per 
double-line object (in our case, ∼ 300 localizations per double-line object). The problem is further complicated 
by the fact that there can be significant differences between the number of localizations per double-line object 
even in a single measurement file (partly because of the non-uniform excitation beam during the dSTORM 
measurement). Therefore, first we had to determine the number of localizations belonging to each individual 
double-line object, so that they could be partitioned into a sufficient number of random subsets to properly clas-
sify the localizations.

Finding ROIs in measurement files.  Instead of the localization coordinates, first the pixelated images 
were used for segmentation since several efficient object detection algorithms were developed for such image 
format34. A Mask-RCNN algorithm35 was trained to detect double-line objects. We used TestSTORM and rain-
STORM to generate training data. The training data was augmented by taking random subsets of the generated 
localizations and rotating the structure around with a 3 ◦ step interval. Increasing the size of the training data 
was necessary because while there were plenty of localizations to use for classification training, a single pixelized 
image can only be generated by using many localizations. We used an already trained model as a starting point 
for training our Mask-RCNN model to achieve faster convergence36. The trained Mask-RCNN could accurately 
find ROIs with double-line objects in seconds (Fig.  2a, red boxes). Because the detectability of double lines 
depended on the contrast of the pixelated images and the ideal contrast value varied from image to image, we 
ran the detection algorithm at several contrast settings and selected the one with the most areas found with 
the largest ROIs. After identifying the ROIs, we could estimate the number of localizations within these areas, 
which was a good approximation of the number of localizations associated with the double lines. After that, the 
detected ROIs were expanded to meet certain conditions. We shifted the boundaries by a micron so that they 
encompassed the entire object and contained a sufficient number of noise localizations. Then, we divided the 
localizations within each ROI into subsets, so that there were ∼ 300 object localizations per subset (knowing 
the approximate localization number in the actual double-line object) and at least 350 localizations including 
noise points, as the neural network required a 350 element vector input. If the latter condition was not met, 
the size of the ROI was further increased by half micron increments. The yellow squares in Fig. 2a show ROIs 
extended in this way, and Fig. 2b figures show the localizations within these extended ROIs. Finding the ROIs in 
the localization data had another advantage apart from creating the appropriate localization subsets. Calculating 
the feature vectors for each localization coordinate proved to be time-consuming, as a measurement file typically 
contains hundreds of thousands of localizations with a significant number of noise localizations. The fact that 
we calculated feature vectors only for localizations in the critical areas significantly reduced the computational 
requirements.

Filtering localizations.  After creating the corresponding localization subsets, the feature vectors were cal-
culated for each localization inside the determined regions (marked with yellow squares in Fig. 2a) and the 
localizations were classified using the trained neural network. Fig. 2c shows the localizations classified as noise 
within the given areas. Note that in some cases, the extended ROIs that enclose the double-line objects may 
overlap, and in this case a localization may be assigned with a different label in the different ROIs. One example 
is the densely packed noise points in the bottom right corner of Fig. 2c Projectin (P5) part. These localizations 
are classified as double-line elements within another ROI, which included the entire double-line object where 
these localizations belong to. The object localizations in Fig. 2d were subjected to a follow-up filtering to fur-
ther reduce the number of false positive localizations. We note that these filtering steps were not performed 
on the simulated data on which the efficiency of the classification was characterized, but only on the measured 
datasets. First, we compared the average of the distance of the first 10 nearest neighbors of each double-line 
element (already calculated for the feature vectors) with the median of the first 10 distances of all double-line 
elements, which gave a particular value. If this average value was greater than 5 times the median value, the 
localization was filtered out. This multiplier of 5 was determined from the distribution of the average distances 
of the first 10 object localization neighbors as a value above which a data point is considered to be a significant 
outlier. Then, the object localizations were clustered using the DBSCAN algorithm with parameters ǫ = 50 nm 
and minPts = 5 . Using the above-mentioned values for the parameters of the clustering algorithm the localiza-
tions of a given double-line object are grouped into one cluster, while neighboring densely packed regions that 
might be included in the analyzed areas are grouped into separate clusters. From the identified clusters, the 
cluster with the most localizations was selected as the double-line object. The convex envelopes of the remain-
ing localizations were also determined, as its various parameters (e.g. perimeter, area etc.) are suitable for pos-
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sible further filtering. After these steps, we did not only define the localizations belonging to the double-line 
objects, but we also grouped together the localizations belonging to the same object. The classification filtered 
out a large percentage of localizations (Table 1), while the nearest neighbour and DBSCAN filtering discarded a 
smaller percentage of localizations. Furthermore, before comparing the results with those obtained by manual 
segmentation, we applied further strict filtering based on the fitting parameters of the localizations, as we did in 
the previous work22. These included keeping the sigma of the Gaussian curves fitted to the blinking molecules 
between 112 and 160 nm to filter out localizations from overlapping blinking events and thresholding the cal-
culated Thompson localization precision37 with a value of 20 nm. This last filtering step is not strictly part of the 
classification. The localizations filtered out after all these steps were not used in any further analysis (pale violet 
localizations in Fig. 2d).

Comparison with results from manual segmentation.  On the resulting object coordinates, we ran 
the IFM-Analyser algorithm38 presented in detail in a previous paper22. The selected double-line localizations 
were imported into the IFM-Analyser algorithm (Fig. 3a), where the symmetry axis of the structure was calcu-
lated based on the localization density (Fig. 3b). The distribution of the distance of the localizations from the 
symmetry axis was fitted with a theoretical curve (Fig. 3c, yellow curve), which was corrected considering the 
localization precision and the size of the antibodies used for labelling (Fig. 3c, red curve). Finally, the distance 
between the peaks of the resulting curve was determined, which can be used to assess the relative position of the 
sarcomeric proteins. The merged images of the output double-line objects are shown in Fig. 3d. In case of poorer 
labelling quality (Cpa), the automated algorithm found only the areas where labelling was best, as can be seen 
from the number of areas (n) found and shown in the figure. In addition, in these areas it tended to classify local-
izations only in the middle part of the lines as double-line elements. The merged image is therefore shorter but 
the lines have a higher contrast than with manual segmentation. In the case of Tmod, which had denser labelling, 

Table 1.   The ratio of the discarded localization number compared to the total number of localizations in each 
subsequent filtering step.

Filtering ratios (%)

Classification Nearest neighbour DBSCAN Sigma and precision

Cpa 57.1 0.8 19.5 41.8

Tmod 20.6 0.6 0.1 66.9

Projectin (P5) 42.7 0.5 3.8 58.9

Figure 2.   The selection of double-line localizations. (a) The pixelated images and the detected double-line 
objects (red boxes) and analyzed areas (yellow boxes) for three different proteins (Cpa Capping protein alpha, 
Tmod Tropomodulin and Projectin (P5)). (b) Localization coordinates in the analyzed areas are marked with 
yellow boxes in (a). (c) Localization coordinates classified by the algorithm as noise in the given areas (yellow 
boxes in (a)). (d) Localization coordinates that the algorithm has assigned to double-line objects in the given 
areas. Coordinates marked with pale violet have been filtered out afterwards.
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the automated algorithm recognized slightly fewer double-line objects than the manual segmentation, but the 
difference was not significant. It was observed that in the merged image obtained with the automated algorithm, 
not only the background disappeared around the lines, but also the area between the lines turned darker, sug-
gesting that the algorithm successfully filtered out the noise localizations between the lines (Fig. 2: Tmod, Sup-
plementary Fig. S2; Table S1). In the case of the Projectin protein, the automated algorithm found more areas as 
double lines than the manual segmentation method. This is likely the result of the fact that this labelling was of 
good quality, where the user selected the most visible double-line areas, while the automated algorithm selected 
areas of interest in a more unbiased manner. We found that the evaluation of the automatically segmented 
double lines gave very similar results for the relative position of the selected proteins compared to the manually 
selected regions, validating the efficiency of our method (Fig. 3e, Table 2). The distributions differed the most 
for the Tmod protein, but even in this case 5.5 nm and 6.7 nm differences were realized between the mean and 
the median values, respectively. It must be noted that the line separation predicted by the automated algorithm 
may be closer to the true value, since it successfully filtered out localizations between the lines. Although these 
localizations do not belong to the real structure, they can pull the peaks closer to each other in the theoretical 

Figure 3.   Comparison of the manual and automated segmentation. (a) Representation of localizations 
imported into the IFM-Analyser algorithm. (b) Localization density map generated from the imported 
localizations and the symmetry axis (green curve) fitted to it. (c) Distance of the localizations from the 
symmetry axis and the curve fitted to the distribution (yellow curve) and its correction (red curve). (d) Spatial 
distribution of three proteins labelled with different quality after the structural averaging of dSTORM images for 
manual and automated segmentation (Cpa Capping protein alpha, Tmod Tropomodulin and Projectin (P5)). (e) 
Comparison of the measured relative positions of proteins for manual and automated segmentation. Scale bar 
200 nm (d).

Table 2.   Statistical characteristics of the distribution of relative protein positions (Cpa Capping protein 
alpha, Tmod Tropomodulin and Projectin (P5)) determined by IFM-Analyser for manual and automated 
segmentation.

Peak distances (nm)

Cpa Tmod Projectin (P5)

Manual Automated Manual Automated Manual Automated

Mean 99.93 95.56 130.95 136.45 161.55 158.05

Median 99.93 100.19 132.25 138.95 158.55 158.00

Standard deviation 23.45 21.81 11.26 12.43 15.62 7.03
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curve fitting in the IFM-Analyser program. However, the error is in the range of the standard deviation of the 
measured double-line distances, therefore it does not affect the conclusions of our previous works.

The structure of some sarcomeric proteins has radial dependence. They can form divergent (Tropomyosin 
(MAC 141), SALS) or convergent (Zormin (B1), Cpa) double lines22. The lateral extension can also differ: for 
example, Sls700 (B2) is localized only in the central region, while others form structures with the same diameter 
as the sarcomere itself. We believe that these features are not imaging or reconstruction artifacts but depict the 
real shape of the structures. The three proteins depicted in Fig. 3 were selected to demonstrate this feature too. 
Cpa provided the lowest image quality. The applied ML algorithm found fewer areas and it also introduced 
line shortening, i.e. it classified localizations only in the central region. The quality of the Tmod images was 
significantly higher but the lines were bending, and their separation at the edge increased by approximately 
25% (Fig. S3). Projectin (P5) provided the highest image quality and the edge effect was found to be negligible 
(Fig. S3). The IFM-Analyser discarded the localizations at the edge of the structure, i.e. did not take into con-
sideration the above mentioned line shortening and bending effects, and hence the final molecular model was 
only valid for the central part of the sarcomere. With such evaluation processes the manual and machine learn-
ing algorithms provide the same final results. The edge effect can be studied when the line shortening effects 
are negligible, i.e. the image quality is high enough and the strict ML algorithm classifies localizations in the 
bending areas too.

To sum up, these results demonstrate that we have successfully developed a new analysis pipeline to efficiently 
recognize and classify sarcomere specific double-line features on SMLM images. Although the main part of 
this analysis was focused on three protein datasets, to test the general applicability of this approach, we probed 
our workflow in a few additional cases of double-line distribution (Fig. S4). Moreover, we tested it on another 
structure of interest, sarcomeric single-lines (Fig. S5). These studies showed that our algorithm performs well 
in these cases too, indicating that our method is not limited to a few proteins and it is suitable for the detection 
of various types of sarcomeric structures. We believe that our method may have widespread applications and it 
can be used to recognize similar structures without major modifications.

Discussion
In this study, we constructed, trained and tested a machine learning approach to classify localizations and 
automatically segment sarcomeric proteins in single-molecule localization microscopy measurements. We used 
the Mask-RCNN algorithm to find the areas with double-line structures and a neural network to classify the 
localizations inside the selected areas. Using a fixed-size sequence of input values generated from the distances 
and directions of the nearest neighbors of each localization as input to the neural network, it was able to iden-
tify features within these sequences, which allowed the network to determine with a high degree of confidence 
whether or not the localizations were part of the double-line objects. These models were trained on data generated 
with the TestSTORM simulator. This work has shown that training data generated by a simulation software is 
of satisfactory quality for these kinds of tasks and that neural networks trained with such data are efficient and 
robust for real measurement data analysis even with large variations in the labelling quality, which we validated 
with previous measurements. The presented method has proven to be an efficient automation tool for segment-
ing double-line structures in localization data. A natural extension of this work could be the classification of 
localizations belonging to other structures. SMLM simulators can be used to generate an arbitrary amount of 
labelled training data corresponding to a given problem. The generated training data can then be used to search 
for feature vectors that characterize the localizations well. We assume that the distance to nearest neighbors 
and their angular distribution is a good starting point for generating this input data. With the right input, the 
presented neural network can be used to identify other types of structures too.

Methods
Experimential details.  In this work, previously captured and analyzed dSTORM measurements were used. 
The generation of the experimental dataset was previously described in detail22,39. In brief, we isolated individual 
myofibrils from the indirect flight muscles (IFM) of Drosophila, and after standard fixation, we performed con-
ventional immunofluorescent labelling. We used dSTORM imaging to measure protein localization in subdif-
fraction-sized compartments of the IFM sarcomeres, i.e., the H-zone and I-band. These measurements were 
performed on a custom-made inverted microscope based on a Nikon Eclipse Ti-E frame. EPI illumination at an 
excitation wavelength of 647 nm ( Pmax = 300 mW; MPB Communications) was applied. An additional laser (405 
nm, Pmax = 60 mW; Nichia) was used for reactivation. Two separate fluorescence filter sets (LF405/488/561/635-
A-000 and Di03-R635-t1 dichroic mirrors with BLP01-647R-25 emission filters; Semrock) were used to select 
and separate the excitation and emission lights in the microscope. For the imaging, oil immersion objective (CFI 
Apo 100× , 1.49 NA; Nikon) was used. Typically 20,000–50,000 frames were captured with an exposure time of 
20 or 30 ms by an Andor iXon3 897 BV EMCCD digital camera ( 512× 512 pixels with 16µm pixel size). We 
acquired 2D projections of the myofibrils, which revealed the lateral protein distribution patterns at the H-zones 
and I-bands. We classified these patterned structures as double lines, single lines, or gaps. We processed the 
measurements with rainSTORM, and performed drift correction and filtering. After quality control, the struc-
tures were manually selected and the raw localization information of the selected structures was exported for 
further analysis. Using IFM Analyser22,39, we measured the epitope distribution along the longitudinal axis of 
myofibrils and for visualization purposes, we aligned the localizations along the symmetry axes of the H-zone/I-
band by rotation and translation and generated averaged images. We analyzed the localization of 14 epitopes 
in the H-zone and 21 epitopes in the I-band, using dSTORM images of ∼ 9000 sarcomeres. To test our ML 
approach, we selected 3 epitopes/proteins (Cpa, Tmod, Projectin (P5)) with different labelling qualities and used 
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the corresponding raw datasets. To get an overview on the full process of the evaluation of the measurement 
datasets using the automated segmentation, see Fig. S6.

Simulation details.  To simulate the sarcomeric double lines, synthetic image stacks were generated with 
TestSTORM using the ‘Disks’ pattern. This pattern consist of parallel disc pairs, whose projections form dou-
ble-line structures. Binding sites for the dyes are placed on both sides of the discs with varying density. Each 
simulation contained 27 double lines. The noise localizations were simulated by TestSTORM’s randomly placed 
‘Vesicles’ patterns with a single binding site and with the ‘Non-specific labels’ functionality of the software. While 
the former patterns were confined to a 600 nm thick volume around the focus, and each vesicle resulted in a 
localization cluster, the non-specific labels were generated randomly in a 7 confocal parameter thick volume 

Table 3.   Characteristics of simulated patterns in TestSTORM.

Sample parameters

Noise as randomly distributed small vesicles

 Maximum dz (nm) 300

 Radius of vesicles (nm) 0

 Number of epitopes 1

Double-line objects as disks along a cylinder

 L (nm) 3400

 D (nm) 1500

 d (nm) 120–128

 Dens (1/µm2) 30–50

Table 4.   Used labeling parameters in TestSTORM.

Labelling parameters

Double-line objects Noise

Emission WL (nm) 665 665

Char. ON time (s) 0.03 0.05

Char. OFF time (s) 50 42

Bleaching constant (s) 1700 1700

Emitted photon/s 80,000 100,000

Mean bonding angle ( ◦) 0 0

SD of bonding angle ( ◦) 30 30

Mean N of labels/epitope 5, 6 4, 6

Var. N of labels/epitope 2 0, 1, 2

Length of linkers (nm) 25, 30 10, 15, 30

Non-spec. l. dens. ( 1/µm3) 0 0, 3

Table 5.   Used acquisition parameters in TestSTORM.

Acquisition parameters

Number of frames 15,000–20,000

Frame rate (1/s) 20

Exp. time (s) 0.02

Pixel size (nm) 160

Av. BG level 200

RI of immersion m. 1.518

RI of sample m. 1.331

Numerical aperture 1.4

Electron/count 21.5

Pre-amplification 2.5

Actual EM gain 90

Quantum efficiency 0.9
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and provided more evenly distributed localizations. Simulation parameters were matched to the experimental 
parameters (Tables 3, 4, 5). The localization dataset of noise/non-specific labelling and double-line objects were 
generated separately to enable their separation during training. The simulated image stacks were evaluated with 
the rainSTORM localization software with the default settings, and the obtained localization datasets were used 
for the training.

Neural network characteristics.  The Artificial Neural Network (ANN) used for the classification of the 
data points contained one hidden layer with 32 units using the ReLU activation function as non-linearity. The 
loss function was binary cross-entropy with a single sigmoid output neuron. Adam was used as an optimizer. The 
model was trained for 10 epochs with a batch size of 32. Implementation and training was completed in ‘keras 
2.2.4’ using a consumer grade Intel Core i7-6700K CPU without utilizing any GPU. With such a setup training 
takes less than a day. Classification roughly scales with N*log(N) on large datasets, bounded by the k-nearest 
neighbor algorithm. The classification of a single double-line structure takes around one minute on a regular 
dataset, while the object detection of a dataset contaning ∼ 20 doubleline structures requires less than a minute.

Data availability
The code can be downloaded from a public Gitlab repository40. The training dataset is available on Zenodo41. 
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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