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Consequences of enforcing permutational symmetry, as required by the Pauli principle (spin-
statistical theorem), on the state space of molecular ensembles interacting with the quantized radi-
ation mode of a cavity are discussed. The Pauli-allowed collective states are obtained by means of
group theory, i.e., by projecting the state space onto the appropriate irreducible representations of
the permutation group of the indistinguishable molecules. It is shown that with increasing number
of molecules the ratio of Pauli-allowed collective states decreases very rapidly. Bosonic states are
more abundant than fermionic states, and the brightness of Pauli-allowed state space (contribution
from photon excited states) increases(decreases) with increasing fine structure in the energy levels of
the material ground(excited) state manifold. Numerical results are shown for the realistic example
of rovibrating H2O molecules interacting with an infrared (IR) cavity mode.

The Pauli principle, also called the spin-statistical the-
orem, is a fundamental restriction on the permutational
symmetry of the wave functions of quantum systems [1–
3], having a huge impact on the physicochemical proper-
ties of matter. In a chemical context, antisymmetrization
of the wave function with respect to electron permuta-
tions, as required by the Pauli principle, turns a Hartree
product into a Slater-determinant. The Pauli principle
also restricts the space of physically allowed quantum
states, i.e., from all the possible eigenstates of the sys-
tem Hamiltonian only those are realized in nature which
satisfy the required permutational symmetry. This is
the reason, for example, why the lowest energy state of
the Li atom (three-electron Hamiltonian) is not realized
physically (it is Pauli forbidden) [4]. In a similar fash-
ion, applying the Pauli principle to the identical atomic
nuclei in molecules (i) causes the lowest-energy rovibra-
tional eigenstate of H+

3 to be Pauli forbidden [5], and (ii)
gives rise to nuclear spin-statistical weights [3], which
fundamentally contribute to the structure of molecular
infrared (IR) and microwave spectra, as well as thermo-
chemistry. In this work we investigate the direct effects of
the Pauli principle on polaritonic chemistry, which stud-
ies the properties and dynamics of molecules interacting
with quantized radiation modes [6–13].

In polaritonic chemistry molecules and the cavity mode
are usually considered to be in the (ultra)strong cou-
pling regime, i.e., light-matter coupling is assumed to be
larger than the cavity leakage. This leads to the forma-
tion of so-called polaritons: coherent superposition states
having both material- and photonic-excited components
[6, 11, 12]. Depending on the cavity-mode wavelength,
the confined photonic modes of the cavity can efficiently
couple with either electronic or (ro)vibrational molec-
ular states, leading to electronic or (ro)vibrational po-
laritons, respectively. Because a single radiation mode
can simultaneously interact with multiple molecules, and
the light-matter interaction can also change the state of
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the field, an indirect interaction is formed between the
molecules, introducing so-called collective effects [6, 12].
Collective effects play a central role in polaritonic chem-
istry, for example, they are responsible for the well-known√
n scaling of the light-matter coupling strength when n

molecules interact with the cavity mode. Furthermore,
when n identical molecules interact with a cavity mode,
collective states can be formed, which are coherent su-
perpositions of different material- and photonic excita-
tions. The first excited manifold in principle contains,
in addition to the two bright (upper and lower) polari-
tonic states, (n − 1) so-called dark states [12, 14–17].
Although it is debated whether quantum coherence on
a mesoscopic scale can indeed be realized in IR micro-
cavities [18], the existence (of mesoscopic amounts) of
dark states has been a key factor in considering and de-
scribing the physicochemical properties and reactions of
vibropolaritonic systems [14–17, 19, 20]. In the simple
model of two two-level systems in a resonant cavity, the
first excited manifold contains the two bright polaritonic
states |Ψ±⟩ ∝ (|e⟩|g⟩|0⟩+ |g⟩|e⟩|0⟩±

√
2|g⟩|g⟩|1⟩), and the

dark state |Ψd⟩ ∝ |e⟩|g⟩|0⟩ − |g⟩|e⟩|0⟩, where |g⟩ and |e⟩
are the ground and excited material states, respectively,
while |0⟩ and |1⟩ are photon number states.
Returning to the Pauli principle, permutational sym-

metry with respect to the electrons is implicitly incorpo-
rated in the electronic structure methods of polaritonic
chemistry [21–26] and the invariance of the wave function
with respect to the permutation of emitters/molecules
has also be exploited in some theoretical works of the field
[17, 27–30], primarily to reduce computational cost by re-
ducing the basis set size needed to describe the polaritons
and to arrive to effective single-molecule models. It also
has been shown that, even if molecular indistinguishabil-
ity is not considered, permutational symmetry with re-
spect to the exchange of molecules can play a significant
role in the physicochemical properties of systems form-
ing rovibrational polaritons [31]. In addition, molecules
can be both fermions or bosons, depending on their total
(nuclear and electronic) spin. Therefore, the symmetry
of collective states with respect to the permutation of
the indistinguishable molecules can be both symmetric
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or antisymmetric. In the example given above, only the
|Ψ±⟩ bright polaritons can exist for bosons and only the
|Ψd⟩ dark polariton can exist for fermions. This raises
the central questions of this paper: (i)What are the dif-
ferences in the physically allowed state space of polariton
formation for bosonic and fermionic molecules? (ii) To
what extent can bright- and dark polaritons coexist? (iii)
Is it realistic to assume that there is a mesoscopic amount
of Pauli-allowed collective states in a cavity setting? It
is important to discuss at this point the assumptions
and limitations of the theory to be formulated below.
The above questions are addressed assuming that (a) it
is appropriate to consider the permutational symmetry
only with respect to the full molecules and that (b) the
molecules are indeed indistinguishable.

Naturally, if the permutational symmetry of all the
electrons and nuclei are considered, this automatically
leads to the correct permutational symmetry with re-
spect to exchanging full molecules. The line of reason-
ing to consider only permutation with respect to full
molecules is similar to that used in theoretical molecu-
lar spectroscopy, when one uses the molecular symmetry
(MS) group instead of the complete nuclear permutation
and inversion (CNPI) group [3]. The MS group is a sub-
group of the CNPI group, which contiains those symme-
try operations, which are physically feasible for the sys-
tem under investigation. For example, when carrying out
a simulation on a gas sample of strongly-bound molecules
at room temperature, symmetry operations in the CNPI
group that would involve bond breaking are omitted from
the MS group. In a polaritonic chemistry setting, inter-
molecular exchange of individual electrons or nuclei is as-
sumed to be unlikely for most molecules, therefore, these
symmetry operations are not included in the permuta-
tional symmetry group used in this work. However, the
permutation of full molecules can be physically realized,
considering that the interaction with the cavity radia-
tion can exchange the state of internal degrees of free-
dom (through photon emission and absorbtion), while
molecules can swap places, exchanging the translational
part of their wave functions. On the other hand, for in-
distinguishability to play a role, (a) the translation part
of the molecular wave functions should overlap, meaning
that the de Broglie wavelength of the molecules should
be comparable to the average molecular distance, and (b)
decoherence should be small.

For a polaritonic system composed of the radiation
modes and n indistinguishable molecules, the collective
polaritonic eigenstates need to transform as the [1n]([n1])
one-dimensional irreducible representations (irrep) of the
Sn symmetric group of degree n, whose elements permute
the n equivalent fermionic(bosonic) molecules [3, 32]. For
[n1] all characters are equal to one, while for [1n] the
characters are one and minus one for even and odd per-
mutations, respectively.

Taking a single cavity mode and n molecules, the state
space is spanned by the {|N⟩|k1⟩...|kn⟩} set of functions,
where N is the photon number and the ith molecule is in

the state ki. Projecting this space onto the appropriate
irreducible representations of Sn reveals the physically
allowed space for the formation of collective polaritonic
states. The projection is carried out with standard tools
of group theory [3], i.e., the projectors

P̂fermion/boson =
1

h

∑
R̂

χ[1n]/[n1][R̂]R̂ (1)

are used, where h is the order of the Sn group, R̂ goes
over all symmetry operations (permutations) in Sn, and

χΓ[R̂] is the character of R̂ in Γ irrep. All permuta-

tions R̂ can be written as a product of transpositions
(ij), and the effect of (ij) on a basis function is given by
(ij)|N⟩|k1⟩...|ki⟩...|kj⟩...|kn⟩ = |N⟩|k1⟩...|kj⟩...|ki⟩...|kn⟩.
For realistic molecular models within a microcavity, the
state labels ki should incorporate all accessible degrees of
freedom. The group theoretical procedure above makes
no assumptions about the specific form of the system
Hamiltonian, only the state space is manupilated, which
is expressed in a general way with direct product basis
functions. Extending the framework to multiple radiaton
modes is also possible. More details and a simple exam-
ple about the approach outlined above can be found in
the Supplementary Information.
First-excited manifold – We start with the first-excited

manifold of n two-level systems interacting with a loss-
less cavity mode. The state space is then spanned by the
(n + 1) basis functions |1⟩|g⟩...|g⟩ and {|0⟩|g⟩...|e⟩...|g⟩},
where the first ket vector in the direct products is the
photon number state, g and e stand for the material
ground and excited states, respectively, and there are n
zero-photon states. Table I shows the number of Pauli-
allowed linear combinations obtained from this set of ba-
sis functions by projection onto [n1] or [1n]. As shown
by the numerical examples in Table I, two bosonic states
exist for all n, while there are no fermionic states for
n > 2. The trace of the photon-number matrix Nph

(the matrix representation of â†â, where â† and â are
the cavity photon creation and annihilation operators,
respectively), shown in Table I, reveals that the bosonic
state space contains bright states with photonic excita-
tion (Tr(Nph > 0)), while the fermionic states are dark
(Tr(Nph = 0)), as can also be verified for n = 2 in the
simple example above. This means that in principle no
polaritons can be formed by fermionic two-level systems
in the first-excited manifold.
However, molecules are not two-level systems; there-

fore, we now turn to more complicated cases and in-
vestigate the first-excited manifold of n number of m-
level systems interacting with a lossless cavity mode.
The state space is then spanned by the basis functions
{|1⟩|k1⟩...|kn⟩}

mg

ki=1 and {|0⟩|k1⟩...|kn⟩}mki=mg+1, where

the lowest mg energies of the m-level systems are cat-
egorized to be in the molecular ground state manifold,
while the eigenstates mg + 1 to m are categorized as ex-
cited states. Examples for such a grouping of molecular
levels could be the ground- and first-excited vibrational
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(electronic) states with their respective rotational (rovi-
brational) fine structure. Table I summarizes the results
for the m = 5 and m = 10 systems and various mg val-
ues. The relative number of both bosonic and fermionic
states, with respect to the unsymmetrized basis set size,
rapidly decreases with increasing molecule number. Irre-
spective of the m number of levels, the number of bosonic
states is larger than the fermionic states, and in fact for
mg = 1, no fermionic state exists for n > 2. The photon
number trace shown in Table I demonstrates that with
increasing fine structure in the ground state manifold,
i.e. with increasing mg, the sets of both bosonic and
fermionic states become brighter, because more bright
Pauli-allowed combinations of basis functions can be gen-
erated (compare m = 5, mg = 2 with m = 10, mg = 7).
On the other hand, the ratio of bright basis functions
decreases with increasing fine structure in the excited
state manifold (compare m = 5, mg = 3 with m = 10,
mg = 3). Note that for a specific system the bright-
ness of the polaritonic states, i.e., the degree of mixing
between the bright and the dark basis functions of the
Pauli-allowed state space, depends on the specific form
of the Hamiltonian.

In summary, the relative number of Pauli-allowed col-
lective states in the first-excited manifold rapidly de-
creases with increasing molecule number, bosonic states
are more abundant than fermionic states, and the av-
erage brightness of the Pauli-allowed state space in-
creases(decreases) with increasing fine structure in the
energy levels of the material ground(excited) state man-
ifold. Extending the first-excited manifold to the com-
plete set of direct-product basis functions gives similar
conclusions, as shown below.

Pauli-allowed energetics – The energy levels and wave
functions of n two-level systems interacting with a reso-
nant cavity mode can be derived analytically [6, 33]. In
agreement with Table I, the first-excited manifold con-
tains two bosonic polaritons for all n and (n− 1) degen-
erate dark states, which is fermionic for n = 2 and are
Pauli forbidden for n > 2. Now we turn to a more real-
istic example of the 10-level system with mg = 5, which
represents the ground vibrational state and the bending
fundamental of ortho-H2

16O with a fine structure of ro-
tational levels up to J = 2. The accurate computation
of the rovibrational polaritons of H2O interacting with
a near resonant IR cavity mode has been described in
Ref. [34]. Utilizing that approach, the polaritonic en-
ergies of three H2O molecules interacting with the IR
cavity mode have been computed both before and af-
ter projecting the full set of basis functions onto [31] or
[13]. These computations used the rigid rotor harmonic
oscillator (RRHO) model of Ref. [34] and included the
zero- and one-photon states for the cavity mode with
ν̃ = 1681 cm−1 photon energy, nearly resonant with the
RRHO (010)[111] ← (000)[000] rovibrational transition,
where (n1n2n3)[JKaKc] are the usual normal mode and
asymmetric top quantum numbers [3]. The light-matter
coupling strength was set to g = 490 cm−1, which rep-

resents the coupling strength between a single photon
electric field and the atomic unit of the dipole moment
[34]. Projecting the full set of 10 × 10 × 10 × 2 = 2000
basis functions has led to 440 bosonic and 240 fermionic
basis functions. Note that the most abundant isotopo-
logue, H2

16O, is a bosonic molecule, while the rare H2
17O

isotopologue is fermionic. As can be seen in the results
presented in Fig. 1, by restricting the state space to
those satisfying the Pauli principle, the energy landscape
changes significantly. As can be expected from Table
I, the average energy level spacing increases, and in ad-
dition, for fermionic molecules the ground state energy
also increases. These drastic changes in energetics should
have considerable impact on the thermochemical and dy-
namic properties of the system. With the energy levels
at hand, the impact on thermochemistry can be tested
by using the direct summation technique [35, 36] to com-
pute the rovibrophotonic contribution to thermodynamic
properties. The results obtained using the formulae of
Ref. [35] (with the translational contributions, which are
absent in our model, removed) are shown in Figure 2 and
demonstrate that different temperature dependence of
the thermodynamic functions is obtained from the same
system Hamiltonian if different permutational symmetry
is enforced on the state space. For example, enforcing
either bosonic or fermionic statistics drastically reduces
the heat capacity at low temperatures, as can be expected
from the reduced density of states, and increases the mo-
lar Gibbs free energy at room temperature by several
kJmol−1.

Summary and concluding remarks – It was shown that
when n indistinguishable molecules interact with a loss-
less cavity mode, the number of Pauli-allowed states rel-
ative to the full state space rapidly decreases with in-
creasing molecule number n. Based on the results of
this paper, judging the magnitude of physically real-
ized collective states in an experimental setup contain-
ing mesoscopic amount of molecules is far from trivial
and should be done with caution, given that quantum
indistinguishability indeed plays a role. The brightness
of the Pauli-allowed state space increases(decreases) with
increasing fine structure in the energy levels of the molec-
ular ground(excited) state manifold. Numerical results
on the “3×H2O + IR cavity mode” model demonstrated
that enforcing the permutational symmetry on the state
space, as required by the Pauli principle, considerably
affects the energy landscape and resulting thermody-
namic properties of the system. Because the different
isotopologues of molecules can follow different spin statis-
tics (some isotopologues might be bosons, while others
fermions), the results of this work suggest that polari-
ton formation and the resulting physicochemical prop-
erties of the system can be very different for the differ-
ent isotopologues. Therefore, designing polaritonic ex-
periments in which quantum indistinguishability plays
a role, and carrying out these experiments on different
purified samples, containing only a bosonic or fermionic
isotopologue, could be a useful approach to investigate is-
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TABLE I: Columns 3-5: Number of states in the first excitation manifold of n molecules, having m levels with mg

in the material ground state manifold, interacting with a cavity mode. Bosonic and fermionic subspaces were
obtained by projecting the full state space onto the appropriate irreducible representations of the Sn group, see text
for details. Percentage values in parentheses show the relative number of states with respect to the unsymmetrized
“no Pauli” case. Columns 6-8: Number of bright basis functions in the given subspaces, obtained as the trace of
the photon number operator. Percentage values in parentheses show the relative number of bright basis functions

with respect to the number of all the states in the given subspace.

number of states Tr(Nph) = number of bright states
mg n no Pauli boson fermion no Pauli boson fermion

2-level system

1 2 3 2 (67%) 1 (33%) 1 1 (50%) 0 (0%)
3 4 2 (50%) 0 (0%) 1 1 (50%) 0 (0%)
4 5 2 (40%) 0 (0%) 1 1 (50%) 0 (0%)

5-level system

1 2 9 5 (56%) 4 (44%) 1 1 (20%) 0 (0%)
3 13 5 (38%) 0 (0%) 1 1 (20%) 0 (0%)
4 17 5 (29%) 0 (0%) 1 1 (10%) 0 (0%)

2 2 16 9 (56%) 7 (44%) 4 3 (33%) 1 (14%)
3 44 13 (30%) 3 (7%) 8 4 (31%) 0 (0%)
4 112 17 (15%) 0 (0%) 16 5 (29%) 0 (0%)

3 2 21 12 (57%) 9 (43%) 9 6 (50%) 3 (33%)
3 81 22 (27%) 7 (9%) 27 10 (45%) 1 (14%)
4 297 35 (12%) 2 (1%) 81 15 (43%) 0 (0%)

4 2 24 14 (58%) 10 (42%) 16 10 (71%) 6 (60%)
3 112 30 (27%) 10 (9%) 64 20 (67%) 4 (40%)
4 512 55 (11%) 5 (1%) 256 35 (64%) 1 (20%)

10-level system

1 2 19 10 (53%) 9 (47%) 1 1 (10%) 0 (0%)
3 28 10 (36%) 0 (0%) 1 1 (10%) 0 (0%)
4 37 10 (27%) 0 (0%) 1 1 (10%) 0 (0%)

3 2 51 27 (53%) 24 (47%) 9 6 (22%) 3 (13%)
3 216 52 (24%) 22 (10%) 27 10 (19%) 1 (5%)
4 837 85 (10%) 7 (1%) 81 15 (18%) 0 (0%)

5 2 75 40 (53%) 35 (47%) 25 15 (38%) 10 (29%)
3 500 110 (22%) 60 (12%) 125 35 (32%) 10 (17%)
4 3125 245 (8%) 55 (2%) 625 70 (29%) 5 (9%)

7 2 91 49 (54%) 42 (46%) 49 28 (57%) 21 (50%)
3 784 168 (21%) 98 (13%) 343 84 (50%) 35 (36%)
4 6517 462 (7%) 140 (2%) 2401 210 (45%) 35 (25%)

sues such as the existence or role of mesoscopic collective
(dark) states, and could be an additional control knob in
polaritonic chemistry.
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[26] T. S. Haugland, C. Schäfer, E. Ronca, A. Rubio, and
H. Koch, Intermolecular interactions in optical cavities:

An ab initio QED study, The Journal of Chemical Physics
154, 094113 (2021).

[27] L. S. Cederbaum, Cooperative molecular structure in
polaritonic and dark states, The Journal of Chemical
Physics 156 (2022), 184102.

[28] M. A. Zeb, P. G. Kirton, and J. Keeling, Exact states and
spectra of vibrationally dressed polaritons, ACS Photon-
ics 5, 249 (2018).

[29] F. C. Spano, Exciton-phonon polaritons in organic micro-
cavities: Testing a simple ansatz for treating a large num-
ber of chromophores, The Journal of Chemical Physics
152, 204113 (2020).
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