REAL

The cry-DASH cryptochrome encoded by the sll1629 gene in the cyanobacterium Synechocystis PCC 6803 is required for Photosystem II repair

Vass, István-Zoltán and Kós, Péter and Knoppova, Jana and Komenda, Josef and Vass, Imre (2014) The cry-DASH cryptochrome encoded by the sll1629 gene in the cyanobacterium Synechocystis PCC 6803 is required for Photosystem II repair. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 130. pp. 318-326. ISSN 1011-1344

[img] Text
VassIZJPhotochemPhotobiolB.pdf
Restricted to Repository staff only

Download (950kB) | Request a copy

Abstract

The role of the Syn-CRY cryptochrome from the cyanobacterium Synechocystis sp. PCC 6803 has been a subject of research for more than a decade. Recently we have shown that photolyase, showing strong homology with Syn-CRY is required for Photosystem II repair by preventing accumulation of DNA lesions under UV-B (Vass et al. 2013). Here we investigated if Syn-CRY is also involved in PSII repair, either via removal of DNA lesions or other mechanism? The Deltasll1629 mutant lacking Syn-CRY lost faster the PSII activity and D1 protein during UV-B or PAR than the WT. However, no detectable damages in the genomic DNA were observed. The transcript levels of the UV-B and light stress indicator gene psbA3, encoding D1, are comparable in the two strains showing that Deltasll1629 cells are not defective at the transcriptional level. Nevertheless 2D protein analysis in combination with mass spectrometry showed a decreased accumulation of several, mostly cytoplasmic, proteins including PilA1 and bicarbonate transporter SbtA. Deltasll1629 cells exposed to high light also showed a limitation in de novo assembly of PSII. It is concluded that Syn-CRY is required for efficient restoration of Photosystem II activity following UV-B and PAR induced photodamage. This effect is not caused by retardation of DNA repair, instead the synthesis of new D1 (and D2) subunit(s) and/or the assembly of the Photosystem II reaction center complex is likely affected due to the lack of intracellular CO2, or via a so far unidentified pathway that possibly includes the PilA1 protein.

Item Type: Article
Subjects: R Medicine / orvostudomány > R1 Medicine (General) / orvostudomány általában
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 06 Oct 2014 13:30
Last Modified: 06 Oct 2014 13:30
URI: http://real.mtak.hu/id/eprint/17526

Actions (login required)

Edit Item Edit Item