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HIGHER RANK ANTIPODALITY

MÁRTON NASZÓDI, ZSOMBOR SZILÁGYI, AND MIHÁLY WEINER

Abstract. Motivated by general probability theory, we say that the set X in
Rd is antipodal of rank k, if for any k + 1 elements q1, . . . qk+1 ∈ X , there is an
affine map from conv(X) to the k-dimensional simplex ∆k that maps q1, . . . qk+1

onto the k+1 vertices of ∆k. For k = 1, it coincides with the well-studied notion
of (pairwise) antipodality introduced by Klee. We consider the following natural
generalization of Klee’s problem on antipodal sets: What is the maximum size
of an antipodal set of rank k in Rd? We present a geometric characterization of
antipodal sets of rank k and adapting the argument of Danzer and Grünbaum
originally developed for the k = 1 case, we prove an upper bound which is
exponential in the dimension. We point out that this problem can be connected
to a classical question in computer science on finding perfect hashes, and it
provides a lower bound on the maximum size, which is also exponential in the
dimension.

1. Introduction

As introduced by Klee [Kle60], we say that two points q1, q2 of a convex set S in
Rd are in antipodal position if there exists two distinct parallel hyperplanes L1, L2

supporting S such that q1 ∈ L1 and q2 ∈ L2. Danzer and Grünbaum [DG62]
proved the sharp upper bound 2d for the maximum size of a set X in Rd which is
antipodal with respect to conv(X), giving also a characterization of the equality
case (X needs to be the vertex set of a parallelotope). In a number of variants
of this notion (strict antipodality, Erdős’ notion of an obtuse-triangle-free set, see
below), a stronger/weaker condition is imposed; however, in all of these, it is a
property stated for a pair of points. Here, we consider a natural generalization to
the joint position of k ≥ 2 points of a given convex set. Our motivation for this
generalization comes from general probability theory (GPT), where the notion of
joint distinguishability of states – as was observed in [LGA23] – for two states
simplifies to that of pairwise antipodality.

We explain this background in Section 2 and in particular, how it leads to the
following definition. For a set S in Rd, we say that its points q1, . . . , qk+1 ∈ S
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are jointly antipodal with respect to S, if there exists an affine map from S to
the k-dimensional simplex ∆k that maps q1, . . . qk+1 (surjectively) onto the k + 1
vertices of ∆k. We call a set X in Rd antipodal of rank k, if any k+1 points of X
are jointly antipodal with respect to X.

In Section 3, we first provide a geometric characterization of joint antipodality.
Let S be a convex set and q1, . . . , qk+1 ∈ S. For each j ∈ [k + 1] = {1, . . . , k+ 1},
dilate S from center qj by factor λj ∈ (0, 1) to obtain the “shrunk copy” Sj . In
Proposition 3, we use the sets Sj (j ∈ [k + 1]) to characterize antipodality; in
particular, we show that q1, . . . , qk+1 ∈ S are jointly antipodal with respect to S
if and only if, whenever the dilation factors are such that λ1 + . . .+ λk+1 < k, the
intersection ∩k+1

j=1Sj is empty. Using this characterization, we obtain the following

upper bound on the maximum size, A(d, k), of a rank k antipodal set in Rd.

Theorem 1. For any k ≤ d, we have A(d, k) ≤ k
(
k+1
k

)d
.

Note that for k > k′, rank k antipodality is stronger than rank k′ antipodality
and in fact, our upper bound decreases as k increases from 1 to d− 1. Clearly, a
rank k antipodal set is of dimension at least k, and in case d = k, the set must
consists of the k + 1 vertices of a k-simplex. Note also that for k = 1, this is the
bound of Danzer and Grünbaum [DG62]; in fact, our argument is an adaptation
of their idea with some care.

Finally, in Section 4, we consider constructions yielding rank k antipodal sets,
and in turn obtain lower bounds on their possible size. We follow and expand the
basic idea of the recent manuscript [LGA23], which is assigning points to sequences
in a suitable Cartesian product space. We note that the underlying combinato-
rial problem is in fact a well-known question of computer science, namely, the
construction of perfect hashes.

For positive integers b, k,m with 2 < k ≤ b, a perfect (b, k)-hash code of length
m is a set W of words of length m on the alphabet [b] = {1, 2, . . . , b} in which for
every subset {w1, . . . , wk} of k elements of W , there is a j ∈ [m] such that the jth

letters of the words w1, . . . , wk are all different. Let N(b, k,m) denote the size of
the largest perfect (b, k)-hash code of length m. A long-studied problem of com-
puter science [FK84, KM88, DFCD22, XY21] is the determination of N(b, k,m),
or at least – since we know that for fixed b, k it grows exponentially with the
length m – its asymptotic rate, i.e. the quantity

(1.1) R(b, k) = lim sup
m→∞

1

m
log(N(b, k,m)).

Since in general, only lower and upper bounds are known for these quantities, we
leave them in their “unevaluated” form and state that the mentioned construction
yields the following lower bound for our geometric problem.

Theorem 2. Assume that there is a rank k antipodal set in dimension d0 of size b.
Then for every m = 1, 2, . . . one can construct a rank k antipodal set in dimension
d = m · d0 of size N(b, k + 1, m).
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In essence, the same underlying construction is presented in [LGA23] using the
vertices of a d0-simplex as the “starting configuration”. The aim in that paper
was only to prove that for any fixed k, here exist rank k antipodal sets whose size
grows exponentially with the dimension; see [LGA23, Theorem 17]. We point out
the fact that the combinatorial problem is well-studied in computer science, and
improve the results in [LGA23] in two ways: first, when d0 ≫ k, the simplex is
far from being an optimal starting configuration – it gives only d0+1 points; and
second, there are better random constructions [KM88] and in fact, constructions
beating the known random ones [XY21] in their exponential rates of growth.

In this way, lower bounds of the form c · αd can be given for the possible size
of a rank k antipodal set in dimension d with both the base α > 1 and the
multiplicative constant c > 0 depending on k. However, as we shall note, for
k + 1 > 3, this construction cannot give a lower bound with α = (k + 1)/k, –
which is what appears in our upper bound Theorem 1 – regardless of any later
improvements on the lower bound of R(b, k). Thus, a gap remains between the our
upper Theorem 1 on the geometric problem and the constructions that one can
obtain using perfect hashes. Perhaps because there are better – e.g. fundamentally
geometric – constructions of rank k antipodal sets, or because our upper bound is
not optimal. In the remaining part of this introduction, we pose some problems.

1.1. Questions. The first, obvious question is to close the gap between the lower
and the upper bounds on the maximum size of an antipodal set of rank k in Rd

for k > 1. We found no reason to believe that either the lower or the upper bound
that we present should be even asymptotically close to optimal. It would be very
interesting to find out whether the answer to the geometric problem (the maximum
size of a rank k antipodal set) and the answer to the combinatorial problem (size
of a perfect hash) are of the same or of different orders of magnitude.

We defined antipodality of rank k following Klee, however, one could gener-
alize a strongly related question of Erdős [Erd57], where the maximum size of
a set in Rd is to be determined with the property that it does not contain the
vertices of an obtuse triangle. In other words, for any pair of points q1, q2 of the
set, the hyperplanes perpendicular to the line segment [q1, q2] support the set.
Generalizing this definition, we may call a set X of points in Rd Erdős-antipodal
of rank k, if for any k + 1 elements q1, . . . , qk+1 ∈ X the orthogonal projection
of Rd onto the k-dimensional affine hull of q1, . . . , qk+1 maps X to the simplex
∆k = conv(q1, . . . , qk+1). One may investigate the maximum size of such a set in
Rd. For k = 1, we know that Klee’s notion of antipodality, and Erdős’ stronger
notion yield the same bound, 2d, as shown by Danzer and Grünbaum [DG62] (and
the example of the cube).

Finally, strictly antipodal sets, as introduced by Grünbaum [Grü63], are those
antipodal sets in Rd where for any pair of points q1 and q2 of the set, the pair
of distinct parallel hyperplanes may be chosen in such a way that each intersects
the set in exactly one point, namely in q1 and q2 respectively; cf. [Zak19, GH19a]
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for recent results and [GH19b] for a survey. By analogy, we may call a set X
strictly antipodal of rank k, if for any k + 1 elements q1, . . . , qk+1 ∈ X there is a
projection of Rd onto a k-dimensional plane, and there is a k-dimensional simplex
∆k in this plane such that X is mapped to ∆k, the set {q1, . . . , qk+1} is mapped
(surjectively) onto the vertices of ∆k, and the image of no other point of X is a
vertex of ∆k. Lower and upper bounds for the maximum size of such set in Rd

would be of interest.

2. Motivation: General Probability Theory

General probability theory (GPT) was created to give a common framework to
classical and quantum probabilistic models and to explore what options (compat-
ible with some natural physical requirements) could exists beyond quantum, see
e.g. [BW11, Plá21]. In this section, we give a condensed, simplified version of what
a GPT model is, concentrating only on the concepts of states and measurements
(and omitting many other notions, eg. effects, composite systems, etc.).

2.1. A brief introduction to GPT. From a probabilistic point of view, to
describe a physical system, first, one needs to choose a set S which will be
viewed as the set of possible states. Next, we have to introduce the concept
of a measurement with finitely many – say k + 1 – possible outcomes identified
by / corresponding to the numbers 1, 2, . . . , k + 1. What we want is to be able
to talk about the outcome-statistics; i.e. the probabilities of obtaining outcomes
1, 2, . . . , k+ 1, or collected into a k+ 1-tuple, an element of the standard simplex
∆k = {(p1, . . . pk+1) ∈ R

k+1 :
∑

j pj = 1, pj ≥ 0 for all j}. Since this statistics
may depend on the actual state, in our model a measurement with k+1 numbered
possible outcomes is a function from the set of states S to ∆k. Thus the model
should minimally consists of a set S and a collection of functions from S to some
(possibly distinct dimensional) simplices corresponding to the measurements that
can be performed on the system.

An important point is that physically it is meaningful to consider the convex
combination of states. Operationally, to obtain outcome statistics of a measure-
ment M in the “mixed state” λs1 + (1− λ)s2 where s1, s2 ∈ S and the coefficients
λ, 1−λ ∈ [0, 1], one prepares the system in either state s1 or s2 with corresponding
probabilities λ and 1 − λ, then performs M . Thus the state space should be en-
dowed with a structure making it a convex set and moreover, by this operational
meaning of convex combinations of states, every measurement should be an affine
map from S to a simplex.

Usually, when defining what a GPT model is, one assumes the no restriction
principle [JL13]: every “theoretically possible measurement”, that is, every affine
map from S to a simplex, is actually a realizable measurement. So if we only
wish to talk about states and measurements, then under this assumption, the
whole probability model is completely determined by the choice of the convex set
S playing the role of the state space of the physical system. This principle has
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physical motivations, and it holds in both the classical (where in the “finite level”
setting S = ∆n for some n) and in the quantum case (where in the finite level
setting S is the set of density operators on Cn for some n). So in what follows,
we shall always assume it when considering a GPT model.

2.2. Joint distinguishability and joint antipodality. Assume that a physical
system’s state space is modeled by the convex set S and let s1, s2, . . . sk+1 be
some specific elements of S. Aiming to store information (to use the system
as a memory), the system is put into state sj according to some selected value
j = x ∈ [k + 1]. To retrieve the value of x, we need to establish if the system is
in state s1, s2 . . . or in sk+1.

In order to distinguish, we perform an appropriate measurement with k + 1
possible outcomes and take its outcome as our hypothesis for the value of x.
Suppose this measurement is modeled by the affine map M : S → ∆k. Then,
given that x = j, the probability that the measurement will end with its jth

outcome (i.e. it correctly indicates the value of x) is Mj(sj), and it is precisely 1 if
and only if M(sj) is the jth vertex of ∆k. If there exists an affine map M : S → ∆k

(i.e. a measurement) such that this holds for every j ∈ [k+1], then s1, s2, . . . sk+1

are jointly (perfectly) distinguishable. Note that this is equivalent to the existence
of an affine map M from S to some simplex such that M(s1),M(s2), . . .M(sk+1)
are k + 1 distinct vertices of the simplex in question, which is what we adopted
as a definition of joint antipodality.

In general – even if s1, s2, . . . sk+1 are not jointly perfectly distinguishable – one
often tries to minimize the sum of the error probabilities

Pe,M(s1, s2, . . . , sk+1) =
k+1∑

j=1

(1−Mj(sj))

and investigates how its infimum P ∗
e (s1, . . . , sk+1) over all possible affine maps

M : S → ∆k behaves. For example, it is interesting to find upper bounds on
P ∗
e (s1, . . . , sk+1) in terms of the pairwise quantities P ∗

e (sj , sℓ), j 6= ℓ. If S = ∆n

(classical case), then evidently P ∗
e (s1, . . . , sk+1) ≤

∑

j<ℓ P
∗
e (sj, sℓ). On the other

hand, it is false in general when S is the set of density operators on Cn for
some n (i.e. in the quantum setting). Nevertheless, by [AM14, equation (10)] in
this latter case, one still has the (somewhat weaker) bound P ∗

e (s1, . . . , sk+1) ≤
2
√
2
∑

j<ℓ

√

P ∗
e (sj , sℓ).

Interestingly, both in the quantum and in the classical case (as one might de-
duce from the upper bounds on P ∗

e in the paragraph above), pairwise perfect
distinguishability (or, in the language of convex geometry: pairwise antipodality)
implies joint distinguishability. In general, when S is an arbitrary convex set, this
is not so; in fact for any collection of subsets A of [k+1] forming an independence
system, there exists a convex polytope S ⊂ Rd and s1, . . . sk+1 ∈ S such that for
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an H ⊂ [k + 1], the collection (sj)j∈H is jointly antipodal if and only if H ∈ A,
see the details in [Wei23].

As pointed out in [LGA23], small dimensional rank k antipodal sets with large
cardinality are interesting from an information theoretic point of view. Assume
that we want to build a memory which may store an integer x, say, between 1
and 1024. Assume further that we do not need to be able to retrieve the value
x. Instead, for any three-element subset H of [1024] that contains x, we want to
be able to tell which element of H x is. If the set of states of our memory is the
convex set S, then according to the argument above, in the classical (when S is
a simplex) and in the quantum (when S is the set of density operators on Cn for
some n) settings, we need 10 bits, or, in geometric terms, we need a least (210−1)-
dimensional space to embed S in. However, if S is a smaller dimensional rank 3
antipodal polytope with at least 1024 vertices, then we have a smaller memory
performing the job. In other words, S makes a certain kind of data compression
possible.

3. Equivalent descriptions of joint antipodality and

volume-bounds

Given a point q ∈ Rd and λ ∈ R, we denote the dilation from center q by factor
λ by Dq,λ, that is,

Dq,λ(x) = (1− λ)q + λx, (x ∈ R
d).

We denote by relint(S) the relative interior of a set S ⊂ Rd; i.e. the interior of S
with respect to the affine hull of S.

Proposition 3. Let S be a convex set in Rd and q1, . . . qk+1 ∈ S. Then the
following are equivalent.

(1) q1, . . . qk+1 are jointly antipodal with respect to S;
(2) for any λ1, . . . λk+1 ∈ (0, 1) with λ1 + . . .+ λk+1 = k, we have

k+1∩
j=1

Dqj ,λj
(relint(S)) = ∅;

(3) for some λ1, . . . λk+1 ∈ (0, 1) with λ1 + . . .+ λk+1 = k, we have

k+1∩
j=1

Dqj ,λj
(relint(S)) = ∅.

Note that we could avoid using relative interiors; e.g. condition (2) is equivalent
to saying that the intersection ∩k+1

j=1Dqj ,λj
(S) is empty for any λ1, . . . λk+1 ∈ (0, 1)

such that λ1+ . . .+λk+1 < k. We postpone the proof of the Proposition, and first
show how this characterization implies Theorem 1.

Proof of Theorem 1. Clearly, we may assume that the affine hull of {q1, . . . , qn}
is Rd. Set S = conv(q1, . . . , qn), and consider the sets Sj = Dqj ,k/(k+1)(int(S)).

Clearly, each Sj is contained in S, and vol(Sj) =
(

k
k+1

)d
vol(S). By Proposition 3,
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no k + 1 of these sets intersect, that is, every point of S is contained in at most
k of the Sj . Thus,

n∑

j=1

vol(Sj) ≤ k · vol(S) .

The statement of Theorem 1 follows. �

The main idea of the proof above, that is, to consider smaller homothetic copies
of S inside S and compute volume is due to Danzer and Grünbaum [DG62], our
adaptation relies on the observation that it can be applied in the present context
using an arrangement of homothets that do not cover any point more than k-fold.

The proof of the characterizations stated in the beginning of this section will
require a lemma, which is a slightly modified version of [Bár15, Theorem 7.1]. For
completeness, we outline its proof.

Lemma 4. Let K1, . . . , Kr be convex bodies in Rk, that is, compact convex sets
with non-empty interior. Assume that ∩r

i=1int(Ki) = ∅ and p ∈ ∩r
i=1Ki. Then

there are closed half-spaces D1, . . . , Dr containing p on their boundary with
∩r
i=1int(Di) = ∅ and Ki ⊂ Di for all i ∈ [r].

Proof of Lemma 4. First, consider the compact convex set K1 and the closed con-
vex set ∩r

i=2Ki. By a standard separation theorem, there is a closed half-space D1

containing p on its boundary with int(K1) ⊂ int(D1) and int(D1)
⋂∩r

i=2Ki = ∅.
We replace K1 with D1 and apply the same argument for the compact convex
set K2 and the closed convex set D1

⋂∩r
i=3Ki to obtain D2. Next, we apply

the same argument for the compact convex set K3 and the closed convex set
(D1∩D2)

⋂∩r
i=4Ki to obtain D3. Continuing in this manner, we finally apply the

same argument for the compact convex set Kr and the closed convex set ∩r−1
i=1Di

to obtain Dr. As is easily verified, we arrive at a desired set of half-spaces. �

The following lemma is a simple exercise nevertheless, we sketch the proof.

Lemma 5. Let v1, . . . , vk+1 denote the vertices of the simplex ∆k in Rk. Then
for any λ1, . . . λk+1 ∈ (0, 1) with λ1 + . . .+ λk+1 = k, we have

k+1∩
j=1

Dvj ,λj
(int(∆k)) = ∅;

Proof. Any point x in Rk can be written as x =
∑k+1

j=1 µjvj with uniquely de-

termined real coefficients µj such that
∑k+1

j=1 µj = 1. These µj are called the
barycentric coordinates of x with respect to the vj . Observing

Dvj ,λj
(int(∆k)) = {x ∈ int(∆k) : µj > 1− λj}

and
∑k+1

j=1(1− λj) = 1 yields the proof. �
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Proof of Proposition 3. We may assume that S has non-empty interior, otherwise,
we replace Rd by the affine hull of S.

In order to prove that (1) implies (2), assume that there is an affine map φ from
S to ∆k mapping q1, . . . qk+1 onto the vertices of ∆k. Let λ1, . . . λk+1 ∈ (0, 1) with
λ1 + . . .+ λk+1 = k, and observe that

k+1∩
j=1

φ
(
Dqj ,λj

(relint(S))
)
=

k+1∩
j=1

Dφ(qj),λj
(relint(φ(S))) =

k+1∩
j=1

Dφ(qj),λj
(relint(∆k)) = ∅,

where, in the last equation, we used Lemma 5. Thus, (2) holds.
Clearly, (2) implies (3). In order to see that (3) implies (1), we first observe

that the point p :=
∑k+1

i=1 (1−λi)qi is in the intersection ∩k+1
i=1Dqi,λi

(S). Indeed, to
see that p ∈ Dq1,λ1

(S), we write

p = (1− λ1)q1 + λ1

k+1∑

i=2

1− λi
∑k+1

j=2(1− λj)
qi,

using λ1 =
∑k+1

i=2 (1− λi). Similarly, p ∈ Dqi,λi
(S) for all i ∈ [k + 1].

Applying Lemma 4 yields closed half-spaces Di (i ∈ [k + 1]) whose bounding
hyperplanes, denoted by Hi, are incident with p. Note that for any distinct
i, j ∈ [k + 1] we have that qi + λi(qj − qi) is in Dqi,λi

(S). Moreover, for any

i ∈ [k + 1], we have p =
∑

j∈[k+1]\{i}]
1−λj

λi
(qi + λi(qj − qi)) (the reader is invited

to check this), and hence p is in the relative interior of the convex hull of the set
Ai := {qi + λi(qj − qi) : j ∈ [k + 1] \ {i}}. Since Hi is a support hyperplane of
Dλi,qi(S) at p, and Ai ⊆ Dλi,qi(S), it follows that Ai ⊂ Hi.

It follows that the hyperplane Dqi,1/λi
(Hi) supports the set S at the points qj

with j ∈ [k + 1] \ {i}. Hence, the intersection ∩k+1
i=1Dqi,1/λi

(Di) of k + 1 closed

half-spaces contains S, and aff(q1, . . . , qk+1)
⋂∩k+1

i=1Dqi,1/λi
(Di) is a k-dimensional

simplex which is equal to conv(q1, . . . , qk+1). Moreover, since ∩k+1
i=1 int(Di) = ∅

and ∩k+1
i=1Di contains p, and hence is not empty, the normal vectors of the hy-

perplanes Hi are linearly dependent. Thus, the dimension of the affine subspace
∩k+1
i=1Dqi,1/λi

(Hi) is d− k. Finally the projection of Rd onto aff(q1, . . . , qk+1) along

the linear subspace parallel to ∩k+1
i=1Dqi,1/λi

(Hi) is the desired affine map satisfying
(1). �

4. Hash functions yield rank k antipodal sets

Proof of Theorem 2. Let X ⊂ Rd0 be a rank k antipodal set of cardinality |X| = b,
and Wm be a perfect (b, k + 1)-hash code of words of length m, with cardi-
nality |Wm| = N(b, k + 1, m). Consider the m-th power of S0 = conv(X),

S =

m times
︷ ︸︸ ︷

S0 × · · · × S0 as a convex subset of Rmd0 . Clearly, S is a polytope whose
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vertices can be encoded as words of length m on the alphabet [b]. That is, Wm

may be considered as a subset XWm
of the vertices of S. It is easy to see that by

the definition of a perfect hash code, XWm
is antipodal of rank k with respect to

S. In fact, the projections needed to show this belong to the set {Pi : i ∈ [m]},
where Pi is the projection of Rd =

(
Rd0
)m

to its i-th component Rd0 . �

One might wonder if the above construction can lead to a sequence of exam-
ples approaching, in an asymptotic sense, the upper bound given in the previous
section. In other words, whether for any fixed k, there is a gap between the bound

lim sup
d−→∞

1

d
logA(d, k) ≤ log

k + 1

k

given by Theorem 1, and the quantity

(4.1) lim sup
m→∞

1

d
log(|XWm

|),

where XWm
is the rank k antipodal set obtained in the proof above.

We now show that for k > 2, in fact, there is a gap independent of the starting
configuration. That is, using prefect hashes to obtain high dimensional rank k an-
tipodal sets from a fixed d0-dimensional rank k antipodal example, one cannot get
close even asymptotically to the geometric bound on A(d, k) given in Theorem 1.

Indeed, by our result, we know that for the “starting configuration” X, we have
the inequality

(4.2) b ≤ k

(
k + 1

k

)d0

.

Moreover, a trivial counting argument c.f. [KM88] gives an upper bound on the
cardinality of a perfect hash code by which

(4.3) N(b, k + 1, m) ≤ k

(
b

k

)m

.

If we assume equality both in (4.2) and (4.3), then after substituting d = d0m, we
obtain that our rank k antipodal set XWm

constructed in the proof of Theorem 2
has cardinality |XWm

| = |Wm| = k((k + 1)/k)d, which is again precisely the

upper bound of Theorem 1. On the other hand, k
(
k+1
k

)d0
is never an integer (for

d0, k > 1), so it cannot be equal to b, from which it is easy to conclude that for any
fixed starting set, the quantity (4.1) is strictly smaller than log k+1

k
. Nevertheless,

it does not rule out the possibility of (4.1) getting arbitrarily close to log k+1
k

as
the dimension d0 of the starting configuration increases.

Luckily, in general we have better bounds than (4.3) for the asymptotic of the
size of a perfect hash code; see for example [KM88, FK84, DFCD22]. Using the
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quantity R introduced in (1.1), we have

lim sup
m→∞

1

d
log(|XWm

|) = 1

d0
R(b, k + 1) ≤ 1

d0
R

(

k

(
k + 1

k

)d0

, k + 1

)

.

For k > 2, and d0 sufficiently large, using [DFCD22, Lemma 1] for upper estimat-
ing R, it can be shown that (4.1) may be upper bounded by a value depending
only on k (and not on d0), which is still strictly smaller than log k+1

k
. The exis-

tence of a gap then follows, since for each k, there is only a finite number of small
d0.
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