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1. Main results and the structure of the paper

The largest volume ellipsoid contained in a convex body in R and, in particular,
John’s result [18] characterizing it, plays a fundamental role in convexity. The latter
states that the origin-centered Euclidean unit ball is the largest volume ellipsoid con-
tained in the convex body K if and only if it is contained in K and the contact points
(that is, the intersection points of the unit sphere and the boundary of K) satisfy a
certain algebraic condition.

Alonso-Gutiérrez, Gonzales Merino, Jiménez and Villa [2] extended the notion of the
John ellipsoid to the setting of logarithmically concave functions. To any log-concave
function f of finite positive integral on RY, they associate an ellipsoid in R?, which we
call the AMJV ellipsoid, in the following manner.

We denote the Lo, norm of f by || f]|. For every ||f|| > 8 > 0, consider the superlevel
set {z € R?: f(x) > B} of f. This is a bounded convex set with non-empty interior,
we take its largest volume ellipsoid, and multiply the volume of this ellipsoid by 3. As
shown in [2], there is a unique height Sy € [0, ||f||]] such that this product is maximal.
The AMJV ellipsoid is the ellipsoid E in R? obtained for this Sy.

‘We propose an alternative route to this extension with the introduction of a parameter
s > 0 that can be chosen arbitrarily. As a limit as s tends to zero, we recover the above
described approach of Alonso-Gutiérrez, Gonzales Merino, Jiménez and Villa. The main
advantage of our framework is that it implies a John type characterization of the maximal
ellipsoid. We present an application of this characterization: a quantitative Helly type
result for the integral of the pointwise minimum of a family of logarithmically concave
functions.

The paper is organized as follows.

In Section 2, we introduce the notions of s-lifting and s-volume, which will frame
our study of logarithmically concave functions, and then, we define our main object of
interest, the John s-ellipsoid (an ellipsoid in R%*!) and the John s-function (a function
on R?) of a log-concave function f on R9.

The idea is the following. Fix an s > 0 and consider the graph of the function f1/¢,
which is a set in R4, and turn it into a not necessarily convex body in R%+!, which
we call the s-lifting of f. We define also a measure-like quantity, the s-volume of sets
in R4, Then we look for the ellipsoid in R%t! which is contained in the s-lifting of
f and is of maximal s-volume. We call this ellipsoid in R4*! the John s-ellipsoid of f.
This ellipsoid defines a function on R?, which is the John s-function of f. This function
is pointwise less than or equal to f.

In Subsection 2.6, we describe our definitions in geometric terms and in Subsection 2.7,
in terms of a functional optimization problem, concluding the second introductory sec-
tion.

In Section 3, we prove some basic inequalities about the quantities introduced before.
As an immediate application of these inequalities, we obtain a compactness result that,
in the next section, yields that the John s-ellipsoid exists.
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Section 4 contains one of our main tools, interpolation between ellipsoids. In the classi-
cal theory of the John ellipsoid, the uniqueness of the largest volume ellipsoid contained in
a convex body K in R may be proved in the following way. Assume that F; = A;B%+a;
and Fy = AsB? + ay are ellipsoids of the same volume contained in K, where B? de-
notes the Euclidean unit ball, A;, Ay are matrices, and a1, a2 € R?. Then the ellipsoid
%Bd + % is also contained in K and its volume is larger than that of E; and
Es.

One cannot apply this argument in our setting in a straightforward manner, as the set
we consider is not convex. However, we show that if two ellipsoids in R?*! of the same
s-volume are contained in the s-lifting of a log-concave function f, then one can define a
third ellipsoid “between” the two ellipsoids which is of larger s-volume. This intermediate
ellipsoid is obtained as a non-linear combination of the parameters determining the two
ellipsoids.

As an immediate application, we obtain that the John s-ellipsoid is unique, see The-
orem 4.1.

In Section 5, we state and prove a necessary and sufficient condition for the (d + 1)-
dimensional Euclidean unit ball B! to be the John s-ellipsoid of a log-concave function
f on R¢, see Theorem 5.1. Here, we phrase a simplified version of it.

Theorem 1.1. Let K = {(z,&) € R4 . |¢] < f(x)/2} C R4 denote the symmetrized
subgraph of an upper semi-continuous log-concave function f on R of positive non-zero
integral. Assume that the (d + 1)-dimensional Euclidean unit ball B4t is contained in
K. Then the following are equivalent.

(1) The ball Bt 4s the unique mazimum volume ellipsoid contained in K.
(2) There are contact points uy,...,ur € bd (Bd“) N bd (f), and positive weights
ci,...,c such that

k k
E cGu; Qu; =1 and E ciu; =0,
i=1 i=1

where w; is the orthogonal projection of W; onto R? and I is the (d+ 1) x (d + 1)
identity matriz.

The implication from (1) to (2) is proved in more or less the same way as John’s
fundamental theorem about convex bodies, there are hardly any additional difficulties.
The converse however, is not straightforward, since K is not a convex body in general.
That part of the proof relies heavily on the technique of interpolation between ellipsoids
described in Section 4.

We note that non-convex sets in place of ellipsoids in a similar context for sets (not
functions) were considered in [8]. In our case, however, it is the set which contains the
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other (the “container set”) which is non-convex, and that is the source of difficulties in
finding the optimum (maximum volume or integral).

We give also an equivalent, purely functional formulation of Theorem 1.1 without
reference to bodies in (d + 1)-dimensional space, see Theorem 5.2.

In Section 6, we describe the relationship between the approach of Alonso-Gutiérrez,
Gonzales Merino, Jiménez and Villa [2] and our approach.

In Theorem 6.1, we show that Syxg is the limit (in a rather strong sense) of our John
s-functions as s tends to 0, where 3y is the height of the AMJV ellipsoid E.

This result is based on the comparison of the s-volumes of John s-ellipsoids for distinct
values of s. We compare also these s-volumes and the integral of f obtaining a bound
on the integral ratio, the functional analogue of volume ratio.

In Section 7, we study the John s-functions as s tends to infinity. We show that the
limit may only be a Gaussian density, see Theorem 7.2. What is perhaps surprising is
that the largest integral Gaussian density that is pointwise less than or equal to f is
not necessarily unique, see Section 7.2. We show however, that in this case, the two
Gaussians are translates of each other, see Theorem 7.1.

Finally, Section 8 contains the proof of our quantitative Helly type result. This is a
non-trivial application of the results of the previous sections. We describe it in detail
here.

For a positive integer n, we denote by [n] the set [n] = {1,2,...,n}. For m < n, the
family of subsets of [n] of cardinality at most m is denoted by ( <[7;]n)

According to Helly’s theorem, if the intersection of a finite family of convex sets in
R? is empty, then it has a subfamily of at most d+ 1 members such that the intersection
of all members of the subfamily is empty.

A quantitative variant of Helly’s theorem was discovered by Barany, Katchalski and
Pach [7], stating the following. Let K1,..., K, be conver sets in R%. Then there is a set
o€ (i’;]d) of at most 2d indices such that

voly <n Kl> < cqvoly m K; )

i€o i€[n]

where cq depends only on d.

In [7], it is shown that one can take ¢q = d>® and it is conjectured that the theorem
should hold with ¢; = d°? for a proper absolute constant ¢ > 0. It was confirmed in [21]
with ¢g &~ d?¢, where it is also shown that such result will not hold with ¢g < d%/2. The
argument in [21] was refined by Brazitikos [9] who showed that one may take cq =~ d>%/2.
For more on quantitative Helly type results, see the surveys [17,12]

Observe that the pointwise minimum of a family of log-concave functions is again
log-concave. Our quantitative Helly type result is the following.

Theorem 1.2. Let fi,..., fn be upper semi-continuous log-concave functions on R%. For
every o C [n], let f, denote the pointwise minimum:
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fo(x) =min{fi(z): i € o}.

Then there is a set 0 € (<3EZ]+2) of at most 3d + 2 indices such that, with the notation

J = [in), we have

/fg < (100d)5d/2/f. (1.1)
Rd R4

The characteristic function of a convex set is log-concave, and pointwise minimum
of functions corresponds to intersection of sets. Thus, Theorem 1.2 yields a quantitative
Helly type result about convex sets as a special case. When comparing quantitative Helly
type results, one may consider the Helly number and the bound on the volume (integral).
Regarding the Helly number, on the one hand, we show in Subsection 8.6 that in our
functional case, it is at least 2d + 1, unlike in the case of convex sets, where it is 2d.
Our bound on the integral is of the right order of magnitude, as it can not be improved
beyond d%/? even for convex sets, see [21].

At the expense of obtaining a much worse bound on the integral in place of the
multiplicative constant d°¥/2, we can show a similar result with Helly number 2d + 1
instead of 3d + 2. That result will be part of a sequel to the present paper.

We note also that our proof of this functional result does not make use of the analogous
statement for convex sets.

1.1. Notation, basic terminology

We denote the Euclidean unit ball in R™ by B"™, and we write |-| for the Euclidean
norm.

We identify the hyperplane in R4+ spanned by the first d standard basis vectors with
R?. A set C C R is d-symmetric if C is symmetric about R, that is, if (2P—1)C = C,
where P : R¥1 — R+ is the orthogonal projection onto R

For a square matrix A € R4*4 and a scalar « € R, we denote by A @ o the (d + 1) x

(d+ 1) matrix
A 0
A = .
SR ( 0 oc)

For a function f : R — R and a scalar « € R, we denote the superlevel set {x € R?:
f(z) > o} by [f > «]. The epigraph of f is the set epi(f) = {(z,&) € R¥1: & > f(z)}
in R4, The Lo, norm of a function f is denoted by | f].

We will say that a function f; : R — R is below a function f, : R? — R, and denote
it as f1 < fo, if f1 is pointwise less than or equal to fs, that is, f1(z) < fa(z) for all
xr € R4,



[ G. Ivanov, M. Naszédi / Journal of Functional Analysis 282 (2022) 109441

A function ¢ : R? — RU{oo} is called conver if ((1—N)z+Ay) < (1—=A)v(z)+M)(y)
for every z,y € R% and A € [0, 1]. A function f on R? is logarithmically concave (or log-
concave for short) if f = e~% for a convex function ¢ on R%. We say that a log-concave
function f on R? is a proper log-concave function if f is upper semi-continuous and has
finite positive integral.

We will use < to denote the standard partial order on the cone of positive semi-
definite matrices, that is, we will write A < B if B — A is positive definite. We recall the
additive and the multiplicative form of Minkowski’s determinant inequality. Let A and
B be positive definite matrices of order d. Then, for any A € (0, 1),

(det (AA + (1 = N)B)Y4 > X(det A)% + (1 = \) (det B)/?, (1.2)
with equality if and only if A = ¢B for some ¢ > 0; and
det (AA+ (1 — \)B) > (det A)* - (det B)' ™, (1.3)
with equality if and only if A = B.
2. The s-volume, the s-lifting and the s-ellipsoids
2.1. Motivation for the definitions

One way to obtain a log-concave function f on R? is to fix a convex body K in
R?*¢ for some positive integer s, take the uniform measure on K (that is, the absolutely
continuous measure whose density is the characteristic function of K) and take the
density of its marginal on R¢. Conversely, it is well known that any log-concave function
is a limit of functions obtained this way. This representation of log-concave functions
was used by Artstein-Avidan, Klartag and Milman in [1], where a functional form of the
Santal6 inequality is proved.

If f is obtained this way, then it is natural to consider the largest volume ((d + s)-
dimensional) ellipsoid contained in K, and take the uniform measure on this ellipsoid.
The marginal on R? of this measure could be a candidate for the John ellipsoid function
of f. However, for a given f, the convex body K in R%** described above is not unique, if
it exists. One may take the Schwarz symmetrization of any such K about R? (defined in
Subsection 2.6) to obtain a new convex body in R%** which is now symmetric about R%
and still has the property that the density of the marginal on R¢ of the uniform measure
on it is f. Since the Schwarz symmetrization of an ellipsoid is again an ellipsoid, the John
ellipsoid of the Schwarz symmetrization of K is at least as large as the John ellipsoid of
K. In summary, the marginal on R? of the uniform measure on the John ellipsoid of the
Schwartz symmetrization of K is a function of special form, and is below f. Moreover,
it is of maximal integral among functions of this special form that are below f. This is
now a good candidate for the John function of f.
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With one more idea, we can reduce the dimension from d 4+ s to d + 1. In fact, due
to the symmetry about R?, there is no need to consider a body in R%+5. Instead, we
may consider the section of this body by the linear subspace spanned by R¢ and any
vector which is not in R?, say eq, 1. We just need to remember that the last coordinate in
R4+ represents s coordinates when it comes to computing the marginal of the uniform
distribution of a convex body in Rt

In what follows, we formalize this reasoning without referring to any (d + s)-
dimensional convex body. An advantage of the formalism that follows is that it works for
non-integer s, as well as for any proper log-concave function f, and not only for functions
obtained as the marginals of the uniform measure on some higher dimensional convex
set.

We will mostly study objects in R% and in R4+, For an easier reading, we emphasize
that a set is in R%t! by using a bar in its symbol, e.g. K.

2.2. The s-volume and its s-marginal

Fix a positive real s. For every z € R?, we denote the line in R%*! perpendicular to
R at = by £,.
Let C € R%! be a d-symmetric Borel set. The s-volume of C is defined by

<S)ﬂ(6) :/ Blength (Emﬁx)r dz.

Rd

Note that (¢) u(-) is not a measure on R4*+!. However, for any d-symmetric Borel set
C'in R, the s-marginal of C' on R? defined for any Borel set B in R? by

) marginal (6)(3):/ Blength (Emem)r dz (2.1)

is a measure on R%.
We note that for any matrix A = A® «, where A € R¥*? and o € R, any d-symmetric
set C'in R4 and any Borel set B in R¢, we have

{ (S)marginal (AC)(AB) = |det A| - |«|* - (S)marginal (C)(B), (2.2)

) (AC) = |det A| - [a|* - P (C) .
2.3. The s-lifting of a function

Let f: R? — [0,00) be a function and s > 0. The s-lifting of f is a d-symmetric set
in R4 defined by

VT ={@o erM g < (@)}
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Note the following scaling property of s-lifting: for any ~ > 0,

UOn = (1e4) 7. (2.3)

Clearly, for any Borel set B in R?,
S (S)_
[r=0u(Fnmxm).
B

(s)

that is, marginal <(S)f) is the measure on R¢ with density f.
2.4. FEllipsoids

Let A be a positive definite matrix in R%*?¢ and a € R%. They determine an ellipsoid
defined by

A(BY) +a. (2.4)

Note that A (B?) + a = {z € R: (A7'z, A7 'z) <1} +a.
We will consider d-symmetric ellipsoids in R%*! (see Section 1.1 for the definition of
d-symmetry). To describe them, we introduce the vector space

M={(Aa): ARG T =7 ger?), (2.5)
and the convex cone
E={(A®a,a) € M, A e R™ positive definite, & > 0} . (2.6)
Clearly, any d-symmetric ellipsoid in R4 is represented by
(A® )B4 q,

in a unique way. Thus, from this point on, we identify £ with the set of all d-symmetric
ellipsoids in R4*!, and in particular, we may write ()u((A @ «,a)) to refer to the s-
volume of the corresponding ellipsoid. We note that

(d+1)(d+2)

di =
im M 5

+d. (2.7)
2.5. Definition of the John s-ellipsoid of a function

Fix s > 0 and let z(f,s) denote the supremum of the s-volumes of all d-symmetric

ellipsoids E in R4 with E C (S)?. Lemma 3.2 and a standard compactness argument
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yield that this supremum is attained. We will see (Theorem 4.1) that it is attained on
a unique ellipsoid. We call this ellipsoid in R4*! the John s-ellipsoid of f and denote it
by E(f,s). We call the s-marginal of E(f,s) the John s-function of f, and denote its
density by

(S)Jf = the density of (S)marginal (E(f.s)).
As a consequence of (2.3), we note the scaling property of s-ellipsoids: for any s,y > 0,

E is the John s-ellipsoid of f if and only if (I &) (71/8)) E is the John s-ellipsoid of 7,
(2.8)
or, equivalently, (S)Jf is the John s-function of f if and only if ~ - (S)Jf is the John

s-function of ~ f. Similarly, for any affine map A : R? — R9, ) g ¢ is the John s-function
of f if and only if (S)Jf o A is the John s-function of f o A.

2.6. How the definitions described above implement the idea described in 2.1

We return to the case when s is a positive integer. We first recall a classical definition.

We regard R9*¢ as the orthogonal sum R4+* = RY @ R*, and denote by B* the unit
ball of R*. Let K be a convex body in R%+*. The Schwarz symmetrization of K about
R? is the set

K = U{’I"BS +z: z€ P(K),vol (rB®) = vol, (KN (z+R%))},

where P denotes the orthogonal projection from R4*+* onto R?, cf. [10, Section 9.2.1.1].
As a well known consequence of the Brunn—Minkowski inequality, we have that K is
a convex body in R?*¢, It is immediate from the definition that voly, K = volg,s K,
and more generally, the marginal on R? of the uniform measure on K is identical to the
marginal of the uniform measure on K.

The following claim follows from our definitions, we leave the proof to the reader.

Proposition 2.1. Let d,s > 0 be positive integers and let the function f : R — R be
the density of the marginal on R? of the uniform measure on a convex body K in R4+,
Let K denote the Schwarz symmetrization of K about R%, and let E denote the John
ellipsoid of K'. Then the marginal of the uniform measure on E is the John s-function

of f.

2.7. The height function of an ellipsoid, and formulation of our problem as functional
optimization

For any (A @ «,a) € &, we will say that « is the height of the ellipsoid E = (A ®
)B4t + a. We define the height function of E as
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fi () = {“Vl —(A Tz —a), A (w—a)), ifzeABi+a

0, otherwise.

Note that the height function of an ellipsoid is a proper log-concave function. Clearly,
the inclusion £ C (8)7 holds if and only if

fig(z +a) < fY*(z + a) for all z € ABY. (2.9)

As a closing note of the present introductory section, we rephrase our problem in a
less geometric, more analytical language.

The classical John ellipsoid can be introduced as follows. We consider the class of all
nonsingular affine images (we may call them positions) of the unit ball B¢ contained in a
given convex body K. The John ellipsoid is the (unique) largest volume element of this
family.

With the notion of height functions, it is easy to extend this approach to the setting of
log-concave function. For any s > 0, the John s-function of a proper log-concave function
f on R% is the (unique) solution to the problem

m}zlix/hs7

R
where the maximum is taken over those positions

{h(z) = - hgas1 (A" (z — a)), where a € R?, A € GL(d), « >0}
of the height function

V1-—|z[?2, ifzeB?

(2.10)
0, otherwise

ﬁBd+1 (IL‘) = {

of the unit ball B4+ which satisfy hgas1 (A7 (xz —a)) < f(z) for all 2 € R?.

It follows from the polar decomposition theorem that we may restrict the set of posi-
tions to those where A is a positive definite matrix.
3. Some basic inequalities

3.1. The s-volume of ellipsoids

We denote the s-volume of the ball B4+ of unit radius centered at the origin in R4+!
by )kgy1, and compute it using spherical coordinates.

1
kg = (S)M(BdH) = / (\/ 1- |:1c|2)S dz = volg_1 S/rd_l(\/ 1—r2)*dr= (3.1)
0

Bd
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2 T(s/2+d/2+1) © T(s/2+d/2+1)

1
volg—1.8 /t(d_Q)/2(1 g = dvolg BT (s/24+1)T(d/2) a2 L(s/2+1)
2

0

where S = bd (B?) denotes the unit sphere in R?, and I'(-) is Euler’s Gamma function.
Note that

lim (S)F;dH = voly B¢. (3.2)
s—0t

Thus, k441, as a function of s on [0, o) with )k g41 = volg B?, is a strictly decreasing
continuous function on [0, c0).
By (2.2), the s-volume of a d-symmetric ellipsoid can be expressed as

(S)u((A ® )BT + a) = ) g1 det A, (3.3)
for any (A® «,a) € €.
8.2. Bounds on f based on local behavior

Lemma 3.1. Let 1)1 and 1o be convex functions on R and fi = e™¥' and fo = e~ ¥2.
Let fo < f1 and fi(xo) = fa(zo) > 0 at some point xo in the interior of the domain
of ¥o. Assume that vy is differentiable at xo. Then fi and fo are differentiable at x,
V f1(xo) = V fa(xo) and the following holds

fi(@) < fa(mg)e (V¥2lro)e=mo)
forall x € R4,

Proof. Since fo < f1, the epigraph of 11 contains the epigraph of 12. Next, since f1(z¢) =
fa(zo) and fo(x) is differentiable at xg, we conclude that both f; and fo have finite
values and are continuous in a neighborhood of zy (see Proposition 2.2.6 of [11]).
Using the Subdifferential Maximum Rule (see Proposition 2.3.12 of [11]), we see that
1y is differentiable at xzo and Vi1 (z9) = Viba(xg), since the subdifferential of ¢ at xg
consists of the single vector Vipa(zo).
By the convexity of 11, we have

P1(x) > P1(zo) + (Vpi(z0), ® — 20) = Pa(w0) + (Vip2(z0), ® — 70)

for all z € R%, and the result follows. O

Corollary 3.1. Let f be a log-concave function on R?, and s > 0. Assume that B*! C (s)f
andw € R*1\R? is a contact point of B! and 'F, that is, w € bd (B+1)nbd ((8)7)\
R<. Then
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flz) <w'e”w{W"  for gll x € RY, (3.4)
where u is the orthogonal projection of @ onto RY and w = /1 — |ul?.
Note that since u ¢ R¢, we have w > 0.

Proof of Corollary 3.1. Applying Lemma 3.1 to the functions f; = f1/* and f, = higa+1
at x¢g = u, we obtain

Y5 (x) < we(VI-loghgapi](w)e—u)  for a]] 7 € RY.
Since for any y € int (Bd), we have

1
V [-loghan] (v) = 5V llog(1 = )] = 1=

inequality (3.4) follows. O
3.3. Compactness

We show that ellipsoids of large s-volume contained in (S)? are contained in a bounded
region of R%*!. We phrase the next lemma in a general functional language, but we will
apply it mostly for g = Az, the height function of the ball B? (see (2.10)).

Lemma 3.2 (Compactness). For any proper log-concave function f : R? — [0,00) and
any § > 0, there exist 9, p, p1,p2 > 0 with the following property. If for a proper even
log-concave function g : R — [0,00) with g(0) = 1 and (A @ «,a) € &, the function
G:RY—[0,00) given by

g(z) = ag (|47} (z — a)|)

satisfies g < f and fRd g > 4, then the following inequalities hold.

I<a<|fll and l|af <p, (3.5)
and
rg) 9)" IT< A< -1 (3.6)
fRdg (|z]) d ng

Proof. Obviously, & < || f||. To bound « from below, we fix ¥ with o < 9. Then § < 9,

and thus,
g < [ min{f(x),9}dx.
/ R{

Rd
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Since f is a non-negative function of finite integral, the last expression is less than ¢ if
¥ is sufficiently small. Thus, the leftmost inequality in (3.5) holds. Since g(a) = «, we
conclude that a € [f > 9] completing the proof of (3.5).

We proceed with inequality (3.6). Let £ be the line passing through a in the direction
of an eigenvector of A corresponding to the eigenvalue || A||. We have

[tz [a=alal [o
¢ ¢ R

On the other hand, there exists a positive constant C'y such that the integral of the
proper log-concave function f over any line is at most Cy. It follows, for example, from
the existence of constants ©,r > 0 depending only on f such that

f(z) < @

for all # € R, see [6, Lemma 2.2.1]. Thus, the rightmost relation in (3.6) holds with
p2 = 2%-
By the assumption, we have

§§/§:cxdetA~/g(|x|)dx.

Rd Rd

Let 8 be the smallest eigenvalue of A. By the previous inequality and since « € [9, || f]|],
we have

0 1

d—1
s < < .
11 f]Rd g(|lz|)de — det A < 3| Al

0<

By the rightmost relation in (3.6), the existence of p; follows. O
4. Interpolation between ellipsoids

In this section, we show that if two ellipsoids are contained in (8)7, then we can define
a third ellipsoid that is also contained in (S)T, and we give a lower bound on its s-volume.
The latter is a Brunn—Minkowski type inequality for the s-volume of ellipsoids.

After preliminaries, we present the main results of this section in Subsection 4.2,
which is followed by immediate applications, one of which is the proof of the existence
and uniqueness of the John s-ellipsoid (Theorem 4.1).

4.1. Operations on functions: Asplund sum, epi-product

Following Section 9.5 of [22], we define the Asplund sum (or sup-convolution) of two
log-concave functions f; and f, on R¢ by
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(fixfo)(x) = sup fi(z1)fa(w2),

x1+xT2=T
and the epi-product of a log-concave function f on R¢ with a scalar A > 0 by

A\ A

(@) = £(5)

Clearly,

I = WAl f2ll where f = fi % fa.

It is easy to see that for any proper log-concave function f and A € [0, 1], we have

A )+ ((T=X)x f) = f. (4.1)

As motivation for the definitions above, we describe a geometric interpretation of the
Asplund sum: analogy with the Minkowski sum of convex bodies in R?. Let 11,1y :
R¢ — R be two convex functions that attain their minimums. Then the Asplund sum of
fi=e¥" and fo = e %2 equals

fixfo=e",
where v is the function defined by taking the Minkowski sum of the epigraphs, that is,
epiy = epit + epith.
4.2. A non-linear combination of two ellipsoids

The following two lemmas are our key tools. They allow us to interpolate between
two ellipsoids.

Lemma 4.1 (Containment of the interpolated ellipsoid). Fix s1,s2, 1, B2 > 0 with £ +
Bo = 1. Let f1 and fo be two proper log-concave functions on R?, and E1, Ey be two d-
symmetric ellipsoids represented by (A1 B oy, a1) € € and (A ® xo, az) € E, respectively,
such that

(s2)

J— (31)_

E, C fi and FE3C fa. (4.2)

Define
f=B1*fi)x(Bax* fa) and s=Pis1+ [asa.

Set
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(A® «,a) = ((51141 + BaAs) @ (o ag?*2) V% Bray + 52(12) and

F= (A2 B! +a.

Then,

Proof. Fix 2 € AB? and define
r1 =AM A e, xe = As A
Clearly, ;1 € A;B? and z5 € A;B?. Thus, by (4.2) and (2.9), we have
AP @+ @) > by (@ + @) and £/ (22 + a2) > hg, (w2 +a2). (44)

By our definitions, we have that £1(z1 4+ a1) + B2(22 + a2) = = + a. Therefore, by the
definition of the Asplund sum, we have that

fle+a) > f7 (@1 + ar) f5° (22 + a),

which by (4.4), yields

B2s2

flx+a) > (hg, (z1 4 a1))?* (Tig, (z2 + az))
By the definition of the height function, and since A= 'z = Al_lscl = Az_lxg, we have

B2s2

(ﬁfl (1‘1 + al)),6’151 (hﬁz (1‘2 + ag)) =

B1s1 B2s2
(O(l\/l — <A11$1,A11$1>> (062\/1 — <A;1I2, A21CE2>) =

)51514-,3282

e (1= (AT, A7) = (ay/T= (4712, 4712)) " = (igla +a))"

Combining this with the previous inequality, we obtain inequality (2.9). This completes
the proof. O

Lemma 4.2 (Volume of the interpolated ellipsoid). Under the conditions of Lemma /.1
with s = s1 = 8o, the following inequality holds.

) u(E) > ((sm@l))ﬁl ((sm(E))ﬁg, (4.5)

with equality if and only if Ay = As.
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Proof. We set s = s1 = s5, and observe that by (3.3), inequality (4.5) is equivalent to
D kegrr (o oB?)* - det (8141 + B2As) > P rgrr (o o?)* - (det A7) (det Ag)™?
which holds if and only if
det (B1 A1 + B2As) > (det A1)P" (det Ay)™?

Finally, (4.5) and its equality condition follow from Minkowski’s determinant inequality
(1.3) and the equality condition therein. 0O

4.8. Uniqueness of the John s-ellipsoids

We start with a simple but useful observation.

Lemma 4.3 (Interpolation between translated ellipsoids). Let f be a proper log-concave
function on R%, and s > 0. Assume that the two d-symmetric ellipsoids E, and Es
contained in (8)7 are translates of each other by a vector in R%. More specifically, assume
that they are represented by (A @ o, a1) and (A ® «,az) with a1 = —as = 0Aey, where
ey is the first standard basis vector in R%, and § > 0. Then the origin centered ellipsoid

Eo=(A® o)MB where M = diag(1+6,1,...,1),
is contained in (S)T.

Proof. Since all super-level sets of f1/% are convex sets in R?, it is easy to see that for
any convex set H in R and vector v € R?, if H C (S)f and H +v C (8)7, then
conv (H U (H +v)) =H +[0,0] € *'T.

Thus, (s)f contains the “sausage-like” body

W = conv (El UEQ) = (A «x) (BdJrl + [Ailag,Aflal])
— (A (&) (X) (BdJrl -+ [7561, 561]) .

On the other hand, clearly, Eg C W completing the proof of Lemma 4.3. O

As an application of Lemmas 4.1 and 4.2, we show that in the set of d-symmetric

ellipsoids in (S)? with a fixed height, a largest s-volume d-symmetric ellipsoid is unique.

Lemma 4.4 (Uniqueness for a fized height). Let f be a proper log-concave function on
Rd, and s > 0. Then, among all d-symmetric ellipsoids of height o, 0 < & < ||fH1/q

f, there is a unique one of maximal s-volume. Additionally, if there is a d-symmetric
ellipsoid in (8)7 of height ||f||1/8, then among all d-symmetric ellipsoids of height x =

||f||1/s in (s)f, there is a unique one of maximal s-volume.
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Proof. Clearly, the maximum s-volume among d-symmetric ellipsoids of height « con-
tained in (5)7 is positive. By Lemma 3.2 applied with g = fif;., where fig> is the height
function of B2 (see (2.10)), identity (3.3) and a standard compactness argument, this
maximum is attained.

We show that such an ellipsoid is unique. Assume that E; C (8)7 and FEy C (s)f,
represented by (A; @ o, a1) € € and (A2 & «, a2) € &, are two d-symmetric ellipsoids of
the maximal s-volume.

Define a new d-symmetric ellipsoid E represented by

Al + Ay a1 + as
(TQBO(,T) cé.

Applying (4.1) with A = 1/2 and Lemma 4.1, we have E C (s)?. Next, by the choice
of the ellipsoids, we have that

Op(B) < Ou(Er) = /O u(Er) Op(Ee) = Ou(E) .

By Lemma 4.2, we have that ()p(E) > \/(S)M(Fl) (5)pu(E5), therefore equality holds.
Thus, by the equality condition in Lemma 4.2, we conclude that A; = As.

To complete the proof, we need to show that a; = as. Assume the contrary: a; # as.
By translating the origin and rotating the space R?, we may assume that a; = —ay # 0
and that A;lal = deq for some § > 0.

By Lemma 4.3, the ellipsoid Fy = (A4; @ «) MB?*! is contained in (S)?, where M =
diag(1l + 4,1,...,1). However, (S)u(EO) > (S)u(E) = (S)M(El), which contradicts the
choice of E; and E5, completing the proof of Lemma 4.4. 0O

Theorem 4.1 (Existence and uniqueness of the John s-ellipsoid). Let s > 0 and f be a
proper log-concave function on R®. Then, there exists a unique John s-ellipsoid of f.

Proof of Theorem 4.1. As in the proof of Lemma 4.4, the existence of an s-ellipsoid of
maximal s-volume follows from Lemma 3.2 applied with g = Ai{;., where Aig: is the height
function of B? (see (2.10)), identity (3.3) and a standard compactness argument.

Assume that E; C (5)7 and Ey C (S)T are two d-symmetric ellipsoids of maximal s-
volume, represented by (41 ® «1,a1) € € and (Ax @ g, az) € &, respectively. We define
a new d-symmetric ellipsoid F represented by

A A
<% ® Vo1 g, “ ;@) cE.

Applying (4.1) with A = 1/2 and Lemma 4.1, we have E C (5)7. Next, by the choice
of the ellipsoids, we also have
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O u(E) < Ou(Er) = /O u(Er) Ou(Bz) = Ou(E) .

which, combined with Lemma 4.2, yields (S)M(F) = (S)M(Fl) = (S)N(Eg) and A; = As.
This implies that o; = s, since the s-volume of E; and E5 are equal. Therefore, by
Lemma 4.4, the ellipsoids E; and Ey coincide, completing the proof of Theorem 4.1. O

4.4. Bound on the height

Recall from Section 2.5 that (¥).J ¢ denotes the density of the John s-function of f,
that is, the density of the s-marginal of the John s-ellipsoid of f. The following result is
an extension of the analogous result on the “height” of the AMJV ellipsoid [2, Theorem
1.1] to the John s-ellipsoid with a similar proof.

Lemma 4.5. Let f be a proper log-concave function on R% and s > 0. Then,

gz el (46)

We note that if the John s-ellipsoid of f is represented by (As ® «s,as) (that is, its
height is o), then (S)JfH = s,

Proof of Lemma 4.5. We define a function ¥ : (0,]|f]|"*) — R* as follows. By
Lemma 4.4, for any o € (0, || f Hl/ *), there is a unique d-symmetric ellipsoid of max-

imal s-volume among d-symmetric ellipsoids of height « in (S)f. Let this ellipsoid be
represented by (Ax @ &, ay) € E. We set U(a) = det Ay.

Claim 4.1. For any «1, xs € (0, ||f||1/s) and X € [0,1], we have

)l/d

W(odog ) > AW ()4 (1 - NP () /4 (4.7)

Proof of Claim 4.1. Let (A; ® «1,a1) and (A @ g, as) represent the d-symmetric el-

lipsoids of maximum s-volume contained in (S)? with the corresponding heights. By
Lemma 4.1 and (3.3), we have that

T(otoy ) > det (A1 + (1 — N)Ay).
Now, (4.7) follows immediately from Minkowski’s determinant inequality (1.2). O

Set ®(t) = \I/(et)l/d for all t € (—oo, %) Inequality (4.7) implies that @ is a
concave function on its domain.

Let g be the height of the John s-ellipsoid of f. Then, by (3.3), for any « in the
domain of ¥, we have that
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U(o)a® < P(xg)og-
Setting to = log &g and taking root of order d, we obtain
B(t) < D(tg)edto?

for any ¢ in the domain of ®. The expression on the right-hand side is a convex function
of ¢, while ® is a concave function. Since these functions take the same value at ¢t = ¢,
we conclude that the graph of ® lies below the tangent line to graph of ®(tg)ed (o= at
point tg. That is,

() < @(to) (1= 3t~ o).

Passing to the limit as t — W and since the values of ® are positive, we get
lo S
0 S 1-— 7g6|l|f” + ato.

Or, equivalently, tp > —4 + %. Therefore, ag > e~ %% ||f|\1/s and

e~||f||. This completes the proof of Lemma 4.5. O

(s)JfH — o >

5. John’s condition — proof of Theorem 1.1

Theorem 1.1 is an immediate consequence of the following theorem whose proof is the
topic of this section.

Theorem 5.1. Let K be a closed d-symmetric set in R¥TY, and let s > 0. Assume that
B! C K. Then the following hold.

(1) Assume that B4t is a locally mazimal s-volume ellipsoid contained in K, that is,
in some neighborhood of B4, no ellipsoid contained in K is of larger s-volume.
Then there are contact points Uy, ..., u, € bd (B‘“‘l) Nbd (F) and positive weights
ci,...,c such that

k k
Z CilU; @Uu; = S and Z ciu; =0, (51)
i=1 i=1

where w; is the orthogonal projection of w; onto R and S = diag(1,...,1,s) = [ ®s.
Moreover, such contact points and positive weights exist for some k with d+1 < k <
(d+1)(d+2)

(2) Assume that K = (s)f for a proper log-concave function f, and that there are contact
points and positive weights satisfying (5.1).
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Then B! s the unique ellipsoid of (globally) mazimum s-volume among d-
symmetric ellipsoids contained in K.

We equip M (for the definition, see (2.5)) with an inner product (that comes from
the Frobenius product on the space of matrices and the standard inner product on R%)
defined by

((A,a),(B,b)) = trace (AB) + (a,b) .

Thus, we may use the topology of M on the set & of ellipsoids in R4*1.
Denote the set of contact points by C' = bd (B“™') nbd (K), and consider

C={mouu): ueC}cM,

where u denotes the orthogonal projection of 7 onto R?.

The proof of Part (1) of Theorem 5.1 is an adaptation of the argument given in [5]
and [16] (see also [14,15,8,19] and [23, Theorem 14.5]) to the s-volume. The idea is that,
if there are no contact points and positive weights satisfying (5.1), then there is a path,
namely a line segment in the space £ of ellipsoids starting from B?*! such that the s-
volume increases along the path and the path stays in the family of ellipsoids contained
in K.

Part (2) on the other hand, needs a finer argument. The idea is that if B! is not
the global maximizer of the s-volume, then we will find a path in £ starting from B?*!
such that the s-volume increases along the path, and the path stays in the family of
ellipsoids contained in K. The difficulty is that (8)7 is not necessarily convex. Thus, this
path is not a line segment. We will, however, be able to differentiate the s-volume along
this path, and by doing so, we will show that (5,0) is separated by a hyperplane from
the points Cin M, which in turn will yield that there are no contact points and positive
weights satisfying (5.1).

First, as a standard observation, we state the relationship between (5.1) and separation
by a hyperplane of the point (S,0) from the set C in the space M.

Claim 5.1. The following assertions are equivalent.

(1) There are contact points and positive weights satisfying (5.1).
(2) There are contact points and positive weights satisfying a modified version of (5.1),
where in the second equation u; is replaced by u;.

(3) (S,0) € pos(C). )
(4) 75(S,0) € conv (C)
(5) There is no (H,h) € M with

((H,h),(S,0)) >0, and ((H,h), @@ u,u)) <0 forallu e C. (5.2)
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(6) There is no (H,h) € M with
((H,h),(S,0)) >0, and ((H,h), @®u,u)) <0 forallue C. (5.3)

Proof. We leave it to the reader to verify the equivalence of (1) and (2) and (3), as well
as that of (5) and (6).

To see that (3) is equivalent to (4), we take trace in (5.1) and notice that
trace (u ® u) = trace (#§> = 1, which shows that Zf G =d+s.

Finally, observe that the convex cone pos(C) in M does not contain the point (S,0) €
M if and only if it is separated from this point by a hyperplane through the origin. This
is what (5.2) expresses, showing that (3) is equivalent to (5), and hence, completing the
proof of Claim 5.1. O

Claim 5.2. If contact points and positive weights satisfying (5.1) exist for some k, then
they exist for some d+1 < k < W +d-+1.

Proof. Since u®wu is of rank 1, the lower bound on k is obvious. The upper bound follows
from (4) in Claim 5.1 and Carathéodory’s theorem applied in the vector space M. O

Next, we show that if (S,0) and C are separated by a hyperplane in M, then the
normal vector of that hyperplane can be chosen to be of a special form.

Claim 5.3. There is (H,h) € M satisfying (5.2) if and only if there is (Ho,h) € M
satisfying (5.2), where Hy = Hy @ 7 for some Hy € R4*4,

Proof. For any @ € R4+, let @ denote the reflection of @ about R?, that is, @’ differs
from @ only in the last coordinate, which is the opposite of the last coordinate of . Since
both K and B! are symmetric about R?, we conclude that, if 7 is in C, then so is '.

Let H, denote the matrix obtained from H by setting the first d entries of the last
row to zero, and the first d entries of the last column to zero. Thus, H is of the required
form. We show that (Ho, h) satisfies (5.2). Clearly, ((H,h), (S,0)) = ((Ho,h) , (S,0)),
and thus, the first inequality in (5.2) holds.

For the other inequality in (5.2), consider an arbitrary vector @ € C. Then the in-
equalities 0 > ((H,h),(@®u,u)) and 0 > ((H,h), (@ @, u)) hold. Note that in the
(d+1) x (d+ 1) matrix (W' @ ' +u @), the first d entries of the last row as well as of
the last column are 0. Thus,

0> ((H,h), (@ od +ue7n)/2, u)>

((Ho,h), (@ @u +u®u)/2,u)) = {((Ho,h), @®T,u)),

completing the proof of Claim 5.3. O
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In both parts of the proof of Theorem 5.1, we will consider a path in £ and compute
the derivative of the s-volume at the start of this path.

Claim 5.4. Let ¢g > 0 and let v : [0,69] — R be a continuous function whose right
derivative at 0 exists. Let H € R be an arbitrary symmetric matriz and h € R?.
Consider the path

E:]0,e0] = M; t— <T+t(He§7(t)),th). (5.4)

For sufficiently smallt, we have that E(t) is in €, and the right derivative of the s-volume
18

d

dt

S u(E®))
t=0+ (kg1

= ((H ©+(0), h), (5,0)). (5.5)

Proof. We apply (3.3),

d ©u(E@)  d )
At|gr  Okarr  db|,_gs [(1 +1y(t)) det(IthH)} _
S - e . i . _
) dt|,_o+ [d t(1+tH)] +det(Z+0- H) dt],_o+ [(1 +ty(t)) ]

trace (H) + sv(0),
which is equal to the right hand side of (5.5) completing the proof of Claim 5.4. O

Claim 5.5. If there is (H @7, h) € M satisfying (5.2), then B™! is not a locally mazimal
s-volume d-symmetric ellipsoid contained in K.

Proof. Let y(t) = v be the constant function for ¢ > 0, and consider the path (5.4).
By Claim 5.4 and (5.2), the s-volume has positive derivative at the start of this path.
Clearly, ()1 (E(t)) is differentiable on some interval [0, g9}, and hence, there is an e, > 0
such that for every 0 < t < g1, we have

Ou(ED) > O p(B). (55
Now, it suffices to establish that there is e5 > 0 such that for all 0 < ¢t < &5, we have

Et) CK. (5.7)
Set H = H @& ~. First, we fix an arbitrary contact point 7 € C. We claim that there

is an £(u) > 0 such that for every 0 < ¢ < &(u), we have (I + tH)u + th € int (B4T).
Indeed,
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((I+tH)u+th,(I+tH)u+th)y =1+2t((Hu,u)+ (h,u)) +o(t) =
1+ 2t ((H,h),(@@u,u)) + ot).

By (5.2), the latter is less than 1 for a sufficiently small positive ¢. Next, the compactness
of C yields that there is an €3 > 0 such that (T + Egﬁ)c + e3h Cint (Bd‘H) CK.

By the continuity of the map x + (I + e3H )z + e3h, there is an open neighborhood
W of C in B4*! such that (I +e3H)W + e3h C int (Bd“) C K. The latter combined
with W C int (B%™!) and with the convexity of B?*! yield that for all 0 < ¢ < €3, we
have (I 4+ tH)W +th C int (B4T!) C K.

On the other hand, the compact set B4\ W is a subset of int (7), and hence, there is
an g4 > 0 such that for all 0 < ¢ < &4, we have (I +¢H)(B™'\ W) +th C int (K). Thus,
if 0 < t < min{es, 4}, then (I +tH)(W)+th Cint (K) and (I +tH)(B4 T\ W) +th C
int (K). Thus, (5.7) holds concluding the proof of Claim 5.5. O

5.1. Proof of part (1) of Theorem 5.1

Assume that there are no contact points and positive weights satisfying (5.1). By
Claims 5.1 and 5.3, there is (H @, h) € M satisfying (5.2). Claim 5.5 yields that B4+!
is not a locally maximal s-volume ellipsoid contained in K.

The bound on k follows from Claim 5.2, completing the proof of part (1) of Theo-
rem 5.1.

5.2. Proof of part (2) of Theorem 5.1

Assume that there is an ellipsoid E, represented by (A @ «, a), contained in int <(S)7)
with ) p(E) > &) p(BH1).

Set G = A—1 € R4, and define the function ~(t) = &=L for ¢ € (0, 1], which, with
~v(0) = In «, is a continuous function on [0, 1] whose right derivative at 0 exists. Consider

the path

E:[0,1] = M; t— (7+t(G@7(t)),ta).

Clearly, this path is in &, it starts at £(0) = B?*! and ends at E(1) = E.
Claim 5.6.

0 < ((G®~(0),a),(S,0)). (5.8)
Proof. By Lemma 4.2, for every t € [0, 1], we have

OuE®)

— )

(S)Hd-&-l
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and hence, for the right derivative, we have

al  Yu(ED)

dt

im0t kap

Claim 5.4 now yields the assertion of Claim 5.6. O

We want to have strict inequality in (5.8), thus we modify G a bit. Let
H =G+ 61, with a small 6 > 0.
By Claim 5.6, we have
0 < ((H ®~(0),a),(S,0)). (5.9)

Moreover, since AB4t! +a C int <(5)7), we can fix § > 0 sufficiently small such that we
also have that

(I +H)® (1++(1))) B! +a C int ((5)7). (5.10)
Claim 5.7. Set Hy = H @ (0). Then
((Ho,a), (@@ a,u)) <0 (5.11)
for every contact pointw e C.

Proof. Fix an u € C and consider the curve ¢ : [0,1] = Rt —» u+t(H @ ~(t))u+ta
in R, By Lemma 4.1 and (5.10), the ellipsoid represented by (I,0) +t(H & ~(t),a) is
contained in (s)f for every t € [0,1], and in particular, the curve £ is contained in (S)Y.
By convexity and (5.10), we have that the projection of ¢ onto R? is a subset of the
closure of the support of f. Further, £ is a smooth curve and its tangent vector &’'(0) is

given by
§(0) = di (@+t(H & ~(t))u + ta)
t t=0+
- < (tH® (¢ =1))u+ta) = (H & no)u + a.
dt t=0+

We consider two cases as to whether @ € R? or not.

First, if w € R%, then T belongs to the boundary of the support of f. Since the support
of a log-concave function is a convex set, we conclude that w is the outer normal vector
to the support of f at u. Thus, (¢/(0),u) < 0.



G. Ivanov, M. Naszédi / Journal of Functional Analysis 282 (2022) 109441 25
Second, if @ ¢ R, then Lemma 3.1 implies that bd <(S)f) is a smooth hypersurface

in R%1 at @, whose outer unit normal vector at % is @ itself. Thus, the angle between
the tangent vector &’(0) of the curve £ and the outer normal vector of the hypersurface
bd (3)7 at @ is not acute. That is, (£'(0),u) < 0.

Hence, in both cases, we have

0> (£'(0),u) = (H®In&)u+a),u),
which is (5.11) completing the proof of Claim 5.7. O

In summary, (5.9) and Claim 5.7 show that when (FO, a) is substituted in the place
of (H,h), then (5.3) holds. Hence, by Claim 5.1, the proof of part (2) of Theorem 5.1 is
complete.

We rephrase Theorem 5.1 without any reference to lifting of a function to R**! as
follows.

Theorem 5.2. Let f be a proper log-concave function on R?, s > 0. Assume hga < f.
Then the following are equivalent:

(1) The function hya,, is the John s-function of f.
(2) There are points uy,...,uy € B? c RY and positive weights c1, ..., ci such that
(a) f(uz) = hsBdJrl(ui) for alli € [k];
(b) Z?:l C;Uj (024 U; = I,'
(¢) Sy cif o (ui) - Y5 (u;) = s;
(d) Yoi ciws =0,
where I is the d x d identity matriz.

6. Further inequalities and the limit as s tends to 0
6.1. Comparison of the s-volumes of John s-ellipsoids for distinct values of s

Lemma 6.1. Let f be a proper log-concave function on R?, and 0 < sy < sy. Then,

( So >sz < d )d. (sl)ﬁd+1 - (Sl),LL(E(fasl)) < (sl)ﬁd+1
d+ s2 d+sy)  Dkap — GDu(E(f,52)) ~ CDkarr
Proof. We start with the second inequality. We may assume that E(f,s;) = B! and

hence, its height function is g, (e) = V/1—Jz]?2 for x € B? Since 5; < so and
hE(f,sl)(x) <1, we have

s1

(M501.0)@) " < (FB(rn(@) " < f@)  forall z e B
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That is, by (2.9), B! ¢ (SZ)T, which yields (SZ)u(Bd“‘l) < ‘52),u( (f,s2)). Hence,

OB ) _ OB G
COu(Bf,52)) ~ COpBIT) oIy

Next, we prove the first inequality of the assertion of the lemma. Now, we assume that
E(f,s2) = BYL. Therefore, for any p € (0,1), we have that (o277

der pB? x [—/1 — p2,1/1 — p?]. Hence, (81)7 contains the ellipsoid E, represented by
sa/s
(o1 (vi=7)

ing p = ,/#‘22, we obtain

N Y SRV W, T
d+ s d+ s2 (52) Ky (SZ)M(B‘HI)_(52)N(E(fa82))-

6.2. Stability of the John s-ellipsoid

f contains the cylin-

' ,O) , whose sy-volume by (3.3) is 1) kgy1-p%- (1 — pz)sz/z. Choos-

Lemma 6.2. Fiz a dimension d and a positive constant C' > 0. Then there exist constants
ec > 0 and ko > 0 with the following property. Let s € (0,00), ¢ € [0,e¢] and f be
a proper log-concave function on R?, whose John s-ellipsoid E(f,s) is represented by
(A1 @ «1,0a1), and let Ey denote another ellipsoid, represented by (As @ oo, as), with

E, C (3)7. Assume that
( )u(E(f, 5))>C—¢ and () w(E(f,s) > () w(Es) > (s),u(E(f,s)) —e. (6.1)

Then

<k .
T A S keve (6.2)

H ’ lo — a3 | a1 — az
| A4 ||A2||

In this subsection, we prove Lemma 6.2.
Let E denote the ellipsoid represented by

<A1+A2@\/— a1—|—a2)

By Lemma 4.1, E C f, and, therefore, (%) ( (f, )) M(E)

Claim 6.1. There are constants eg > 0 and ko > 0 such that if the ellipsoids E(f,s) and
Es satisfy (6.1) for e € [0,e0], then

(1 —kove)Ar < Ay < (1+ kov/e)A, (6.3)
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and

det A1
- <
’ ko\/_ and 1 ko\/g = det A,

<14 koy/e.

MAH IAﬂ

Proof. By (3.3), we have

<QM(E) _ 1 det(A; + As)
\/(S)M S),U/(E2) 2d Vdet Ay det A2

Since ) p(E(f,s)) > )u(E) and by (6.1), there exist £; > 0 and k; > 0 such that the
left-hand side in the equation above is at most 1+ k; - for all € € [0, e1]. Therefore, we
have that

i det(A1 + AQ)
2d vV det A1 det A2 '

Let R be the square root of Aj, and U be the orthogonal transformation that di-
agonalizes R™!AyR~', that is, the matrix D = UR 'A;R'U7T is diagonal. Let
D = diag(Bi1,...,B4). Then for S = UR™!, we have SA;ST = I,54,ST = D. By
the multiplicativity of the determinant, inequality (6.4) is equivalent to

1+ky-e> (6.4)

d
1+k-e> H +ﬂz
1

Since 1+ 3 > 2/ for any 3 > 0, this implies that

14 5;
2VBi

for every ¢ € [d]. If we consider the above formula as a quadratic inequality in the variable

14+Fki-e>

v/Bi, then, by the quadratic formula, we obtain that there exist positive constants ko
and &2 such that the inequality

1 —kove < B <14 kov/e (6.5)

holds for all € € [0, &2].

Clearly, 32: f‘; =1/ H?Zl B; and hence, the estimate on getﬁl follows from (6.5).

On the other hand, (6.5) yields also that

(1 — kov/e)I < SALST < (14 ka/E)1.

Thus, (6.3) follows. Hence, there exist positive constants k3 and €3 such that the inequal-
ity
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[ Az
[

1’§k3\/5

holds for all € € [0,e3]. This and (6.3) yield that

[+
AL A

< (kg + k3)Ve
’ H||A1 ||A1|| ‘ 2T

H 1A |A2||
for all € € [0, min{es, £5}]. This completes the proof of Claim 6.1. O

Claim 6.2. There are constants g > 0 and ko > 0 such that if the ellipsoids E(f,s) and
Ey satisfy (6.1) for e € [0,2¢], then

o} — a5 < |[fll kov/e.
Proof. By identity (3.3) and the inequalities (6.1), we have that

(S)M(Eg) det AQ . OCQg 9
Z — = P Z 1-—
(B () detArat OB )

By this and by Claim 6.1, we get the following inequality

(1-|-k‘1\/_)0‘120‘2 (1—]"1\/_)0‘?

for all € € [0,e1], where k; and e; are some positive constants. Equivalently, we have
that

x5 — &f ocs

o S
I = A =

=
o

—k1v/e -

Hfll

L<1. O

The claim follows since i

To complete the proof of Lemma 6.2, we need to show that a; and as are close. By
translating the origin and rotating the space R¢, we may assume that a; = —ag # 0 and
that Al_lal = dey for some § > 0. Consider the origin centered d-symmetric ellipsoid

Eo= (A, @ o) MBY! | where M = diag(1+6,1,...,1).

ot —a s &l ay—a
Clearly, p(Bo) = @u(B(f,s)) (1+ 2G=e2l) > 0p(B(f,5)) (1+ LG540,
By (6.3) and Claim 6.2, we have

(1= kovE) A1 @ (1= ko II£1] V) /00 ) B! + a2 € T,

On the other hand, clearly,
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(1= kovE) A1 ® (1= ko If VE) /00 ) B! + a1 € (A © o) B -y €T,

Thus, by Lemma 4.3,

((1 — kov/E) Ay & (1 — ko || £] \/E)l/scxl) MBdH

. . . (s)
is contained in

f
By (3.3), the s-volume of this ellipsoid is

) (B 8)) (1 — (1 ke (14 e —al\ ) s
W(B(78) (= Rl 71VE) (1= ko) (14 G ) < OuEr,).

Thus, there exist constants €1, k7 > 0 such that ‘a‘ll;la”zl < k1 ||f|| /€ for any € € [0, 1]

From this and Claims 6.1 and 6.2, Lemma 6.2 follows.

6.3. The limit as s — 0

We recall from Section 1 the approach of Alonso-Gutiérrez, Gonzales Merino, Jiménez
and Villa [2].

Let f be a proper log-concave function on R?. For every 3 € (0, f|), consider the
superlevel set [f > (] of f. This is a bounded convex set with non-empty interior in
R, we take its largest volume ellipsoid, and multiply the volume of this ellipsoid by
B. As shown in [2], there is a unique Sy € [0, ||f||] such that this product is maximal.
Furthermore, 3y > e~ || f||. We call the ellipsoid E in R? obtained for this 3y the AMJV
ellipsoid.

We refer to a function of the form Bx g, where E C R? is an ellipsoid in R? and 3 > 0,
as a flat ellipsoid function. We will say that (A ® «,a) € € represents the flat ellipsoid
function ax ggay,- Clearly, any flat ellipsoid function is represented by a unique element
of £ and the AMJV ellipsoid is the maximal integral flat ellipsoid function among all
flat ellipsoid functions that are below f.

Theorem 6.1 (The AMJYV ellipsoid is the John 0-ellipsoid). Let f be a proper log-concave
function. Then there exists (A ® «,a) € € such that

(1) The function ax gy, s below f.

(2) The functions (S)Jf converge uniformly to xx agay, on the complement of any open
neighborhood of the boundary in R¢ of AB? 4+ a as s tends to 0.

(8) The function oxaBirq S the unique flat ellipsoid function of mazimal integral
among all flat ellipsoid functions that are below f.

In this subsection, we prove Theorem 6.1.
We start with the existence of the limit flat ellipsoid function in (2). Let E(f,s) be
represented by (As @ «s,as) for every s € (0,1].
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Claim 6.3. The following limits exist

lim (S)M(E(f,s)) =u>0, lim+ As=A, lim ol =a>0 and lim as=a, (6.6)

s—0t s—0 s—0t s—0t

where A is positive definite.

Proof. Since the John 1-ellipsoid exists, by (3.2) and Lemma 6.1, we have

inf (S)M(E(f, 5)) >0

s€(0,1]

Recall from Section 3.1 that ()44 as a function of s with (Vkgy; = voly B¢ is a strictly
decreasing continuous function on [0,00). Applying Lemma 3.2 with g = hg. for each

€ (0,1], where higz is the height function of B? (see (2.10)), we conclude that for
some positive constants ¥4, p, p1, p2 and all s € (0, 1], the inequalities ¥ < as < ||f|| and
las| < p, and the relation p1I < As < poI hold. Thus, there exists a sequence of positive
reals {s;}7° with Zlgrolo s; = 0 such that

(s ),u(E(f, ;) — lim sup ¢ ,u( (f,s)), Ay, = A, & - o« and a5, = a

s—0+
for a positive definite matrix A € R%*¢ « > 0 and a € R%, as i tends to co. definite.
We use J¢ to denote the flat ellipsoid function represented by (A@® «, a). Clearly, Jy is

below f. Consider the ellipsoids E represented by (A @ «!/* a) for all s € (0, 1]. Then,
E, C (S)Tf C (5)7 for every s € (0,1]. By (3.3) and (3.2), we have

5)
() — _ Rat1 +
w(Es VoldBd/Jf%/Jfabs%O

That is, hm S),u( (f,s ) = f]Rd Jydz. As an immediate consequence, Lemma 6.2 im-
plies (6. ) EI

Claim 6.4. Jy, as defined in the proof of Claim 6.3, is the unique flat ellipsoid function
that is of maximal integral among those that are below f.

Proof. Assume that there is a flat ellipsoid function Jg, represented by (Ao & g, ao),

such that fRd Jg > fRd J¢. Consider the ellipsoids F; represented by (Ag @ océ/ * ag) for
all s € (0,1]. Clearly, E, C (8)7 for every s € (0, 1]. By (3.3), “M(Eg) = VOI’ng}, Jra JTE-

By (3.2) and by the definition of the John s-ellipsoid, we have that

/JE = Jim (E ) < lim “u(B(f,5)) = /Jf-

Rd Rd
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Thus, for every positive integer i, there is s; > 0 such that
o (= R 1 2
On(B) 2 Ou(Bs) - ;= [1-3
Rd

for all s € (0, s;]. Finally, by Lemma 6.2, we have that lim Ay = A, lim oy = « and
$1,—>0+ 81',—>0+

lim ap = a. That is, Jy and Jg coincide. O
Si*)0+

Theorem 6.1 is an immediate consequence of Claims 6.3 and 6.4.
6.4. Integral ratio

For any s € [0, 00) and positive integer d, it is reasonable to define the s-integral ratio

of f:R?— [0,00) by
1/d
(S)I.rat(f) = (%) .
Rd

Corollary 1.3 of [2] states that there exists © > 0 such that
O7.rat(f) < ©V4d,

for any proper log-concave function f : R% — [0, 00) and any positive integer d.
Using Lemma 6.1 and Theorem 6.1, we obtain the following.

Corollary 6.1. Fiz s € [0,00). Then there exists ©4 such that for any positive integer d
and any proper log-concave function f : R? — [0, 00), the following inequality holds.

O rat(f) < B(s/2+1,d/2)" 4 - OLrat(f) < ©,V4d,
where B(-,-) denotes Euler’s Beta function.

7. Large s behavior

We will say that a Gaussian density on R? defined by z — ae= (4™ (@=a),A™ (z—a))
is represented by (A @ a,a) € . Clearly, any Gaussian density is represented by a
unique element of £. We will denote the Gaussian density represented by (A @ «,a) as
G[(A @ a,a)]. If a Gaussian density is represented by (A @ «,a) € &, we will call « its
height. We have that

/ GHA® & a)] = an®/? det A. (7.1)
Rd
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We will need the following property of Euler’s Gamma function (see [3, 6.1.46])

lim Dls+t) tl)st"‘_tl =1
5—00 F(S + tg)

Using this in (3.1), we obtain

/2
lim ) kgyr - (f) = /2, (7.2)

s—»00 2

7.1. Existence of a maximal Gaussian

Theorem 7.1. Let f : R? — [0, 00) be a proper log-concave function. If there is a Gaussian
density below f, then there exists a Gaussian density below f of mazximal integral. All
Gaussian densities of mazximal integral below f are translates of each other.

Proof of Theorem 7.1. The proof mostly repeats the argument in Section 4.

t

Lemma 3.2 with g = e~ 2, t € R, implies that if there exists a Gaussian density below

f, then there is a Gaussian density of maximal integral among those that are below f.
Next, we show that this Gaussian density of maximal integral is unique up to translation.
First, we need the following extension of Lemmas 4.1 and 4.2.

Lemma 7.1 (Interpolation between Gaussians). Fiz By, 82 > 0 with $1 + P2 = 1. Let fy
and fo be two proper log-concave functions on RY, and G, Gy be two Gaussian densities
represented by (A1 @ a1,a1) € € and (As ® &g, a9) € &, respectively, such that G; < f1
and Go < fo. With the operation introduced in Section /.1, define

= (Br* f1) * (B2 * f2),

and set

(A® x,a) = ((51A1 + [2A2) & “11“5275101 + 5202)~

Then, G[(A® «,a)] < f and the following inequality holds

B B2
R{ GlA® a,a)] > (R/ e ([R/ Gy| (7.3)

with equality if and only if A1 = As.
Proof. Fix z € R¢ and define 1, zo by

1 — a1 = AlA_l(Jf — G;), X9 — Ay = AQA_l(.r — a). (74)
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Since G1 < f1,Go < fo, we have

fi(zr) > oc1e_<A;1(xl_al)’Afl(xl_al)> and  fa(z2) > ocze_<A51(xz_a2)’A;1(x2_a2)>.
(7.5)
Since pfi1x1 + fex2 = x and by the definition of the Asplund sum, we have that

f(@) = f (@) f5* (w2).
Combining this with inequalities (7.5) and (7.4), we obtain

flz) > (xﬁl oc526*51<A1_1(301*al)’Al_l(301*al)>e*52<Az_l(902*‘12)’142_1(362*112)>

(xﬁl ‘Xﬁze—(ﬂl +B82) (A7 (z—a), A7 (z—a)) _ ‘XBI 0(’826_< 71(x—a),A71(x—a)>.

Thus, G is below f.
We proceed with showing (7.3). Substituting (7.1), inequality (7.3) takes the form

m 26 ol . det (B Ay + BaAz) > 720 o5? - (det A)7 (det Ag)”
or, equivalently,
det (B1A; + BaAz) > (det Ay)™* (det Ap)™

Thus, inequality (7.3) and its equality condition follow from Minkowski’s determinant in-
equality (1.3) and the equality condition therein, completing the proof of Lemma 7.1. O

Let Gy, represented by (4; ® 1, a1), be a maximal integral Gaussian density that is
below f. Assume that there is another Gaussian density G, represented by (As® g, as),
below f with the same integral as GG;. Consider the Gaussian density G represented by

<A1 + Ay

OV +a2>e<€.

By (4.1) and Lemma 7.1, we have that G is below f. Next, by the choice of the Gaussian
densities, we also have

/GS/Glz /Gl/GQZ/G27
R R¢ RY R R

which, combined with Lemma 7.1, yields

/G /Gl /GQ, and Al A2
Rd

Combined with (7.1), it implies &; = ot2. This completes the proof of Theorem 7.1. O
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7.2. Uniqueness does not hold for s = 0o

In this subsection, first, we show that it is possible that two Gaussian densities G[(A®
®,a1)] and G[(A @ «,az)] with a1 # as below a proper log-concave function f are of
maximal integral. Next in Proposition 7.1, we show that uniqueness holds for a certain
important class of log-concave functions.

Consider the Asplund sum

f=GlA® aa)] %Xk,

where (A® «,a) € € and K is a compact convex set in R?. We claim that the set of the
maximal integral Gaussian densities that are below f is

{Gl(A® ,am)]: am €a+ K}

To see this, one observes that if G[(A’ @ «,a’)] < f, then A’ < A. The claim now follows
from (7.1).

Uniqueness of the maximal Gaussian density below f holds for an important class of
log-concave functions.

Proposition 7.1. Let K C R? be a compact convex set containing the origin in the inte-
rior, and let ||-|| x denote the gauge function of K, that is, ||z||,, = inf{A > 0: z € AK}.
Let A(Bd) be the largest volume origin centered ellipsoid contained in K, where A is
a positive definite matriz. Then the Gaussian density represented by (A @ 1,0) is the
unique mazximal integral Gaussian density below the log-concave function e~ llellk .

Proof. Let (A’ @ «,a’) € & be such that G[(4’ @ «',a’)] < f. First, we show that
A'B? C K. Indeed, we have

()M —d),(A) e —a)) = In() = |l

for every 2 € RZ. Suppose for a contradiction that there is a y € A’ (int (Bd)) \ K.
Consider z = ¥y, and substitute into the previous inequality. We obtain

92|(A) T2 = 20 ((A) 71, (A) ) + 2](A) TN = () > 92 [l > 92,

As |[(4)~'y| < 1, letting ¥ tend to infinity, we obtain a contradiction. Thus, A'B¢ C K.
Hence, det(A’) < det(A). On the other hand, «’ < ||f|| = 1. The Proposition now
easily follows from (7.1). O

7.8. Approximation of a largest Gaussian by John s-ellipsoids

Theorem 7.2. Let f : R? — [0,00) be a proper log-concave function. Then the following
hold.
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(1) There is a Gaussian density below f if and only if limsup (S)M(F(f, s)) > 0.
S§—00
(2) If there is a Gaussian density below f, then ILm (S),LL(E(f, s)) = limsup (S)H(E(f, s))
§—00 §—00

and there is a sequence {s;}3° of positive reals with lim s; = co such that the John
1—> 00

s-functions (S")Jf converge uniformly to a Gaussian density which is of mazimal
integral among those Gaussian densities that are below f.

(3) If there is a Gaussian density below f, then any Gaussian density which is of mazimal
integral among those Gaussian densities that are below f is of height at least || f|| e~?.

In the rest of this subsection, we prove Theorem 7.2.
We start by describing the limit of s-marginals of origin centered ellipsoids.

Lemma 7.2. Let {s;}7° be a sequence of positive reals with lim s; = oo, let {4;}3° be
1—00

HQ?H = A, where A is positive
i

a sequence of positive definite operators such that lim
11— 00

definite, and the ellipsoids E;, represented by (A; ©1,0), satisfy lim (Sf‘)u(Ei) =pu>0.
71— 00

Then, the s;-th power of the height functions (ﬁE_)Si converge uniformly to the Gaussian
density G[(As ® 1,0)], where

Ao = % (dele)l/dA

Proof of Lemma 7.2. The limit H’:—?H — A as i — oo yields two properties,

det A;
lim 20— det 4, (7.6)
oo [l Al
and
lim [|A;]|A; = AL (7.7)
71— 00

By (3.3) and (7.2), we obtain

_ \ —d/2
p= lim (Si),u(E,-) = lim (Si)nd_,_l det A; = 79/? lim (%) det A;.

i—00 1—00 i—»00

Combining this with (7.6), we get

;1 det A\ /¢
5 w<e ) . (7.8)

lim — 5 =

We obtain that lim ||A4;|| = oo, and hence by (7.7), the smallest eigenvalue of A;
1—00
tends to infinity.
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It follows that for any fixed p > 0 and sufficiently large 4, we have pB? C A;B¢, and
hence,

) —1 ) —1 HA1H2%W
1A || A7, || Aql| A x>>

hg (x Y= (1- (AT 2, AT e si/2 —< 5
()" = (1= (a7 a7 )= 1 =l

for all = € pB.
By (7.8) and (7.7), for any 1 > ¢ > 0, there exists i, such that the inequalities

< (hg, (@)™

( (14e) (A" A—1x>> 4012 (422 ) 140
1— ’
14:>

hg (2))7 <
)= 4

hold for all z € pB? and for all i > i.. Since lim ||A;|| = oo, this implies that the sequence
11— 00

- detA>2/d<A—1wyA—lx>

of functions { (fig, (w))s}zl converges uniformly to g(z) =e ( z

pB?. Since sup,cga\,pa 9(x) tends to zero as p — oo and lim Ipu(E;) = [pa g, we
71— 00

on

conclude that {(ﬁE (a:))sl} is uniformly convergent on R? This completes the proof of
Lemma 7.2. O

Lemma 7.3. Let G be a Gaussian density. Then, the John s-functions ) Je converge
uniformly to G on R? as s — oo.

In order to prove Lemma 7.3, we assume that G(x) = e~lel’/2, First, we relax the
condition and prove that it suffices to approximate G by any sequence of suitable height
functions of d-ellipsoids.

Claim 7.1. If there is a function c: [1,00) — [1,00) such that

§— 00

. s .
im [ Aes)1e1,0) = / G = (2m)"?, (7.9)
Rd Rd

and h?c(s)]@l,O) < G for all s > 1, then the functions e Ja converge uniformly to G on
R? as s — o0o.

Proof of Claim 7.1. By Theorem 4.1, the John s-function () J & of G exists and is unique
for any positive s. By symmetry, we see that () J¢ is of the form ﬁfﬂ(s)j@“(s) 0y where
B: [1,00) = (0,00) and o : [1,00) — (0,1). By (7.9), we obtain that
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lim [ ®Jg :/G.
S5—> 00
Rd R4

This implies that «(s) — 1 as s — oc. Hence, the functions *)Jg = A5 1@ a(s),0)
converge uniformly to the same function as the functions ﬁfﬂ(s)]@l 0) 8 § — 00 (if the
latter sequence converges). However, by Lemma 7.2, the functions hfﬁ(s) I@1,0) Converge
uniformly to G as s — oco. O

It is not hard to find a suitable function ¢(s).

Claim 7.2. Let c(s) = \/s. Then, h{, a1y < G for all s 2 1, and identity (7.9) holds.
Proof of Claim 7.2. Identity (7.9) is an immediate consequence of (3.3) and (7.2).

Inequality ﬁfc(s) re1,0) < G is purely technical. By a routine calculation, for any x €
R, we have

|£L'|2 s/2
- .
lm At 1,0y ()= lim <1 - T) = G(x).
As is easily seen, i, g1 0)(2) Is an increasing function of s € [1,00) for any fixed
reRL O

Lemma 7.3 follows from Claims 7.1 and 7.2.

Lemma 7.4. If limsup ¥y (E(f,s)) > 0, then there exists a sequence {s;}3° of positive
S5— 00

reals with lim s; = oo such that the John s-functions (si)Jf converge uniformly on R?
1— 00

to a Gaussian density, which we denote by G[(Acc ® Koo, Goo)], which is below f and is
of maximal integral among Gaussian densities below f. Moreover, we have

S§—00

/ Gl(Aso ® ttoe, a00)] = limsup @ u(B(f, 5)) , and oo € [~ 111, £
R4

In the proof of Lemma 7.4, we will need the following immediate consequence of
Lemma 3.2 and (7.2).

Claim 7.3. Let f : R? — [0, 00) be a proper log-concave function, and 6, so > 0. Then there
exist p1, pa > 0 such that for any s > sq, if E = (A® «)B! +a, where (A® «,a) € &,
is a d-symmetric ellipsoid in R with E C (S)T and (S)u(F) > 9, then we have

A
pll < % < pz[. (710)
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Proof of Lemma 7.4. Let (A, @ s, a,) represent E(f,s). By Lemma 4.5, we have that
<S>JfH belongs to the interval [e= |[f|l, ]l Thus, [f > e~ ||f[l] 2 {as}sso. Since f

is a proper log-concave function, the set [f > e~% | f|]] is a bounded subset of R?, and

thus, so is {as}s>0. Thus, there exists a sequence {s;}$° with lim s; = oo such that
12— 00

)ﬂ(E(faSi))%hmsup () w(E(f,5)), As, A

§—00 ||A81

(7.11)

(Si)JfH — Xoo >0 and as, = aco

for some positive semidefinite matrix A € R¥? an as > 0 and as, € R?, as i tends to
0.
Claim 7.3 implies that A is positive definite. Hence by (7.11), we may apply Lemma 7.2

o0

to obtain that the sequence {(Si).] f} converges uniformly to the Gaussian density
i=1

G[(Aoo ® Goo, Go)], Where

1 limsup )i (E(f, 5)) i

§—00 A

Ay = —
< r det A

Clearly, G[(Aco ® %o, @o0)] < f and, by the uniform convergence,

lim ) (B(f,5:)) = timsup @ p(E(1,9) = [ Gl ® o))

100 §—00
R4

The latter implies that there is no Gaussian density below f with the integral strictly
greater than [p, G[(Asc & Koo, @oo)], since, by Lemma 7.3, any Gaussian density G’ is
the limit of ) Jg as s — 0o. O

Proof of Theorem 7.2. First, assume that there is a Gaussian density G below f. Then,
by Lemma 7.3,

lim sup S),u( (f, )) :limsup/(s)Jf Zlimsup/(s)JG :/G>0.

S§— 00 S5— 00 Ra S§— 00 Ra Ra
The converse in part (1) follows from Lemma 7.4.

To prove part (2), assume again that there is a Gaussian density below f. By part
(1), we may apply Lemma 7.4 and obtain a Gaussian density G[(Ac @ Koo, Goo)] With
all the desired properties. We need to verify only that the limit in part (2) exists and is
equal to the limsup. We have by Lemma 7.3 that

(S)M(E(fa 3)) > (S)M(E(G[(Aoo D Koo, U'OO)]7 8))
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22 [ 64 © s oc)] = linsup D (E(S.5)).
S5— 00
Rd
and hence, the limit Sli)rgo (S)M(E(f, s)) exists completing the proof of part (2).

Part (3) follows immediately from Lemma 7.4 and Theorem 7.1. O
8. The Helly type result — proof of Theorem 1.2

In this section, we prove Theorem 1.2.
8.1. Assumption: the functions are supported on R¢

We claim that we may assume that the support of each f; is R?. Indeed, any log-
concave function can be approximated in the Li-norm by log-concave functions whose
support is R?. Recall that f, denotes the pointwise minimum of functions {f;};c, for
o C [n]. We may approximate each function so that the f, are also all well approximated.
One way to achieve this is to take the Asplund sum f; x (e_amz) for a sufficiently large
d > 0 (see Section 4.1).

8.2. Assumption: John position

Consider the s-lifting of our functions with s = 1. Clearly, the s-lifting of a pointwise
minimum of a family of functions is the intersection of the s-liftings of the functions.

From our assumption in Subsection 8.1, it follows that fRd f > 0. By applying a linear
transformation on R¢, we may assume that, with s = 1, the largest s-volume ellipsoid
in the s-lifting (1)? of fis B¥! ¢ (1)?.

By Theorem 5.1, there are contact points %y, ...,ur € bd (Bd‘H) N bd <(1)7), and
positive weights c1, ..., ¢x satisfying (5.1) with s = 1. For each j € [k], we denote by u,
the orthogonal projection of the contact point @; onto R< and by wj = m

8.3. Reduction of the problem to finding P and n

Claim 8.1. With the assumptions in Subsections 8.1 and 8.2, we can find a set of in-

dices n € (<2[§]+1) and an origin-symmetric convex body P in R® with the following two

properties.
voly P < 84 d%(d +2)* (vol, BY)? (8.1)
and
llz|| p < maX{ (x,uj): je n} for every x € RY, (8.2)

where ||-|| p is the gauge function of P, that is, ||z| p = inf{\ > 0: = € AP}.
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We will prove Claim 8.1 in Subsection 8.5.
In the present subsection, we show that Claim 8.1 yields the existence of the desired

index set o € (<?EZ]+2) that satisfies (1.1).

The polar of a set K in R™ is defined by K° = {p e R": (y,p) <1forall y € K}.
Set T'= {u; : j €n}. It is easy to see that (8.2) is equivalent to

T° C P. (8.3)
Notice that
for any = € R%\ T°, there is j € 5 such that (uj,z —u;) > 0. (8.4)

We will split the integral in (1.1) into two parts: the integral on R?\ T° and the
integral on T°.
First, we find a set oy of indices in [n] that will help us bound the integral in (1.1) on
R\ T°.
Fix a j € n. Since u; € bd ((1)7), there is an index i(j) € [n] such that w; €
d (mﬁ-(j)). Let o1 be the set of these indices, that is, o1 = {i(j) : j € n}.
By (3.4), for each j € n, we have

—ﬁ(uj,x—uj) —;lz-(uj,m—uj>
figy(x) <wje <e i (8.5)

for all x € R<.

Next, we find a set o2 of indices in [n] that will help us bound the integral in (1.1) on
T°.

It is easy to see that there is a oy € (<[(Z]_1) such that ||f|| = || fs,||- Indeed, for any
i € [n], consider the following convex set in R?: [f; > || f|]]. By the definition of f, the
intersection of these n convex sets in R? is empty. Helly’s theorem yields the existence
of os.

We combine the two index sets: let ¢ = 01 U 05. Clearly, o is of size at most 3d + 2.
We need to show that o satisfies (1.1).

Note that by (4.6) and Assumption 8.2, we have || f,,|| = ||f|| < e. Hence,

/fo /Hfa||+ [ .= /e+ [ s " etvola P+ |

Rd\To Rd\To Rd\To

Next, we bound the second summand using the tail bound (8.5).

(8.5) 1 ' (8.4)
/ for < / exp | — max F(uj,x—uj): JjEN dr <
J
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/ exp (—max {(uj,x —u;): jen}) de<e / exp (—max {(uj,z) : j€n}) dz.
RI\T® R4\ T®
By property (8.2), the latter is at most
e / exp (— ||lz]|p) dz < e/exp (= |lz||p) dz = e - d!volg P.
RI\T® R
Hence,
/fa < (e +e-d)volg P < 10-d* " vol, P.
Rd

Using, the fact that

volg B < dvolyp Bt < d / 1,

R4

and inequality (8.1) here, we obtain
/fa < 80-4%- d*(d 4 2)%voly B? - /f.
R4 Rd

This inequality directly implies inequality (1.1) in the case d = 1. Consider d > 2. Then,
since d + 2 < 2d and vol; B? < 1Odd_d/27 we conclude that

/f[, §80-80d-d5d/2/f§ (100d)5d/2/f,
R4 R4 Rd

completing the proof of inequality (1.1).
8.4. The Dvoretzky—Rogers lemma
One key tool in proving Claim 8.1 is the Dvoretzky—Rogers lemma [13].

Lemma 8.1 (Dvoretzky—Rogers lemma). Assume that the points @y, ..., u, € bd (Bd“),
satisfy (5.1) for s = 1 with some positive weights c1,...,c,. Then there is a sequence
Jiy- -y Jdt1 of d+ 1 distinct indices in [k] such that

d—t+2

] forallt=2,...,d+ 1,

dist (ﬂjt,span{ﬂjl Yo ,ﬂjt_l}) >

where dist denotes the shortest Fuclidean distance between a vector and a subspace.
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It follows immediately that the determinant of the (d 4+ 1) x (d + 1) matrix with
columns Uy, ,...u;,,, is at least

d+1)!

\det [a;,,...7;,,,]| > @+ D@

(8.6)

8.5. Finding P and n

In this subsection, we prove Claim 8.1, that is, we show that with the assumptions in
Subsections 8.1 and 8.2, there is an origin symmetric convex body P and a set of indices
ne (<2[§]+1) satisfying (8.1) and (8.2). Once it is shown, by Subsection 8.3, the proof of
Theorem 1.2 is complete.

The proof in this section follows very closely the proof of the main result in [21] as

refined by Brazitikos in [9].

Let n1 € (d[f_]l) be the set of d + 1 indices in [k] given by Lemma 8.1, and let A
be the simplex A = conv ({@; : j € 1} U{0}) in R4, Let 7 = 2.75111 % denote the

centroid of A, and P; denote the intersection of A and its reflection about z, that is,
P, = AN(2zZ—A), a polytope which is centrally symmetric about z. It is well known [20,
Corollary 3] (see also [4, Section 4.3.5]), that volg,1 P > 2~ (@D ol A, and hence,
by (8.6), we have

)|det[ﬂj 1 j € 771“ 1
(d+1)! T 2441, /(d+ 1)!(d 4 1)(d+1)/2

volg41 Pl > 27(d+1

Let P; denote the orthogonal projection of P, onto R%. Since P; C P; x [-1,1], we
have that

1

1Py > .
R N CESV (T S G

(8.7)

Moreover, P; is symmetric about the orthogonal projection z of Z onto R?.
Let Q denote the convex hull of the contact points, Q = conv (bd ((S)T) Nbd (Bd+1)) ,

and @Q denote the orthogonal projection of Q onto R%. As a well known consequence of

(5.1) for s =1 [5], we have 71xB**! C Q, and hence, 717B* C Q.

Let £ be the ray in R? emanating from the origin in the direction of the vector —z,
and let y be the point of intersection of ¢ with the boundary (in R?) of Q, that is,

{y} =£Nbd(Q). Now, ﬁBd C @ yields that |y| > 1/(d + 1).
lyl

We apply a contraction with center y and ratio A = o—]

tope P5. Clearly, P, is a convex polytope in R? which is symmetric about the origin.

on P; to obtain the poly-

Furthermore,

|yl lyl 1
= > > . 8.8
ly—=z] — 1+ [yl — d+2 (85)
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Let P be the polar P = Py of P, taken in R%. By the Santalé inequality [16, Theorem
9.5], we obtain

(vol,BY)”  (vol;BY)”
vola P < o5 = ol Py

which, by (8.7), the inequality d + 1 < 2d and (8.8), yields that P satisfies (8.1).
To complete the proof, we need to find 7 € (SQ[Z]JA) such that P and 7 satisfy (8.2).
Since y is on bd (Q), by Carathéodory’s theorem, y is in the convex hull of some subset
of at most d vertices of Q). Let this subset be {u; : j € 12}, where n, € (gﬂ)
We set n = 11 Ung, and claim that P and 7 satisfy (8.2). -

Indeed, since P, C conv ({u; : j € m}U{y}) and y € conv ({u; : j € n2}), we have
P, Cconv({u;: jen}).
Taking the polar of both sides in R, we obtain P D {u; : j € n}°, which is equivalent
to (8.2).
Thus, P and 7 satisfy (8.1) and (8.2), and hence, the proof of Theorem 1.2 is complete.

8.6. Lower bound on the Helly number

The number of functions selected in Theorem 1.2 is 3d + 2. In this subsection, we
show that it cannot be decreased to 2d. In fact, for any dimension d and any A > 0, we

give an example of 2d + 1 log-concave functions fi, ..., faat1 such that [ Jin) = 2¢ but
for any I € ([Qg;}]), the integral is [ f; > A. Our example is a simple extension of the

standard one (the 2d supporting half-spaces of a cube) for convex sets.
Set

0, ift<o0
w(t)Z{A

e®, otherwise.

Clearly, ¢ is upper semi-continuous. Let ey, ..., eq denote the standard basis in R?, and
for each i € [d], define the functions f;(x) = p((e;,z + €;)) and fayi = p(— (e;,  — €;)),
and let foy41 = 1. These functions are proper log-concave functions. The bounds on the
integrals are easy.
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