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Abstract
Wepresent algorithms for the (1+ε)-approximate version of the closest vector problem
for certain norms. The currently fastest algorithm (Dadush and Kun 2016) for general
norms in dimension n has running time of 2O(n)(1/ε)n . We improve this substantially
in the following two cases. First, for �p-norms with p > 2 (resp. p ∈ [1, 2]) fixed, we
present an algorithmwith a running timeof 2O(n)(1+1/ε)n/2 (resp. 2O(n)(1+1/ε)n/p).
This result is based on a geometric covering problem, that was introduced in the
context of CVP by Eisenbrand et al.: How many convex bodies are needed to cover
the ball of the norm such that, if scaled by factor 2 around their centroids, each one is
contained in the (1+ ε)-scaled homothet of the norm ball? We provide upper bounds
for this (2, ε)-covering number by exploiting the modulus of smoothness of the �p-
balls. Applying a covering scheme, we can boost any 2-approximation algorithm for
CVP to a (1+ ε)-approximation algorithm with the improved run time, either using a
straightforward sampling routine or using the deterministic algorithmofDadush for the
construction of an epsilon net. Second, we consider polyhedral and zonotopal norms.
For centrally symmetric polytopes (resp. zonotopes) in R

n with O(n) facets (resp.
generated by O(n) line segments), we provide a deterministic O(log2(2 + 1/ε))O(n)

time algorithm. This generalizes the result of Eisenbrand et al. which applies to the
�∞-norm. Finally, we establish a connection between the modulus of smoothness and
lattice sparsification. As a consequence, using the enumeration and sparsification tools
developped by Dadush, Kun, Peikert, and Vempala, we present a simple alternative to
the boosting procedure with the same time and space requirement for �p norms. This
connection might be of independent interest.
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1 Introduction

The closest vector problem (CVP) is an important algorithmic problem in the geometry
of numbers. Given a rational lattice �(A) = {Ax : x ∈ Z

n}, with A ∈ Q
n×n and a

target vector t ∈ Q
n , the task is to find a close vector in L to t with respect to a given

norm. Specifically, given some norm ‖ · ‖K , a (1 + ε)-approximation to the closest
vector problem, (1+ ε)-CVPK , is to find a lattice vector whose distance to the target
vector is at most 1+ε times the minimal distance of the target to the lattice. Whenever
K is the unit ball of the space �np for some 1 ≤ p ≤ ∞, we denote the problem by
(1+ε)-CVPp. The closely related shortest vector problem (SVP) asks for the shortest
non-zero lattice vector in a given lattice. It was shown that CVP is NP-hard for any �p
norm [18] and even NP-hard to approximate up to almost polynomial factors, [7, 15].

The first algorithm to solve integer programming and, in particular, exact CVP∞
was given by Lenstra [22] with a running time of 2O(n2). His algorithm connects the
two fields of geometry of numbers and integer programming. Kannan [21] presented
an algorithm for exact CVP (and SVP) with a running time of nO(n) and polynomial
space. Subsequent works improve on the constant in the exponent but improving the
running time of nO(n) to single exponential in n remained an open problem. After
Kannan’s result, it took almost 15 years until Ajtai, Kumar, and Sivakumar presented
a randomized algorithm for SVP2 with time and space 2O(n) and (1 + ε)-CVP2 with
time and space 2(1+1/ε)n [5, 6]. Subsequently, Blömer and Naewe [9] extended the
randomized sieving algorithm of Ajtai et al. to solve (1 + ε)-CVPp for all p in time
O(1+1/ε)2n and spaceO(1+1/ε)n , see also [3, 27]. For p = ∞, Eisenbrand et al. [17]
then boosted the algorithm of Blömer and Naewe by showing that 2O(n) log(2+1/ε)n

calls to a 2-CVP∞ solver suffice to solve (1 + ε)-CVP∞ implying a running time
of O (log(2 + 1/ε))n and space requirement 2O(n). Dadush [11] extended the Ajtai–
Kumar–Sivakumar sieve to solve (1 + ε)-CVP in any norm with a running time of
O (1 + 1/ε)2n and space O (1 + 1/ε)n . The first single exponential deterministic and
exact solver forCVP2 waspresentedbyMicciancio andVoulgaris [25]. Their algorithm
needs to store the up to 2(2n − 1) facets of the Voronoi cell of the lattice. Recently
in [20], Hunkenschröder, Reuland, and Schymura show that this can be avoided and
do a first step towards a polynomial space algorithm for CVP2. The currently fastest
algorithms for exact CVP2 and SVP2 use discrete Gaussian sampling and need time
and space 2n+o(n), see [2, 4]. Despite this progress for the �2 norm, for general norms,
only the randomized sieving approach seemed available to solve CVP. Using the
elegant idea of lattice sparsification, Dadush and Kun [13] presented a deterministic
algorithm solving (1+ ε)-CVP for any norm in time 2O(n)(1+ 1/ε)n and with space
requirement 2n poly(n)—reducing the dependence on 1/ε in the running time and
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removing the dependence on 1/ε in the space requirement altogether compared with
earlier randomized sieving approaches.

Our Contribution

In order to devise more efficient algorithms for CVPK (and, in particular CVPp), we
study the problem of how many arbitrarily chosen convex bodies are needed to cover
some given convex body K , such that when scaled around their respective centroids
by a factor 2, each one is contained in (1 + ε)K . We refer to such a covering as a
(2, ε)-covering for K , and the smallest size of such a covering as the (2, ε)-covering
number of K .

A key quantity, well studied in the theory of Banach spaces, is the modulus of
smoothness of a convex body K , which expresses how well the boundary of K is
approximated locally by support hyperplanes, see Definition 3.1.

In this paper the big oh notation, O( · ), stands for a universalmultiplicative constant
independent of every other quantity. In particular, we make the dependence on ε and
n explicit.

• By a standard argument, we show that for any centrally symmetric convex body, a
(2, ε)-covering is always possible using 2O(n)(1+ 1/ε)n convex bodies. Then, in
Theorem 2.7, we establish a lower bound of 2−O(n)(1+ 1/ε)n/2 for the Euclidean
unit ball.

• For centrally symmetric polytopes (resp. zonotopes) with m facets (resp. m gen-
erating line segments), we provide an explicit (2, ε)-covering using at most
O (log(2 + 1/ε))m convex bodies, see Propositions 2.5 and 2.6. These are rel-
atively straightforward generalizations of the method of [17] where the cube is
considered.

• Our first main result is Theorem 3.2, where it is shown that a bound on themodulus
of smoothness of K yields aboundon its (2, ε)-covering number.More specifically,
if K has modulus of smoothness bounded above by Cτ q , then we find a (2, ε)-
covering of K using CO(n)(1 + 1/ε)n/q convex bodies. In particular, we obtain
a (2, ε)-covering for �p balls using 2O(n)(1 + 1/ε)n/2 for p ≥ 2 and 2O(n)(1 +
1/ε)n/p for p ∈ [1, 2], matching the lower bound (Theorem 2.7) for the Euclidean
unit ball.

• Our second main result is Theorem 4.2, which shows how a good algorithmic
bound on the (2, ε)-covering number yields an efficient (1+ε)-CVP algorithm. In
particular, for norms induced by centrally symmetric polytopes (resp. zonotopes)
with m facets (resp. generating line segments), the above explicit (2, ε)-covering
boosts any 2-CVP solver for general norms to yield a deterministic (1 + ε)-CVP
algorithm. This yields an algorithm with running time O (log(2 + 1/ε))m and
2n poly(n) space, see Corollary 4.3.

• For a centrally symmetric convex body K with a certain modulus of smoothness,
to avoid the space requirement to depend on the number of convex bodies in the
(2, ε)-covering of K , we show how to generate a local (2, ε)-covering on the
fly. This yields a simple, randomized (1 + ε)-CVPp algorithm for 1 ≤ p ≤ ∞
with a running time of O (1 + 1/ε)n/2 for p ≥ 2, and 2O(n)(1 + 1/ε)n/p for
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p ∈ [1, 2], using 2n poly(n) space. Alternatively, we may use an algorithm of
Dadush [12] to explicitly enumerate the covering using polynomial space only,
derandomizing the algorithm. This is our third main result, see Theorem 4.6.
Compared to earlier results in the literature, for instance [9, 13], we improve on
the previous best running times of O (1 + 1/ε)n for �p norms. Furthermore, our
approach immediately generalizes to non-symmetric norms andwe obtain a simple
CVP solver for γ -symmetric norms with running time (1 + 1/(γ ε))n and space
requirement 2O(n) based on the Ajtai–Kumar–Sivakumar sieve, see Remark 4.7.
This almost matches the performance of Dadush and Kun’s algorithm.

• Finally, we establish a connection between lattice sparsification and the mod-
ulus of smoothness, see Lemma 5.2. While the boosting approach described in
Sects. 3 and 4 is conceptually very simple and general, and it does not require
any knowledge about the approximate CVP solver used, the proofs are quite tech-
nical. We will show that we can tweak the algorithm described by Dadush and
Kun in [13] using a simple observation based on the modulus of smoothness in
order to obtain the same improved running time for CVP for norms with a certain
modulus of smoothness, in particular CVPp. With this new approach, we restrict
ourselves to using lattice sparsification and enumeration and we lose the possibil-
ity to use an arbitrary constant approximation CVP-solver. Considering the low
space dependency of lattice sparsification and enumeration among all known (sin-
gle exponential) approximate CVP solvers and the simplicity of our approach, this
might not be a big loss.

It should be noted here that a seemingly similar (with respect to ε) bound on the
(2, ε)-covering number follows from recent work of Arya et al. [8] (see also [1]).
Using Macbeath regions, they approximate any convex body with a polytope with
at most nO(n)ε−(n−1)/2 faces of all dimensions in total, provided that ε � n−n . It
is then straightforward to show that this can be turned into a (2, ε)-covering using
roughly nO(n)ε−(n−1)/2 convex bodies. Unfortunately, for the purpose of designing
approximation algorithms for lattice problems, this is of little use, as already the nO(n)

factor is prohibitively high considering that the exact solver of Kannan runs in nO(n)

time. Moreover, any approximation based on Macbeath regions requires ε � n−n ,
which is too strong a restriction for integer programming related applications.Nonethe-
less, their result shows that for ε sufficiently small, any convex body admits a
(2, ε)-covering using O(1+1/ε)n/2 convex bodies and raises the questionwhether the
restriction on ε can be removed in general. As mentioned above, in the present work,
the dimension n is not considered constant, and dependence on it is made explicit
everywhere.

The structure of the paper is the following. In Sect. 2, we list basic facts about
(2, ε)-coverings and prove upper bounds on the (2, ε)-covering number of symmetric
polytopes and zonotopes (Propositions 2.5 and 2.6). In Theorem 2.7, a lower bound
on the covering number of the Euclidean ball is presented. In Sect. 3, it is shown how
a bound on the modulus of smoothness yields a bound on the (2, ε)-covering number.
In Sect. 4, we apply our covering bounds to obtain efficient algorithms for (1 + ε)-
CVP. Finally, Sect. 5 contains Theorem 5.5, which presents another (1 + ε)-CVP
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solver for bodies with a well bounded modulus of convexity, based on efficient lattice
sparsification and lattice enumeration algorithms.

The scalar product of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in R
n is

denoted by 〈x, y〉 = x1y1 + · · · + xn yn . For a positive integer k, we use the notation
[k] = {1, . . . , k}.

2 (2,�)-Coverings

We denote the homothetic copy of a convex body Q by factor λ ∈ R with respect to
its centroid (also called, center of mass) c(Q) by λ
 Q = λ(Q − c(Q))+ c(Q). The
following notion is central to our study.

Definition 2.1 ((2, ε)-covering) For a convex body K ⊆ R
n , a sequence of convex

bodies {Qi }Ni=1 is a (2, ε)-covering if

K ⊆
N⋃

i=1

Qi ⊆
N⋃

i=1

2 
 Qi ⊆ (1 + ε)K .

We note that we have fixed the factor 2 for concreteness, we could replace 2 by any
other constant. For this reason we will assume ε ∈ (0, 1).

The following three lemmas follow directly from standard packing arguments, we
include a proof in the appendix.

Lemma 2.2 Any origin symmetric convex body K ⊆ R
n admits a (2, ε)-covering by

at most (5/ε)n homothetic copies of K .

We also note that it is sufficient to consider coverings by centrally symmetric convex
bodies only.

Lemma 2.3 Let K be a convex body in R
n that admits a (2, ε)-covering consisting

of N convex bodies. Then, K admits a (2, ε)-covering consisting of 10nN centrally
symmetric convex bodies.

Lemma 2.4 Any convex body K ⊆ R
n with 0 as its centroid has a (2, ε)-covering by

at most N = (10/ε)n translated copies of (ε/2)(K ∩ −K ).

In the particular case of the cube, in [17], Eisenbrand et al. found a (2, ε)-covering
that requires (1 + 2 log2(1 + 1/ε))n parallelepipeds. The following two propositions
show that their method generally works for any zonotope or any centrally symmetric
polytope.

A zonotope is theMinkowski sumoffinitelymany line segments,Z = {∑m
i=1 λi bi :

λi ∈ [−1, 1], 1 ≤ i ≤ m
} = ∑m

i=1[−bi , bi ]. We refer to the bi as the generators
of Z . If m = n and bi = ei , i = 1, . . . , n, then this zonotope is the unit cube. A
zonotope withm generators can have up to 2

( m
n−1

)
facets; when no n of the generators

are linearly dependent, this bound is attained, as is not difficult to see.
In the following two propositions, we give upper bounds for the (2, ε)-covering of

zonotopes with a bounded number of generators and for polytopes with a bounded
number of facets. We include these proof in the appendix.
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Proposition 2.5 ((2, ε)-covering of a zonotope by smaller zonotopes) Let Z ={∑m
i=1 λi bi : λi ∈ [−1, 1], i ∈ [m]} be a zonotope with m generators, b1, . . . , bm ∈

R
n. For any ε > 0, there exists a (2, ε)-covering of Z using (1 + 2 log2(1 + 1/ε))m

zonotopes.

Proposition 2.6 ((2, ε)-covering centrally symmetric polytopes with few facets) Let
P = {x ∈ R

n : |aTi x | ≤ bi , i ∈ [m]} be an origin symmetric polytope. There is a
(2, ε)-covering of P using at most 2m(log4/3(1/ε) + 1)m centrally symmetric convex
bodies.

Finally, we prove a lower bound on the (2, ε)-covering number of the Euclidean unit
ball Bn

2 which, by Corollary 3.4, is sharp, up to a logarithmic factor.

Theorem 2.7 For any ε ∈ (0, 1/2), any (2, ε)-covering of the Euclidean unit ball Bn
2

consists of at least 2−O(n)(1/ε)(n−1)/2 convex bodies.

Proof Let {Qi }Ni=1 be a (2, ε)-covering of Bn
2 with respective centroids ci . Let p ∈

S
n−1 and let c be the centroid of a Qi such that p ∈ Qi . First, we show that 〈p, c〉 ≥

1 − ε, that is, Qi is contained in a small solid cap. Suppose by contradiction that
〈p, c〉 < 1−ε. By the definition of a (2, ε)-coveringweneed that ‖p+(p−c)‖ ≤ 1+ε.
This implies 〈p, p + (p − c)〉 ≤ 1 + ε and we obtain the following contradiction:

〈p, p + (p − c)〉 = 2〈p, p〉 + 〈p,−c〉 > 2 + ε − 1 = 1 + ε.

Also by the definition of a (2, ε)-covering, we need ‖c‖ ≤ 1 + ε. Thus, we can show
‖p − c‖ is small:

〈p − c, p − c〉 = 〈p, p〉 + 〈c, c〉 + 2〈p,−c〉 ≤ 1 + (1 + ε)2 + 2(ε − 1) ≤ 5ε.

Thus, for every Qi , Qi ∩ S
n−1 is contained in a cap of radius

√
5ε. Denoting by

σ( · ) the uniform probability measure on the sphere, this means that for any convex
body Qi in the (2, ε)-covering, σ(Qi ) ≤ 2O(n)ε(n−1)/2 (cf. [10, Lem. 3.1]). Since a
(2, ε)-covering of Bn

2 needs to cover all of Sn−1, we obtain the desired lower bound
on N . ��

3 (2,�)-Coverings via Modulus of Smoothness

For a convex body K , we will consider its gauge function ‖ · ‖K , defined by ‖x‖K =
inf {s : x ∈ sK }. If K is origin symmetric, then ‖ · ‖K defines a norm.

Definition 3.1 (modulus of smoothness) The modulus of smoothness of an origin-
symmetric convex body K , ρK (τ ) : (0, 1) → (0, 1), is defined by

ρK (τ ) = 1

2
sup

‖x‖K=‖y‖K=1
(‖x + τ y‖K + ‖x − τ y‖K − 2).
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We remark first that any origin symmetric body K has modulus of smoothness ρK (τ )

≤ τ , this follows from the subadditivity of the norm. The modulus of smoothness of
K measures how well K can be locally approximated by hyperplanes: If ‖x‖K = 1
and ‖τ y‖K = τ and both x + y and x − y lie on a support hyperplane of K at x , then
both ‖x + τ y‖K , ‖x − τ y‖K ≥ 1, but we also have the upper bound of

‖x ± τ y‖K ≤ 1 + 2ρK (τ ).

If ρK (τ ) can be bounded by a polynomial of degree higher than 1, say τ 2, then
x ± τ y are closer to the boundary of K compared to what subadditivity, ‖x ± τ y‖K ≤
‖x‖K + ‖τ y‖K , alone yields. Still assuming ρK (τ ) ≤ τ 2 and letting ε ∈ (0, 1), this
means that all points y ∈ K with ‖x − y‖ ≤ √

ε are approximated up to an additive
ε by the tangential hyperplane at x . This behaviour of some norms is exploited in the
next theorem.

Theorem 3.2 Let K ⊆ R
n be an origin symmetric convex body, and ε ∈ (0, 1). Assume

that the modulus of smoothness of K is bounded by

ρK (τ ) ≤ Cτ q

with some constants C, q > 1. Then, there exists a (2, ε)-covering of K consisting of

2O(n) log

(
1 + 1

ε

)(
C

ε

)n/q

+ O(C)n/(q−1)

centrally symmetric convex bodies. The encoding length of each such body is a poly-
nomial in the encoding length of K .

Proof Set δ = (ε/C)1/q/4. We may assume that ε ≤ (1/(8C1/q))q/(q−1), in which
case δ − ε ≥ δ/2. Otherwise, we may apply Lemma 2.2 and obtain a (2, ε)-covering
of K consisting of O(C)n/(q−1) bodies. We denote ‖ · ‖K by ‖ · ‖.

We first describe a (2, 2ε)-covering of K only in the neighborhood of a point
and then, using a packing argument, we extend this construction to obtain a (2, 2ε)-
covering for all of K .

Fix a point p on the boundary of K that is, ‖p‖ = 1. Denote by Tp a supporting
hyperplane of K at p. Let Bp be the intersection of Tp with p + δK , i.e., Bp :=
Tp ∩ {x : ‖x − p‖ ≤ δ}.

First, we show that

bd(K) ∩ (p + (δ − ε)K ) ⊆ conv(0, Bp). (1)

Indeed, let q be a point in bd(K)∩(p+(δ−ε)K ), and let L denote the two-dimensional
linear plane spanned by p, q and the origin o, see Fig. 1. Clearly, L ∩ Tp is a line, and
there are two points on this line at distance δ from p. Let s denote the point of these
two which is on the same side of the line op as q. That is, s is a point on the lateral
surface of the cone conv(0, Bp). By the assumption on the modulus of smoothness
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Fig. 1 Proof of (1)

of K , we have s′ := s/ ‖s‖ is at distance at most ε from s (a detailed computation of
a similar fact is given below in this proof). Thus,

∥∥s′ − p
∥∥ ≥ δ − ε. (2)

Now, L is a normed plane with unit circle K ∩ L and p is a unit vector in L . It is
a classical fact in the theory of normed planes [24, Prop. 31] that as a point moves
along the curve K ∩ L starting at p and ending at −p, the distance (w.r.t. ‖ · ‖K ) of
the moving point to p is increasing. Thus, by (2), the arc of K ∩ L between p and s′
contains q, which yields that q is in the cone conv(0, Bp), proving (1).

Next, instead of the cone conv(0, Bp), we will consider the cylinder

Cp = Bp + [0,−p].

Clearly, we have conv(0, Bp) ⊆ Cp. We may assume that ε is of the form ε =
(2k − 1)−1, where k is a positive integer. For i ∈ [k], consider the following slice
of Cp:

Cp(i) = (
Bp + [−(2i − 1)ε p,−(2i−1 − 1)ε p]). (3)

Clearly, 2 
 Cp(i) ⊆ Ĉ p := 2 
 Bp + [ε p,−3p/2] and the centroid c(Cp(i)) is at
(1 − (3 · 2i−1/2 − 1))ε p for each i ∈ [k]. We claim that Ĉ p ⊆ (1 + 2ε)K . Since
δ ≤ 1/4 and K = −K , we have 2 
 Bp − 3p/2 ⊆ K . Thus, it suffices to check that
2 
 Bp + ε p ⊆ (1 + 2ε)K .

Let x ∈ 2
 Bp + ε p, i.e., x = p+ 2(z − p) + ε p for some z ∈ Bp. We will show
that ‖p + 2(z − p)‖ ≤ 1+ 2ε. Since both p and z lie in Tp, then so do p + 2(z − p)
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and p + 2(p − z), and thus, we have ‖p + 2(z − p)‖, ‖p + 2(p − z)‖ ≥ 1. One
has ‖2(z − p)‖ ≤ 2δ = (ε/C)1/q/2 and so by the assumption on the modulus of
smoothness of K , we obtain

‖p + 2(z − p)‖ ≤ 2C‖2(z − p)‖q + 1 ≤ 1 + ε.

Thus, Ĉ p ⊆ (1 + 2ε)K , and hence,

2 
 Cp(i) ⊆ (1 + 2ε)K

for each i ∈ [k]. Since, by (1), all points on the boundary of K at distance at most δ−ε

from p are covered by Cp, we see that all points x , such that ‖x/‖x‖ − p‖ ≤ δ − ε

are covered by one of the slices of Cp. Thus, in order to extend the above construction
to a (2, 2ε)-covering of K , we pick points {pi }Ni=1 on the boundary of K such that

bd (K ) ⊆ ⋃N
i=1 pi + (δ − ε)K . By Lemma 2.2,

N = 2O(n)

(
1

δ − ε

)n
= 2O(n)

(
C

ε

)n/q

such points suffice.
Thus, we obtain a (2, 2ε)-covering for K by constructing Cpi for each i ∈ [N ] and

slicing each Cpi as in (3). Finally, replacing ε by ε/2, we indeed get a (2, ε)-covering
of K using 2O(n)(C/ε)n/q log(1/ε) convex bodies, each described by a polynomial
in the encoding length of K , see [19]. ��
Theorem 3.3 (modulus of smoothness for �p spaces [23]) We have

ρ�p (τ ) =
{

(((1 + τ)p + (1 − τ)p)/2)1/p − 1 ≤ 2pτ 2, if 2 ≤ p < ∞,

(1 + τ p)1/p − 1 ≤ τ p/p, if 1 ≤ p ≤ 2.

Proof By [23, end of Sect. 2], we only need to show (((1+τ)p+|1−τ)p)/2)1/p−1 ≤
2pτ 2 for τ ∈ (0, 1) and 2 ≤ p < ∞. By computing

d

dp

[
(1 + τ)p + (1 − τ)p

]
, and then

d

dτ

d

dp

[
(1 + τ)p + (1 − τ)p

]
,

one obtains that (1 + τ)p + (1 − τ)p ≤ (1 + τ)�p� + (1 − τ)�p�. Next, by taking
the binomial expansion, one checks that

[
(1 + τ)�p� + (1 − τ)�p�

] ≤ (1 + 2pτ 2)�p�,
completing the proof. ��

Theorems 3.2 and 3.3 imply the following.

Corollary 3.4 ((2, ε)-coverings for �p balls) For small enough ε, there exists a (2, ε)-
covering for �p balls using 2O(n) log(1+1/ε)(1/ε)n/2 convex bodies for 2 ≤ p < ∞
and 2O(n) log(1 + 1/ε)(1/ε)n/p convex bodies for 1 ≤ p ≤ 2.
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4 Using (2,�)-Coverings for the Closest Vector Problem

We first recall the goal and some important notions of this section: We are given a
rational lattice �(A) = {Ax : x ∈ Z

n}, with A ∈ Q
n×n and a target vector t ∈ Q

n ,
and we would like to solve (1 + ε)-approximate CVPK , i.e., find a lattice vector
v ∈ �(A) such that ‖v − t‖K ≤ (1 + ε)minw∈�(A) ‖w − t‖K . ‖ · ‖K is defined by
‖x‖K = inf {s : x ∈ sK }, if K is origin symmetric and convex, this defines a norm. If
0 is not the center of symmetry but in the interior of K then we lose the symmetry, i.e.,
‖x‖K �= ‖ − x‖K . We denote by b the encoding length of the relevant input: A, t, ε,
encoding length of K , etc.

In this section, we will first describe how a (2, ε)-covering for K using N convex
bodies boosts any 2-CVP solver for general norms to a (1 + ε)-CVPK solver at the
expense of a factor N2O(n) poly(b, 1/ε) in the running time. This algorithm, together
with the construction of Propositions 2.5 and 2.6 directly implies a (1+ε)-CVP solver
for polytopes and zonotopes with running time of 2O(n+m)(log(1+1/ε))m times some
polynomial in b and n and with space requirement that of the 2-CVP solver used.

Next, we are going to adapt the construction of Theorem 3.2 to yield a randomized
algorithm, that for some fixed point p ∈ K , generates a local (2, ε)-covering for
K containing p. This yields a randomized (1 + ε)-CVP solver with the improved
running time for �p norms and with space requirement only depending on that of the
2-approximate CVP solver used. This construction can also be derandomized.

The boosting procedure we are going to describe assumes that we are able to
sample uniformly within K and that we can calculate a separating hyperplane at
any point on the boundary of K . However, if only a weak membership and a weak
separation oracle is provided, the procedure can be adapted such that it suffices to
sample almost uniformly, see the algorithm of Dyer et al. [16], and to only calculate
a weakly separating hyperplane. We neglect this implementation detail.

As for the convex body K , we assume that n−3/2Bn
2 ⊆ K ⊆ Bn

2 , and thus,

‖x‖2 ≤ ‖x‖K ≤ n3/2‖x‖2. (4)

This can be ensured by applying an affine transformation, which is polynomial in the
input size of K , to both K and the lattice �(A), see [19].

For concreteness, we choose to use the elegant and currently fastest algorithm for
general norms by Dadush and Kun as our 2-CVP solver.

Theorem 4.1 (approximate CVP in any norm [13]) There exists a deterministic algo-
rithm that for any norm ‖ · ‖K , n-dimensional lattice �(A) and for any target t ∈ R

n,
computes y ∈ �(A), a (1 + ε)-approximate minimizer to ‖t − x‖K , x ∈ �(A), in
time O (poly(n, b)2O(n)(1 + 1/ε)n) and O (poly(n, b)2n) space.

Theorem 4.2 (boosting 2-CVP using a (2, ε)-covering) Assume we are given an
origin symmetric convex body K in R

n and a (2, ε)-covering for K consisting of N
convex bodies. Then we can solve the (1+7ε)-CVPK for�(A) and target t ∈ Q

n with
O (N log(1 + 1/ε)(log n + log b)) calls to a 2-approximate CVP solver for general
norms.
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Proof Wemaymultiply�(A) and t by the least commonmultiple of the denominators
of the n2 entries of A and the n entries of t . The resulting lattice and target are integral,
�( Ã) ∈ Z

n×n and t̃ ∈ Z
n . Since the lowest common multiple is bounded by 2(n2+n)b,

the resulting basis of Ã has Euclidean length at most 2(n2+n)b. Assuming t /∈ �(A),
we see that

1 ≤ min
x∈�( Ã)

‖x − t̃‖2 ≤ n2(n2+n)b.

By our assumption (4), we have

1 ≤ min
x∈�(A)

‖x − t‖K ≤ n5/22(n2+n)b.

Let {Qi + ci }Ni=1 be the given (2, ε)-covering for K , where the origin is the centroid
of each of the Qi .

For our algorithm, for any norm ‖ · ‖Q , we assume that the 2-approximate CVPQ

algorithm that we use with target t only returns a lattice vector v if ‖t − v‖Q ≤ 2.
We want to find f such that ci + (1 + ε) f Qi contains a lattice vector for some

i ∈ [N ], but ci + (1+ ε) f −1Qi contains no lattice vector for any i ∈ [N ]. As in [17],
we apply a binary search for f .

(i) Initialize L ← 0, U ← ⌈
log1+ε n

5/22(n2+n)b
⌉
and x = 0.

(ii) While U − L ≥ 4, do a binary search step:

(iia) For all i ∈ [N ], solve a 2-approximate CVP(1+ε)L+�(U−L)/2�Qi
problem with

target (1 + ε)L+�(U−L)/2�ci + t .
(iib) If some lattice vector v is returned, update U ← �log1+ε ‖v − t‖K � and

x ← v.
(iic) Otherwise, update L ← L + �(U − L)/2�.

(iii) Return x .

It is immediate that for any λ > 0, {λQi + λci }Ni=1 is a (2, ε)-covering for λK .
Thus if, for some L and U at step (iib), no lattice vector v is returned, then

t + (1 + ε)L+�(U−L)/2�K ⊆ t +
N⋃

i=1

(1 + ε)L+�(U−L)/2�(ci + Qi )

contains no lattice vector, and so minv∈�(A) ‖v − t‖K ≥ (1 + ε)L+�(U−L)/2�. In the
case a lattice vector is returned, then

min
x∈�(A)

‖t − x‖K ≤ ‖v − t‖K ≤ (1 + ε)L+�(U−L)/2�+1

since the Qi are a (2, ε)-covering of K . Since U and L are valid upper and lower
bounds for f at the beginning of the algorithm, we see that throughout the algorithm,
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the following invariant is maintained:

(1 + ε)L ≤ min
v∈�(A)

‖v − t‖K ≤ (1 + ε)U .

If the algorithm terminates, then U − L ≤ 3 since U and L are both integers. Thus,
because of the above invariant, the lattice vector x ∈ �(A) returned satisfies

‖x − t‖K ≤ (1 + ε)U ≤ (1 + ε)L+3 ≤ (1 + ε)3 min
v∈�(A)

‖v − t‖K
≤ (1 + 7ε) min

v∈�(A)
‖v − t‖K .

It remains to be shown that the binary search terminates in O((log n+ log b)/ε) steps.
Indeed, for some U and L , let Unew, Lnew be the U and L after having executed step
(ii) once. IfU − L ≥ 6, it is straightforward to check thatUnew− Lnew ≤ 3(U − L)/4.
If 4 ≤ U − L ≤ 5,Unew − Lnew ≤ (U − L)−1. SinceU − L ≤ log1+ε(n

5/22(n2+n)b)

at the beginning of the algorithm, we are done after log5/4(log1+ε(n
5/22(n2+n)b)) =

O (log(1 + 1/ε)(log n + log b)) iterations. ��
Corollary 4.3 ((1 + ε)-approximate CVP for polytopes and zonotopes) Let K be
a full-dimensional origin symmetric polytope with m facets or a full-dimensional
zonotope with m generators (in particular, m ≥ n). Then for any ε ∈ (0, 1),
the (1 + ε)-approximate CVPK problem can be solved deterministically in time
O (poly(n, b, 1/ε)2O(n+m) log(1 + 1/ε)m) and space O (poly(n)2n).

Proof Replace ε by ε/7 and run the algorithm in Theorem 4.2 on a (2, ε)-covering of
K constructed in the proof of Propositions 2.5 or 2.6. To avoid a space requirement
depending on the number of convex bodies N required in the (2, ε)-covering for K ,
every time we call step (iia) of the algorithm, for each i ∈ [N ], we first calculate Qi

and then run the appropriately scaled 2-approximate CVP instance. ��
Remark 4.4 The preceding corollary is the reason why we opted to describe a (2, ε)-
covering with symmetric convex bodies for symmetric polytopes in Proposition 2.6:
The algorithm of Dadush andKun can handle non-symmetric norms ‖ · ‖K , provided 0
is in some sense “close” to the centroid of K , formore details see [13]. Since calculating
deterministically the centroid is a hard problem and no efficient algorithms are known,
see [28], wewouldmost likely have to resort to a randomized algorithm to approximate
the centroid which in turn randomizes our boosting procedure.

Theorem 4.5 (local (2, ε)-covering) Let K be an origin symmetric convex body such
that ‖ · ‖K has modulus of smoothness Cτ q for C, q > 1 and ε ∈ (0, 1). Then, in
polynomial time, we can find at most O (log(1+1/ε)) origin symmetric convex bodies
{Qi } and translations {ci } such that for some constant c > 0:

• For all i , ci + 2Qi ⊆ (1 + ε)K.
• For q ∈ K, the probability that q is contained in ci + Qi for some i is greater
than min (2−cnC−n/qε−n/q , (8qC)−n/(q−1)).
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Proof Set ε ← ε/3. If ε > (1/(8C1/q))q/(q−1), we uniformly sample a point x from
(1 + ε)K and return εK and x . Any point in K has probability greater or equal than

(
ε

1 + ε

)n

of being covered by x + εK .
If ε ≤ (1/(8C1/q))q/(q−1), similarly as in Theorem 3.2, we set δ = (ε/C)1/q/4.We

uniformly sample a point x from (1+ δ/4)K . Let p = x/‖x‖ and for i ∈ [log(1/ε)],
consider the slices Cp(i) of Cp as in (3) in the proof of Theorem 3.2. For all such
Cp(i), denoting by c(Cp(i)) its centroid, we return the origin symmetric convex bodies
{Cp(i) − c(Cp(i))} and the translations {c(Cp(i))}.

Next, fix a point q ∈ K . With probability greater or equal to

1

2
· (δ/4)n

(1 + δ/4)n
we have that

∥∥∥∥
q

‖q‖ − x

∥∥∥∥ ≤ δ

4
.

In that case, ‖q/(‖q‖ − p)‖ ≤ δ/2 ≤ δ − ε and thus, Cp as in (3) of Theorem 3.2
contains q. It follows that for some c > 0 independent of n, C , and q, with probability
greater or equal to 2−cnC−n/qεn/q one of the cylinders Cp(i) contain q. ��

The next theorem combines the algorithms of Theorems 4.5 and 4.2 to yield an
efficient (1+ ε)-approximate CVP solver for norms with a well bounded modulus of
smoothness.

Theorem 4.6 (boosting 2-CVP for a body with small modulus of smoothness) Let K
be a origin symmetric convex body with modulus of smoothness

ρK (τ ) ≤ Cτ q , with C, q > 1.

Then the algorithm presented in the proof solves (1 + ε)-CVPK with probability
at least 1 − 2−n. Its running time is O (poly(n, b, log(1/ε))(2O(n)Cn/q(1/ε)n/q +
O(C)n/(q−1))), and the space requirement is equal to that of a 2-CVP solver that
handles any norm.

Proof We set ε ← ε/7 and without loss of generality, we may assume

1 ≤ min
x∈�(A)

‖x − t‖K ≤ n5/22(n2+n)b.

We again assume that, for any norm ‖ · ‖Q , the 2-CVPQ with target t only returns a
lattice vector v if ‖t − v‖Q ≤ 2, if there is no such v, it returns nothing.

We adapt the algorithm of Theorem 4.2:

(i) Initialize L ← 0, U ← �log1+ε n
5/22(n2+n)b� and x = 0.

(ii) While U − L ≥ 4, do a binary search step:
(iia) Run the algorithm from Theorem 4.5 and denote the returned convex bodies

and translations by Qi and ci respectively. For all i , solve a 2-approximate
CVP(1+ε)L+�(U−L)/2�Qi

problem with target (1+ε)L+�(U−L)/2�ci + t . Repeat
N times.

123



1204 Discrete & Computational Geometry (2022) 67:1191–1210

(iib) If some lattice vector v is returned, update U ← �log1+ε ‖v − t‖K � and
x ← v.

(iic) Otherwise, update L ← L + �(U − L)/2�.
(iii) Return x .

Correctness of the algorithm follows from Theorem 4.2, provided step (ii) runs cor-
rectly (i.e., correctly detectswhether there is a lattice point or notwith high probability)
for all O (log(1/ε)(log n + log b)) iterations. To verify this, let v ∈ L be some lat-
tice vector contained in a homothet of K at some fixed iteration of the algorithm.
With probability p = 2−cnC−n/q(1/ε)n/q or (1/(8qC))1/(q−1) respectively, one of
the convex bodies returned by one run of Theorem 4.5 contains v. Thus, repeating
step (iia) n(2cnCn/q(1/ε)n/q + (8qC)1/(q−1)) times, with probability greater than
1 − 2−n , v is contained in one of the convex bodies returned and step (ii) runs cor-
rectly. Since step (ii) needs to run correctly each of the O (log(1/ε)(log n + log b))
iterations necessary to find the correct U and L , by the union bound, it is sufficient
to set N = O (n log(log(1/ε)(log n + log b))2cnCn/q(1/ε)n/q + (8qC)1/(q−1)) to
guarantee a success probability of 1 − 2−n . This implies the bound on the running
time. ��

In our proof of Theorem4.6, instead of applying our local covering algorithm,Theo-
rem 4.5, we could use a recent result of Dadush [12, Thm. 4.1]. There, a deterministic
algorithm is presented to build and iterate over an epsilon net in 2O(n)(1 + 1/ε)n

time and poly(n) space. For symmetric convex bodies with modulus of smoothness
bounded by Cτ q , we may apply this result with O(ε1/q), as in Theorem 4.5, in place
of ε to build a covering of size O(1/ε)n/q . This would replace the sampling part in
Theorem 4.5 and thus derandomizes our boosting procedure.

Remark 4.7 Onemay consider convexbodies that are not necessarily origin symmetric.
Assume that a convex body K is γ -symmetric, that is, vol(K ∩ −K ) ≥ γ n vol(K ).
Then the result of Dadush and Kun (Theorem 4.1) still applies (see [13]), and it is
straightforward to modify the above algorithm to obtain a (1 + ε)-approximate CVP
algorithm for ‖ · ‖K using 2O(n)(1/(γ ε))n calls to a 2-approximate CVP algorithm
handling any symmetric norm, for instance the AKS based algorithm of Dadush [11],
resulting in an algorithm with time O (1/(γ ε))n and space 2O(n). We essentially use
Theorem4.5withq = 1:we sample a point p in (1+ε/3)K and output (ε/3)(K∩−K )

and p. Thus, each point in K has probability greater or equal to 2−O(n)(1/(γ ε))n of
being covered.

5 Sparsifiers and theModulus of Smoothness

In this section we describe a surprising connection between lattice sparsifiers as used
by Dadush and Kun and the modulus of smoothness. Informally, our main techni-
cal contribution is the observation that for a lattice-point-free convex body K with
modulus of smoothness bounded by Cτ q , a O(ε1/q)-sparsifier for K preserves the
metric information up to an additive error of O(ε). We will show that we can tweak
the algorithm of Dadush and Kun using this simple observation in order to match
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the running time of the preceding boosting procedure. We will only consider origin
symmetric-convex bodies K ⊆ R

n .

Definition 5.1 (lattice sparsifier for origin symmetric K [13]) Let K ⊆ R
n be an

origin-symmetric convex body, L be an n-dimensional lattice and δ > 0. A (K , δ)

sparsifier for L is a sublattice L′ ⊆ L satisfying

• G(K ,L′) ≤ O(1/δ)n ,
• ∀ x ∈ R

n , dK (L′, x) ≤ dK (L, x) + δ,

where G(K ,L) denotes the maximal number of lattice vector any translate of K can
contain, formally:

G(K ,L) = max
x∈Rn

|(K + x) ∩ L|.

By a covering argument (see [13, Lem. 2.3]), G(dK ,L) ≤ (2d+1)nG(K ,L). By the
second condition, ifL′ is a (K , δ)-sparsifier forL, for every lattice point v ∈ L, there is
v′ ∈ L′ such that ‖v−v′‖K ≤ δ. These two conditions ensure that the resulting lattice
L′ is thinned out according to the geometry of K : the first condition guarantees that K
(or a dilate of K ) cannot contain too many lattice vectors of L′ (hence enumeration is
not too costly), but, by the second condition, L′ is rather close to L and thus serves as
a good approximation.

We now come to the main observation:

Lemma 5.2 Let K be an origin symmetric convex body with modulus of smoothness
bounded by ρK ≤ Cτ q , q ≥ 1, L a lattice and t ∈ R

n a target vector. Assume that
t + K does not contain any lattice vector v ∈ L in its interior. Let L′ be a (K , ε1/q)

sparsifier for L. Then

dK (L′, t) ≤ dK (L, t) + 2Cε.

Proof Denote by v ∈ L a closest lattice vector to t , and set R := dK (L, t). Clearly,
R = ‖v − t‖K ≥ 1. By the second condition of the sparsifier, there is a lattice vector
w ∈ L′ with ‖w − v‖K ≤ ε1/q . Denoting by y := w − v ∈ L, the definition of the
modulus of smoothness yields

∥∥∥∥
w − t

R

∥∥∥∥
K

=
∥∥∥∥
v − t

R
+ y

R

∥∥∥∥
K

≤ 2 + 2Cε

Rq
−

∥∥∥∥
v − t

R
− y

R

∥∥∥∥
K

≤ 1 + 2Cε

Rq
,

where we used the fact that v − y ∈ L, and hence, ‖(v − y) − t‖K ≥ R. Multiplying
the inequality by R and observing that R, q ≥ 1 completes the proof of Lemma 5.2.

��
Next, we present the algorithmic application of the previous lemma to the (1+ ε)-

approximate Closest Vector Problem under a symmetric norm. We adopt the same
notation as in Sect. 4. We may assume that t ∈ Z

n , L(A) ⊆ Z
n and ‖t‖∞, ‖A‖∞ ≤

2(n2+n)b. We assume n−3/2Bn
2 ⊆ K ⊆ (1/2)Bn

2 . Thus, dK (L, t) ≤ 2n5/22(n2+n)b,
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and, if t /∈ L(A), t + K does not contain a lattice vector. We will need the following
two algorithms.

Theorem 5.3 (Lattice-Enumerator(K , t,L, ε) [14]) Let L(A) be a lattice, K
a convex body in R

n and ε > 0. There is a deterministic algorithm that outputs all S
such that

(t + K ) ∩ L ⊆ S ⊆ (t + K + εBn
2 ) ∩ L

in time G(K ,L)2O(n) poly(n, b) and 2n poly(n, b) space.

Theorem 5.4 (Lattice-Sparsifier(L(A), K , δ) [13]) For δ > 0, a basis A′
for a (K , δ)-sparsifier forL(A) can be computed deterministically in 2O(n) poly(n, b)
time and 2n poly(n, b) space.

We now combine these two theorems with Lemma 5.2.

Theorem 5.5 There is an algorithm (described in the proof) that for an origin sym-
metric convex body K inRn, with modulus of smoothness bounded by ρK ≤ Cτ q with
some C, q ≥ 1, solves (1 + ε)-CVPK for any lattice L and target vector t ∈ R

n in
time O((C/ε)n/q) poly(n, b) and space 2n poly(n, b).

Proof We may assume ε ≤ 1. If t ∈ L(A) (this can be checked in poly(n, b) time),
return t . Else, set ε̄ = ε/(4C) and d = 0 and apply the following algorithm.

(i) Set Kd = 2d K .
(ii) Apply Lattice-Sparsifier(Kd ,L, ε̄1/q ). Denote the sparsified lattice

by L′.
(iii) Apply Lattice-Enumerator((2+ε)Kd , t,L′, ε). If there is a lattice vector

in t + (2 + ε)K , return the closest one to t , and stop. Else, set d ← d + 1 and
go to (i).

Let k be the largest positive integer such that t + Kk does not contain a lattice vector.
First, we claim that the algorithm will terminate at iteration d ≤ k. Indeed, since
t +2Kk = t + Kk+1 contains a lattice vector of L, by Lemma 5.2, (2+ ε)Kk contains
a lattice vector of L′, and hence, the algorithm will terminate at d = k, or before.

To bound the error, we assume that the algorithm terminated at iteration d. By the
previous paragraph, t + Kd does not contain a lattice vector, and thus,

dK (L, t) ≥ 2d . (5)

Let v denote the lattice vector returned by Lattice-Enumerator((2 + ε)Kd , t,
L′, ε). By Lemma 5.2, we only have an additive error of 2C ε̄ = ε/2 with respect to
‖ · ‖Kd

, that is,

dKd (L, t) ≤ ‖t − v‖Kd
+ ε

2
,
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which, by (5) yields

dK (L, t) ≤ ‖t − v‖K + 2dε ≤ ‖t − v‖K + εdK (L, t),

and hence dK (L, t) ≤ ‖t − v‖K /(1 − ε/2) ≤ (1 + ε) ‖t − v‖K . Thus, we found a
(1 + ε)-approximate solution.

Next, we consider the time and space requirements. It is clear that step (ii)
always takes time 2O(n) poly(n, b) and space 2n poly(n, b), independently of d.
Note that G((2 + ε)K ,L′) ≤ G(3K ,L′) ≤ O(1/ε̄)n/q , and thus, step (iii) takes
O(C/ε)n/q poly(n, b) time and 2n poly(n, b) space. Since dK (t,L) ≤ 2n5/22(n2+n)b,
we need at most log2(2n

5/22(n2+n)b) = poly(n, b) iterations, resulting in time
O(C/ε)n/q poly(n, b). This completes the proof of Theorem 5.5. ��
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Appendix: Proof of Some Lemmas

Proof of Lemma 2.2 We cover K greedily by copies of (ε/2)K as follows. If after
selecting i − 1 homothetic copies of K there is a point pi ∈ K not yet covered, we
take Qi = pi + (ε/2)K . To see that after N ≤ (5/ε)n steps, all points of K are
covered, we notice that the sets (1/2) 
 Qi are non-overlapping, and are contained in
(1+ ε/4)K ⊆ (5/4)K . Taking the volume of these sets, we obtain the desired bound.

��
Proof of Lemma 2.3 Let {Qi }Ni=1 be a (2, ε)-covering of K . For each i ∈ [N ], we will
find a (2, 1)-covering for Qi using at most 10n centrally symmetric convex bodies.
Thus, the union of these at most 10nN symmetric sets will yield a (2, ε)-covering
of K . Fix i ∈ [N ] and set Q̃i = (1/2)((Qi − c(Qi )) ∩ (c(Qi ) − Qi )). In the same
fashion as in the proof of Lemma 2.2, let {b1, . . . , bm} be a maximal subset of Qi such
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that the interiors of the sets b1 + (1/2)Q̃i , . . . , bm + (1/2)Q̃i are pairwise disjoint.
Clearly, Q̃i + {b1, . . . , bm} is a covering of Qi .

By a result of Milman and Pajor [26], if the centroid of a convex body Q in R
n is

the origin, then
vol (Q ∩ −Q) ≥ 2−n vol(Q). (6)

Thus, vol (bk + (1/2)Q̃i ) ≥ 8−n vol(Q), k = 1, . . . ,m. Since bk ∈ Qi and
(1/2)Q̃i ⊆ (1/4)(Qi − c(Qi )), we have that bk + (1/2)Q̃i ⊆ (5/4) 
 Qi . Thus,
m ≤ 10n .

To see that Q̃i + {b1, . . . , bm} is (2, 1)-covering of Qi , note that 2Q̃i ⊆ (Qi −
c(Qi )), and hence bk + 2Q̃i ⊆ Qi + (Qi − c(Qi )) = 2 
 Qi , as required. ��
Proof of Lemma 2.4 The same argument as that used in the proof of Lemma 2.2 com-
bined with (6) yields it. ��
Proof of Proposition 2.5 We may assume that ε = (2k − 1)−1 for some positive inte-
ger k. For i ∈ [k], the following union of translated intervals is a (2, ε)-covering of
[−b, b]:

[−b, b] ⊆
⋃

δ∈{±1}
j∈[k]

(
δ(1 − (2 j − 1)ε)b + [−2 j−1εb, 2 j−1εb]).

We may decompose analogously every line segment generating Z and combine them
to give a (2, ε)-covering for Z:

Z ⊆
⋃

δ∈{±1}m
α∈[k]m

k∑

i=0

(
δi (1 − (2αi − 1)ε)bi + [−2αi−1εbi , 2

αi−1εbi ]
)
.

This is a (2, ε)-covering forZ using (2 log2(1+ 1/ε)+ 1)m (translated) zonotopes. ��
Proof of Proposition 2.6 We may assume that ε = ((4/3)k − 1)−1 for some positive
integer k. For α ∈ [k]m and δ ∈ {±1}m , consider the following polytopes Q̄(α, δ):

{
x :

(
1 −

((
4

3

)αi

− 1

)
ε

)
bi ≤ δaTi x ≤

(
1 −

((
4

3

)αi−1

− 1

)
ε

)
bi , i ∈ [m]

}
.

For each facet direction |aTi x | ≤ bi , scaling each of the resulting (non-empty) Q̄
around any point in its interior by a factor 4, it is straightforward to check that the
resulting convex body is contained inside {x ∈ R

n : |aTi x | ≤ (1 + ε)bi }. It follows
that each such non-empty polyhedron Q̄ can be scaled by a factor 4 around any point
in it and the resulting polytope is still contained inside (1+ ε)P and it is clear that P
is contained in the union of the Q̄(α, δ).

We could stop here and have a (2, ε)-covering for P , but we are not guaranteed that
the resulting cells are centrally symmetric. In order to ensure this, we will symmetrize
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the resulting Q̄(α, δ) as follows. Fix x(α, δ) ∈ Q̄(α, δ) and define

Q̄x (α, δ) = x(α, δ) + conv (Q̄(α, δ) − x(α, δ), x(α, δ) − Q̄(α, δ)).

These are centrally symmetric polytopes with center of symmetry at x(α, δ). When Q̄
is scaled by a factor 4, it is still contained in (1 + ε)P , thus we have 2 
 Qx (α, δ) ⊆
(1 + ε)P . Thus, the union of all {Q̄x (α, δ)} is a (2, ε)-covering for K using at most
2m(log4/3(1/ε) + 1)m symmetric convex bodies. ��
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