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Abstract

We present a new approach of proving certain Carathéodory-type theorems
using the Perron–Frobenius Theorem, a classical result in matrix theory describing
the largest eigenvalue of a matrix with positive entries.

At the end, we list some results and conjectures that we hope can be approached
with this method.

Mathematics Subject Classifications: Primary 52A35; Secondary 15B48

1 Introduction

Carathéodory’s Theorem [Car07] is one of cornerstones of combinatorial geometry as
Eckhoff [Eck93] called it. The theorem claims that a point in the convex hull of a set P ⊆
Rd is in the convex hull of at most d+1 points of P . The survey [Eck93] contains a number
of generalizations of the theorem, which is closely related to a number of other classical
results in convex geometry, such as Helly’s and Radon’s Theorems [Hel23, Rad21]. In this
note, we provide a new proof of the theorem that shows a connections with a principal
theorem in matrix theory, the Perron–Frobenius Theorem, and prove other known results
in convexity using the same approach.

We mention a few other recent results in convex and discrete geometry where the
Perron-Frobenius theory was applied. The authors of [CEKMS19] found a proof of

the electronic journal of combinatorics 28(3) (2021), #P3.26 https://doi.org/10.37236/9996

https://doi.org/10.37236/9996


the Alexandrov–Fenchel inequality using the Perron-Frobinius theorem (see the proof
of Proposition 3 in [CEKMS19]). In [Pol19], the second named author of the current
paper used the Perron-Frobenius theorem to bound the size of an almost equidistant
diameter set of points in Rd, that is, a finite set of points of diameter 1 such that among
any three points there are two at distance 1. At last, we remark that the role of the
Perron–Frobenius theory is crucial in the study of equiangular lines; see [JTY+19] and
papers cited therein.

The paper is organized as follows. In Section 2, we introduce our tools. In Section 3, we
illustrate the key idea applying it to prove Rankin’s Theorem [Ran55, Theorem 1(iii, iv)].
In Section 4, we use the idea to prove Carathéodory’s and Steinitz’s Theorems [Car07,
Ste13]. Finally, in Section 5, we list a few known facts as well as open questions as
candidates to be approached with the method.

2 Preliminaries

2.1 Notation

We write [n] = {1, . . . , n}, for a positive integer n. The convex hull of a finite set of
points {x1, . . . , xn} ⊂ Rd, written conv{x1, . . . , xn}, is the set{

n∑
i=1

λixi : λi > 0 for all i ∈ [n],
n∑
i=1

λi = 1

}
.

A point x of a set P ⊆ Rd is an interior point of P , if the set P contains some open ball
with center in x.

The spectral radius of a square matrix A, written ρ(A), is the largest absolute value
of its eigenvalues.

2.2 Tools

Since we do not need the most general form of the Perron–Frobenius Theorem [Per07,
Fro12], we state only two of its corollaries.

Lemma 1 (Perron’s Theorem). For a square matrix with positive entries, the spectral
radius is an eigenvalue of multiplicity 1, such that its eigenvector has positive entries.

Lemma 2 (Frobenius’s Theorem). For a square matrix with non-negative entries, the
spectral radius is an eigenvalue such that one of its eigenvectors has non-negative entries.

Also, we need two finite-dimensional versions of the Hahn–Banach Theorem in Sec-
tion 4.

Theorem 3. If the origin o of Rd does not lie in the convex hull of points x1, . . . , xn ∈ Rd,
then there exists a vector y ∈ Rd such that 〈y, xi〉 > 0 for all i ∈ [n].

Theorem 4. If the origin o of Rd is not an interior point of the convex hull of points
x1, . . . , xn ∈ Rd, then there exists a vector y ∈ Rd such that 〈y, xi〉 > 0 for all i ∈ [n].
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3 Proof of Rankin’s Theorem

We state the two parts of Rankin’s Theorem as separate theorems.

Theorem 5 (Rankin). If {v1, . . . , vn} is a set of non-zero vectors in Rd such that the
angle between any two of them is larger than π

2
, then n 6 d+ 1.

Proof. Suppose to the contrary that n > d+ 2. Let G be the Gram matrix of the vectors
v1, . . . , vn, that is, G = (〈vi, vj〉)ni,j=1. Choose a positive λ such that λ > 〈vi, vi〉 for all
i ∈ [n], and set H = λIn − G. The hypothesis of the theorem implies that all entries of
H are positive. By Lemma 1, the spectral radius ρ(H) is the largest eigenvalue of H of
multiplicity one.

Obviously, rankG 6 d because G is the Gram matrix of d-dimensional vectors. Hence
0 is an eigenvalue of G of multiplicity at least two, that is, λ is an eigenvalue of H of
multiplicity at least two. Since the Gram matrix G is positive semidefinite, and thus,
all its eigenvalues are non-negative, λ must be the largest eigenvalue of H. Therefore,
λ = ρ(H), contradicting the fact that the multiplicity of the largest eigenvalue is one.

Theorem 6 (Rankin). If {v1, . . . , vn} is a set of non-zero vectors in Rd such that the
angle between any two of them is at least π

2
, then n 6 2d.

Proof. Suppose to the contrary that n > 2d+1. Without loss of generality we can assume
that the vectors v1, . . . , vn are of unit length. Let G be the Gram matrix of the vectors
v1, . . . , vn. Set H = In −G. The hypothesis of the theorem implies that all entries of H
are non-negative. By Lemma 2, the spectral radius ρ(H) is the largest eigenvalue of H.

Obviously, rankG 6 d because G is the Gram matrix of d-dimensional vectors. Hence,
0 is an eigenvalue of G of multiplicity at least n− d, and thus, 1 is an eigenvalue of H of
multiplicity at least n − d. Since the Gram matrix G is positive semidefinite, that is, 0
is its smallest eigenvalue, 1 is the largest eigenvalue of H. It means that ρ(H) = 1. Let
λ1, . . . , λd, 1, . . . , 1 be the eigenvalues of H, indexed in non-decreasing order. Therefore,
we have

0 = tr(H) = λ1 + · · ·+ λd + (n− d), and thus, |λ1 + · · ·+ λd| = n− d > d+ 1.

However, the last inequality contradicts |λi| 6 1 = ρ(H) for all i ∈ [d].

4 Proofs of Caratheodory’s and Steinitz’s Theorems

Theorem 7 (Carathéodory’s Theorem). If the origin o ∈ Rd lies in the convex hull of
points v1, . . . , vn ∈ Rd, then there is a set J ⊆ [n] of size at most d+ 1 such that o lies in
conv{vj : j ∈ J}.

Proof. We use induction on n. The base case, n = d + 1, being trivial, it is sufficient
to show that if n > d + 1 and o 6∈ conv {vi : i ∈ [n] \ {j}} for all j ∈ [n], then o 6∈
conv {vi : i ∈ [n]}.

By Theorem 3, for all j ∈ [n], there is a vector yj such that 〈vi, yj〉 > 0 for all
i ∈ [n] \ {j}. Choose a positive λ such that λ + 〈vi, yi〉 > 0 for all i ∈ [n] and set
H = λIn + V tY , where V = [v1, . . . , vn] and Y = [y1, . . . , yn]. By Lemma 1, the spectral
radius ρ(H) is the largest eigenvalue of H of multiplicity one.
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Obviously, rankV tY 6 d because V and Y are d-by-n matrices. Hence, 0 is an eigen-
value of V tY of multiplicity at least two, that is, λ is an eigenvalue of H of multiplicity
at least two. It follows that ρ(H) 6= λ, so ρ(H) > λ, because the spectral radius cannot
be less than a positive eigenvalue. Consider the eigenvector x of the eigenvalue ρ(H). By
Lemma 1, its entries are positive. Therefore, we obtain(

λIn + V tY
)
x = ρ(H)x, and thus, V tY x = (ρ(H)− λ)x.

Hence, Y x is a d-dimensional vector such that 〈vi, Y x〉 > 0 for all i ∈ [n], because all
entries of the vector (ρ(H) − λ)x are positive. So the points v1, . . . , vn lie in an open
half-space bounded by a hyperplane passing through the origin. Thus, their convex hull
does not contain the origin.

Theorem 8 (Steinitz’s Theorem). If the origin o of Rd is an interior point of the convex
hull of points v1, . . . , vn ∈ Rd, then there is a set J ⊆ [n] of size at most 2d such that the
point o is interior of conv{vj : j ∈ J}.

Proof. Again, we use induction on n. The base case, n = 2d, being trivial, it is sufficient
to show that if n > 2d and, for all j ∈ [n], the origin o is not an interior point of
conv {vi : i ∈ [n] \ {j}}, then o is not an interior point of conv {vi : i ∈ [n]}.

By Theorem 4, for all j ∈ [n], there is a non-zero vector yj such that 〈vi, yj〉 > 0 for
all i ∈ [n] \ {j}. If 〈vi, yi〉 > 0 for some i ∈ [n], then the origin is not an interior point of
conv{v1, . . . , vn}. So, without loss of generality, we may assume that 〈vi, yi〉 = −1 for all
i ∈ [n]. Set H = In + V tY , where V = [v1, . . . , vn] and Y = [y1, . . . , yn]. By Lemma 2,
the spectral radius ρ(H) is an eigenvalue of H.

Obviously, rankV tY 6 d because V and Y are d-by-n matrices, and hence, 0 is an
eigenvalue of V tY of multiplicity at least (n − d), that is, 1 is an eigenvalue of H of
multiplicity at least (n − d). Suppose that ρ(H) = 1. Let λ1, . . . , λd, 1, . . . , 1 be the
eigenvalues of H, indexed in non-decreasing order. Hence we have

0 = tr(H) = λ1 + · · ·+ λd + (n− d), and thus, |λ1 + · · ·+ λd| = n− d > d+ 1.

But the last inequality contradicts |λi| 6 1 = ρ(H) for all i ∈ [d]. Hence ρ(H) > 1 because
the spectral radius cannot be less than a positive eigenvalue. Consider the eigenvector x
of the eigenvalue ρ(H). By Lemma 2, its entries are non-negative entries. Therefore, we
get (

In + V tY
)
x = ρ(H)x, and thus, V tY x = (ρ(H)− 1)x.

Hence, 〈vi, Y x〉 > 0 for all i ∈ [n]. Moreover, Y x is a non-zero vector, because among
non-negative entries of (ρ(H)− 1)x there is at least one positive. So the points v1, . . . , vn
lie in a closed half-space bounded by a hyperplane passing through the origin, that is,
the point o is not interior of their convex hull.

5 Concluding Remarks

Our proofs use induction on the number of points, but not on the dimension. As a natural
question, we ask if induction can be completely avoided.

In [BBM91], A. Bezdek, K. Bezdek and E. Makai obtained the following result con-
cerning a point in the interior of a convex polytope with few vertices.
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Theorem 9 (A. Bezdek, K. Bezdek, E. Makai). If the origin o of Rd is an interior point
of the convex hull of n points v1, . . . , vn ∈ Rd with d < n 6 2d, then there is a set J ⊂ [n]
of size at least

⌈
n
n−d

⌉
such that o lies in the relative interior of conv{vj : j ∈ J}.

A colorful generalization of Carathéodory’s theorem due to Bárány [Bár82] reads as
follows.

Theorem 10 (Bárány). Let F1, . . . , Fd+1 be finite sets of points in Rd such that the
origin o is contained in the convex hull of each. Then there is a (d + 1)-point set E in
F1 ∪ · · · ∪ Fd+1 with E ∩ Fi a singleton for each i ∈ [d+ 1] such that o ∈ conv(E).

It would be interesting to see short proofs of Theorems 9 and 10 using our method
based on the Perron–Frobenius Theorem.

We mention the following difficult problem. In [BKP82] (see also [BKP84]), Bárány,
Katchalski and Pach showed the following Quantitative Steinitz Theorem.

Theorem 11 (Bárány, Katchalski and Pach). For every dimension d, there is a constant
r = r(d) > 0 such that if the origin centered unit ball is contained in the convex hull of
points v1, . . . , vn ∈ Rd, then there is a set J ⊆ [n] of size at most 2d such that the origin
centered ball of radius r(d) is contained in conv{vj : j ∈ J}.

In [BKP82], the bound r(d) > d−2d is established (in fact, a bound of order roughly
d−d/2 is shown implicitly), and r(d) > cd−1/2 is conjectured with some universal constant
c > 0. We do not know if this problem can be approached using our method.
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