
121

Simulation-based Network Fault Injection
in the CloudSim Plus Cloud Simulation
Environment
Farida Asadova1, Gabor Kertesz1, Robert Lovas2

1Obuda University, Budapest, Hungary, asadovafarida@stud.uni-obuda.hu, kertesz.gabor@
nik.uni-obuda.hu
2Eotvos Lorand Research Network (ELKH), Budapest, Hungary, robert.lovas@sztaki.hu

*Correspondence:
Farida Asadova,Obuda
University, Budapest,

Hungary, asadovafarida@
stud.uni-obuda.hu

Abstract
One effective method for assessing the dependability of
computer systems is fault injection. This deliberate technique
introduces faults into a system to assess its resilience and
ability to handle abnormal conditions. Therefore, this study
investigates and simulates the different network problems in
the CloudSim Plus environment. CloudSim Plus is a simulation
framework that enables the modeling and simulation of
cloud computing environments, allowing researchers and
practitioners to evaluate the performance and behavior
of cloud-based systems and algorithms. Network fault
detection and its management are essential duties in cloud
systems. Moreover, the feasibility of manual monitoring and
involvement has decreased as these infrastructures expand
and change. This paper briefly introduces network problems
and fault injection outcomes in CloudSim Plus nodes.

Keyword: CloudSim Plus, Cloud Systems, Network Faults, Fault
Injection, Cloud Simulation.

Azerbaijan Journal of High Performance Computing, Vol 6, Issue 1, 2023, pp. 121-131
https://doi.org/10.32010/26166127.2023.6.1.121.131

1. Introduction
The primary objective of this research is to systematically identify network faults

within the cloud environment, comprehensively analyze their principal functionalities,
and subsequently introduce them into the (CloudSim Plus, 2022) environment. This
study examines the procedural steps in injecting these faults into the cloud environment
while concurrently collecting relevant data for statistical analysis.

A fault represents an anomaly in the system that causes it to behave unpredictably
and unexpectedly. In a cloud environment, various types of network faults (Hsueh, M.
C., Tsai, T. K., & Iyer, R. K., 1997) can occur. The most common network issues are
listed:

1) Resource Allocation Faults (Mohan, N. R., & Raj, E. B., 2012, November)- Three
resource allocation faults are listed.

a) Network Equipment Faults (Vishwanath, K. V., & Nagappan, N., 2010, June) -
Network problems may arise within network hardware and devices such as switches,

122

routers, firewalls, and wifi access points. These issues can stem from various factors,
including improper settings, defective connections, and the occurrence of packet loss.

b) Extensive CPU Load (Mason, K., Duggan, M., Barrett, E., Duggan, J., & Howley,
E., 2018) - This is caused by the cloud network becoming congested with a lot of
traffic. CPU consumption may climb significantly when processes take longer to
complete or when more network packets are delivered and received across the cloud
network. High CPU utilization can slow down the network or leave insufficient CPU for
other tasks, c) Extensive Bandwidth Load (Yu, R., Xue, G., Zhang, X., & Li, D. (2017,
May) - Cloud network becomes congested when someone or something starts using
all available capacity to download terabytes of data, possibly video. Users may start
encountering issues like poor internet download speeds when the network becomes
congested owing to high bandwidth utilization, leaving insufficient bandwidth for other
network sections.

2) Faulty Cables or Connectors - Faults might be produced on the network equipment
connected to by hardware issues like faulty cables or connectors. The quantity of data
that can pass through a damaged copper, cable, or fiber-optic cable without packet
loss will likely be reduced. The manuscript by Dantas, M. S. M., et al. (2022) examines
missing or unplugged connectors and detects them in classification.

3) Equipment Operation - When hardware or devices are not operating as intended
due to incorrect configuration or disabling, this could affect the network's performance.

4) Domain Name System (DNS) Faults - DNS faults generally occur when users
cannot connect to an IP address, which is a symptom that they could not have network
or internet connectivity anymore. Consequently, the application may concurrently
appear online internally while offline to users.

5) Wireless Network Interference - Wireless interference occurs when something
disrupts or weakens the wifi signal transmitted by your wireless router. This is especially
true for 2.4GHz wireless routers.

The first obstacle for engineers is immediately identifying the events that can lead
to breakdowns and the specific time, given that a network outage or failure can occur.
Although consumers are usually prompt in reporting issues, it is obviously better to
catch the issue early and fix it before it negatively impacts users.

Fault injection is a broad and extensively researched area encompassing various
implementation aspects. Hsueh et al. (1997) describe the concept of fault as a physical
defect, imperfection, or flaw that manifests within hardware or software components.
Engineers employ fault injection techniques to assess the resilience and reliability
of fault-tolerant systems or components. Fault injection is the validation technique of
the dependability of fault tolerant systems, which consists of the accomplishment of
controlled experiments where the observation of the system's behavior in the presence
of faults is induced explicitly by the writing introduction of faults in the system. The fault
injection techniques have been recognized for a long time as necessary to validate
the dependability of a system by analyzing the behavior of the devices when a fault

Farida Asadova, et al.

123

occurs.
According to Ziade, H., Ayoubi, R. A., & Velazco, R. (2004), there are numerous fault

injection techniques as hardware-based fault injection, software-based fault injection,
simulation-based, emulation-based, and hybrid fault injection methods. This study
tested injection techniques based on the simulation-based fault injection method. As
an experimental setup, CloudSim Plus (2022) simulation environment has been used
to inject collected network faults.

An innovative, generalized, and extendable simulation framework called CloudSim
Plus makes it possible to model, simulate, and experiment with new Cloud computing
infrastructures and application services (Silva Filho, et al., 2017, May). While CloudSim
Plus builds upon the foundation of CloudSim (Buyya, R., Ranjan, R., & Calheiros, R.
N., 2009, June), it introduces significant improvements, modularity, and new features,
making it a preferred choice for researchers and developers seeking more advanced
cloud simulation capabilities.

The stability and management of cloud systems have become increasingly
important as cloud technologies advance quickly and more applications are moved
to cloud environments. Even if cloud monitoring gets less attention, it is essential to
conduct precise and ongoing monitoring efforts to spot errors and correctly run cloud
processes. Cloud monitoring aids in reviewing, keeping track of, and managing the
intricate operations of cloud infrastructure, as noted by Aceto, G., Botta, A., De Donato,
W., & Pescapè, A. (2012, November).

2. Related Research
Numerous articles examine fault injection from a variety of perspectives. Gulenko,

A., Wallschläger, M., Schmidt, F., Kao, O., & Liu, F. (2016, December) research paper
investigates several anomalies in the experimental setup built in the open-source cloud
computing system OpenStack. The results were evaluated by investigating multiple
machine learning algorithms. This manuscript chooses seven common faults, including
memory leaks, excessive CPU usage, disk write, package loss, increased latency,
throttle bandwidth, and bandwidth usage. Some of these faults can be classified as
network faults.

Fault injection is a wide area of research; therefore, many survey manuscripts
are written to classify and clarify fault injection methodologies. In the survey paper,
Ziade, H., Ayoubi, R. A., & Velazco, R. (2004), not only clarify the various types of fault
injection methods and define their respective advantages and disadvantages but also
categorize the concept of fault into hardware and software faults, with hardware faults
encompassing permanent, transient, and intermittent faults. In contrast, software faults
include function, algorithm, timing, checking, and assignment faults. Another survey
paper by Kooli, M., & Di Natale, G. (2014, May) defines fault injection methodologies
for fault-tolerant systems. Maxion, R. A., & Olszewski, R. T. (1993, June) use the
experimental setup methodology on network fault injection in a campus network. The

Azerbaijan Journal of High Performance Computing, 6 (1), 2023

124

general experimenting concept could be applied to anomaly detection in the cloud.
The research written by Nita, M. C., Pop, F., Mocanu, M., & Cristea, V. (2014)

presents the FIM-SIM module for the CloudSim environment. This module is helpful for
developers to test and evaluate the cloud environment. The authors have developed
a run-time, event-driven fault injection module for cloud simulation. At a randomly
selected time frame, it will generate an event and simulate a failure in the cloud system.
The interaction between the Broker and the Datacenter involves the transmission of
cloudlets, followed by scheduling based on a designated Scheduling Policy. Within
the CloudSim framework, entities can exchange specific events. Specifically, the Fault
Injector module sends failure notifications to the Datacenter. Notably, the fault injector
module utilizes statistical distribution (both discrete and continuous) to generate
events. It operates as a continuous thread throughout the simulation period, attempting
to introduce faults based on a statistical method for generating random numbers.

Continuous improvements in cloud simulation environments have led to the
developing of a new version of the CloudSim framework, known as CloudSim Plus.
In the paper, Silva Filho, et al. (2017, May) discuss the enhanced functionalities
and improvements made to the existing classes within CloudSim. The introduction
of CloudSim Plus provides a more advanced and flexible architecture, allowing for
greater customization and development of cloud simulations. In the CloudSim Plus
simulation environment, Malik, M. K. (2020) have conducted research based on host
fault injection. The simulation of host injection used in this study was tested using several
distribution techniques. Analysis and evaluation of the faults were done appropriately.
Similar to this, available bandwidth in the simulation data centers has been examined
in the article Bosilca, A., Nita, M. C., Pop, F., & Cristea, V. (2014, September). Another
research work describes (Zhang, H., Dong, F., Shen, D., Xiong, R., & Jin, J., 2017,
April) a Virtual network fault diagnosis mechanism based on fault injection.

3. Experimental Setup in Cloudsim
CloudSim Plus, an open-source framework, is widely utilized to simulate cloud

computing services and infrastructure. It is a powerful tool for modeling and simulating
cloud computing environments, enabling researchers to assess hypotheses and
replicate tests before software development. The adoption of CloudSim Plus brings
forth numerous advantages and benefits across various dimensions of cloud computing
research and development.

• Utilizing a simulation tool like CloudSim Plus entails no capital investment, as it
involves neither installation expenses nor maintenance costs.

• CloudSim Plus offers ease of use and scalability, allowing users to modify resource
requirements effortlessly by making minor changes to a few lines of code. 

• Using simulation in cloud computing enables the evaluation of risks at an earlier
stage, circumventing the limitations posed by real testbeds, which restrict experiments
to the scale of the test environment and impede result reproducibility.

Farida Asadova, et al.

125

• CloudSim Plus eliminates the necessity for trial-and-error approaches, replacing
them with a repeatable and controlled environment that allows for testing services
without incurring costs. This alternative obviates the reliance on theoretical and
imprecise evaluations, which can result in suboptimal service performance and
revenue generation.

The experimental setup has been built for fault injection simulation and faulty
data collection. Figure 1 represents the architecture of the simulation environment.
This architecture comprises one Datacenter, ten hosts, ten Virtual Machines, and ten
Cloudlets.

1) Datacenter - used for modeling the foundational hardware equipment of the
cloud environment. This class provides methods to specify the functional requirements
of the Datacenter as well as methods to set the allocation policies of the VMs.

2) DatacenterBroker - an entity acting on behalf of the user or customer. It is
responsible for functions of VMs, including VM creation, management, destruction,
and submission of cloudlets to the Virtual Machine(VM).

3) Host - executes actions related to the management of virtual machines. It also
defines policies for provisioning memory and bandwidth to the virtual machines and
allocating CPU cores to the virtual machines.

4) VM - represents a virtual machine by providing data members defining a
VM's bandwidth, RAM, and size while providing setter and getter methods for these
parameters.

5) Cloudlet - represents any task run on a VM, like a processing task, a memory
access task, a file updating task, etc. This class stores parameters defining the
characteristics of a task, such as its length and size. It provides methods similar to the
VM class while also providing methods that define a task's execution time, status, cost,
and history.

CloudSim Core Simulation Engine provides interfaces for managing resources such
as VM, memory, and bandwidth of virtualized Datacenters.

CloudSim layer manages the creation and execution of core entities such as
VMs, Cloudlets, Hosts, etc. It also handles network-related execution along with the
provisioning of resources and their execution and management.

User Code is the layer controlled by the user. The developer can write the
requirements of the hardware specifications in this layer according to the scenario.

CloudSim uses a Virtual machine allocation policy in VMs distribution to resolve
resource allocation drawbacks (Iyengar, N. C. S., 2015).

4. Injected Faults
CloudSim Plus simulation tool contains the class HostFault- Injection, which

generates random failures for the Processing elements(PE) (Interface Pe, 2023) of
Hosts inside a given Datacenter. A Fault Injection object usually has to be created
after the VMs are created to make it easier to define a function to clone failed VMs. The

Azerbaijan Journal of High Performance Computing, 6 (1), 2023

126

events happen in the following order:
1) Random Number Generator creates time to inject a Host failure.
2) A Host is randomly selected to fail at that time using an internal Uniform Random

Number Generator with the same seed as the given generator;
3) The number of Host PEs to fail is randomly generated using the internal generator;
4) failed physical PEs are removed from affected VMs, VMs with no remaining PEs

and destroying and clones of them are submitted to the DatacenterBroker of the failed
VMs;

5) Another failure is scheduled for the next time using the given generator;
6) the process repeats until the end of the simulation.
7) When Host's PEs fail, if there are more available PEs than those required by its

running VMs, no VM will be affected.
They consider X as the number of failed PEs, lower than the total available PEs.

In this case, the X PEs will be removed cyclically, one by 1, from running VMs. In this
way, some VMs may continue execution with fewer PEs than they requested initially.
On the other hand, if after the failure, the number of Host working PEs is lower than the
required to run all VMs, some VMs will be destroyed.

If all PEs are removed from a VM, it is automatically destroyed, and a snapshot
(clone) from it is taken and submitted to the Broker so the clone can start executing into
another host. In this case, all the cloudlets inside the VM will be cloned to and restart
executing from the beginning.

If a cloudlet running inside a VM affected by a PE failure requires Y PEs, but the VMs
do not have such PEs anymore, the Cloudlet will continue executing, but it will take
longer to finish. For instance, if a Cloudlet requires 2 PEs, but after the failure, the VM
is left with just 1 PE, the Cloudlet will spend double the time to finish.

Host PEs failures may happen after all its VMs have finished executing. This way, the
presented simulation results may show that the number of PEs in a Host is lower than its
VMs require. In this case, the VMs shown in the results finished executing before some
failures happened. Analyzing the logs is easy to confirm that. Failures interarrivals
are defined in minutes since seconds is a too small time unit to define such value.
Furthermore, defining the number of failures per second does not make sense. This
way, the generator of failure arrival times given to the constructor considers the time
in minutes, despite the simulation time unit being seconds. Since commonly Cloudlets
take some seconds to finish, mainly in simulation examples, failures may happen just
after the cloudlets have finished. This way, one should ensure that Cloudlets' lengths
are large enough to allow failures to happen before the end.

Certain network faults cannot be injected into the cloud simulation environment.
These faults are related to the natural environment and can fail for unpredictable
reasons. Network Equipment faults, Faulty Cables or Connectors, and Wireless
Network Interference faults cannot be tested in the CloudSim Plus environment. Some
network faults can occur due to natural circumstances. As the CloudSim Plus simulates

Farida Asadova, et al.

127

Fig. 1: Experimental Setup in CloudSim Plus

the cloud environment, it does not contain equipment, cables, or connectors.
This research mainly injects the faults classifi ed as Extensive CPU Load, Extensive

Bandwidth Load, and DNS faults into the CloudSim Plus. The faults are injected into
the Hosts in the testbed.

The fault injection techniques can be grouped into invasive and noninvasive
techniques. The problem with suffi ciently complex systems, particularly time dependant
ones, is that it may be impossible to remove the footprint of the testing mechanism from
the system's behavior, independent of the fault injected.

• Invasive techniques are those which leave behind such a footprint during testing.
• NoninvasiveNoninvasive techniques can mask their presence not to affect the

system other than the faults they inject.
The injection agents installed on the data center nodes perform the injections.

The agents inject faults by changing the infrastructure confi guration at the hypervisor
level: for example, by deallocating a resource or setting the network interface's loss or
corruption rate.

5. Erroneous Data Collection
Fault injection techniques yield seven benefi ts for erroneous data collection:
• An understanding of the effects of real faults and, thus, of the related behavior of

the target system in terms of functionality and performance.
• An assessment of the effi cacy of the fault tolerance mechanisms included in

the target system and thus feedback for their enhancement and correction (e.g., for
removing design faults in the fault tolerance mechanisms).

• They are forecasting the faulty behavior of the target system, in particular,

Azerbaijan Journal of High Performance Computing, 6 (1), 2023

128

encompassing a measurement of the effi ciency (coverage) provided by the fault
tolerance mechanisms.

• Estimating fault-tolerant mechanisms' failure coverage and latency (i. e timing).
• Exploring the effects of different workloads (different input profi les and

environments) on the effectiveness of fault-tolerant mechanisms.

Fig. 2: CloudSim Plus Model simulation data overview

• Identifying weak links in the design: For example parts of the system within which
a single fault could lead to severe consequences.

• Studying the system’s behavior in the presence of faults, for example propagation
of fault effects between system components or the degree of fault

In practice, fault removal and fault forecasting are frequently not used separately,
but one follows the other. For instance, after rejecting a system by fault forecasting
testing, several fault removal tests should be applied. These new tests provide actions
that will help the designer to improve the system. Then, it will be applied to another fault
forecasting test, and so on (Hsueh, M. C., Tsai, T. K., & Iyer, R. K., 1997).

According to the simulation of the model, the data has been collected in Figure
3. The data in this Table shows that the high number of PEs usage caused a rapid
increase in memory utilization. In this table number of failed hosts is represented. Due
to the failure of the PEs, VMs are removed from the Hosts. By the end of the simulation,
no working VMs are left for simulation. The execution of this simulation is performed
once, yielding varying results with each iteration. However, conducting a signifi cantly
larger number of simulations, preferably in the hundreds, is necessary to achieve a
reliable statistical analysis. Figure 4 shows the spike on DC 2 when all hosts were
unavailable, and it could no longer request the VMs. The most striking observation to
emerge from the data comparison was when all hosts and PEs were in use, and there
were no available memory and VM to prevent an outage.

Conclusion and Future Work
This paper investigates the general network faults and classifi es them. Also, the

fault detection concept is explained by referring to various publications.

Farida Asadova, et al.

129

Fig. 3: Chart based on the collected data

In future work, utilizing the extensive dataset obtained from hundreds of simulations
would facilitate the execution of statistical analyses and predictive modeling. This,
in turn, would enable the expansion of fault detection and Prediction capabilities
encompass a wider array of fault types, as well as their corresponding specifi cations,
alongside the incorporation of diverse monitoring technologies.

This paper focused on the broad overview by referring to various materials and
documentation. The components of the CloudSim Plus simulation environment are
learned and implemented.

Acknowledgment
The authors thankfully acknowledge the support of the Doctoral School of Applied

Informatics and Applied Mathematics, Obuda University. The New National Excellence
Program of the Ministry For Innovation And Technology supported the presented
research from the source of the National, Research, Development and Innovation Fund.
We gratefully acknowledge the fi nancial support of the Hungarian Scientifi c Research
Fund. The Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences
also supported the presented work of R. Lovas.

 References
Aceto, G., Botta, A., De Donato, W., & Pescapè, A. (2012, November). Cloud

monitoring: Defi nitions, issues and future directions. In 2012 IEEE 1st International
conference on cloud networking (CLOUDNET) (pp. 63-67). IEEE.

Bosilca, A., Nita, M. C., Pop, F., & Cristea, V. (2014, September). Cloud simulation

Azerbaijan Journal of High Performance Computing, 6 (1), 2023

130

under fault constraints. In 2014 IEEE 10th International Conference on Intelligent
Computer Communication and Processing (ICCP) (pp. 341-348). IEEE.

Buyya, R., Ranjan, R., & Calheiros, R. N. (2009, June). Modeling and simulation of
scalable Cloud computing environments and the CloudSim toolkit: Challenges and
opportunities. In 2009 international conference on high performance computing &
simulation (pp. 1-11). IEEE.

CloudSim Plus (2022). https://cloudsimplus.org, [Online] Accessed 15 September
2022.

Dantas, M. S. M., et al. (2022). Faulty RJ45 connectors detection on radio base
station using deep learning. Multimedia Tools and Applications, 81(21), 30305-30327.

Gulenko, A., Wallschläger, M., Schmidt, F., Kao, O., & Liu, F. (2016, December).
Evaluating machine learning algorithms for anomaly detection in clouds. In 2016 IEEE
International Conference on Big Data (Big Data) (pp. 2716-2721). IEEE.

Hsueh, M. C., Tsai, T. K., & Iyer, R. K. (1997). Fault injection techniques and
tools. Computer, 30(4), 75-82.

Interface Pe (2023). https://www.javadoc.io/doc/org.cloudsimplus/ cloudsim-
plus/4.3.2/org/cloudbus/cloudsim/resources/Pe.html, [Online] Accessed 3 May 2023.

Iyengar, N. C. S. (2015). Virtual machine allocation policy in cloud computing using
cloudsim in java. Int J Grid Distrib Comput, 8(1), 145-158.

Kooli, M., & Di Natale, G. (2014, May). A survey on simulation-based fault injection
tools for complex systems. In 2014 9th IEEE International Conference on Design &
Technology of Integrated Systems in Nanoscale Era (DTIS) (pp. 1-6). IEEE.

Malik, M. K. (2020). Host fault injection using various distribution functions. Int J
Comput Sci Mob Comput, 9(12), 1-10.

Mason, K., Duggan, M., Barrett, E., Duggan, J., & Howley, E. (2018). Predicting
host CPU utilization in the cloud using evolutionary neural networks. Future Generation
Computer Systems, 86, 162-173.

Maxion, R. A., & Olszewski, R. T. (1993, June). Detection and discrimination of
injected network faults. In FTCS-23 The Twenty-Third International Symposium on
Fault-Tolerant Computing (pp. 198-207). IEEE.

Mohan, N. R., & Raj, E. B. (2012, November). Resource Allocation Techniques in
Cloud Computing--Research Challenges for Applications. In 2012 fourth international
conference on computational intelligence and communication networks (pp. 556-560).
IEEE.

Nita, M. C., Pop, F., Mocanu, M., & Cristea, V. (2014). FIM-SIM: fault injection
module for CloudSim based on statistical distributions. Journal of telecommunications
and information technology, (4), 14-23.

Silva Filho, et al. (2017, May). CloudSim plus: a cloud computing simulation
framework pursuing software engineering principles for improved modularity,
extensibility and correctness. In 2017 IFIP/IEEE symposium on integrated network and
service management (IM) (pp. 400-406). IEEE.

Farida Asadova, et al.

131

Silva Filho, et al. (2017, May). CloudSim plus: a cloud computing simulation
framework pursuing software engineering principles for improved modularity,
extensibility and correctness. In 2017 IFIP/IEEE symposium on integrated network and
service management (IM) (pp. 400-406). IEEE.

Vishwanath, K. V., & Nagappan, N. (2010, June). Characterizing cloud computing
hardware reliability. In Proceedings of the 1st ACM symposium on Cloud computing (pp.
193-204).

Yu, R., Xue, G., Zhang, X., & Li, D. (2017, May). Survivable and bandwidth-
guaranteed embedding of virtual clusters in cloud data centers. In IEEE INFOCOM
2017-IEEE Conference on Computer Communications (pp. 1-9). IEEE.

Zhang, H., Dong, F., Shen, D., Xiong, R., & Jin, J. (2017, April). Virtual network
fault diagnosis mechanism based on fault injection. In 2017 IEEE 21st International
Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 384-
389). IEEE.

Ziade, H., Ayoubi, R. A., & Velazco, R. (2004). A survey on fault injection
techniques. Int. Arab J. Inf. Technol., 1(2), 171-186.

Submitted: 03.04.2023
Accepted: 29.05.2023

Azerbaijan Journal of High Performance Computing, 6 (1), 2023

