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Accurate reactions open up the way for more cooperative societies
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We consider a prisoner’s dilemma model where the interaction neighborhood is defined by a square lattice.
Players are equipped with basic cognitive abilities such as being able to distinguish their partners, remember
their actions, and react to their strategy. By means of their short-term memory, they can remember not only the
last action of their partner but the way they reacted to it themselves. This additional accuracy in the memory
enables the handling of different interaction patterns in a more appropriate way and this results in a cooperative
community with a strikingly high cooperation level for any temptation value. However, the more developed
cognitive abilities can only be effective if the copying process of the strategies is accurate enough. The excessive
extent of faulty decisions can deal a fatal blow to the possibility of stable cooperative relations.
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I. INTRODUCTION

The conundrum of cooperation keeps the scientific
community occupied for a long time [1–9]. The way selfish
individuals reach the solution to cooperate in order to optimize
their own income is a phenomenon widely observable in
nature; however, it is rather hard to formulate in a mathematical
way. Scientists of many disciplines—mathematics, physics,
biology, economy, and, among others, sociology—keep adding
contributions to understand this puzzle more thoroughly.

Evolutionary game theory [10–12] offers an excellent
playground to test theories and develop models to study the
evolution of cooperation. In this framework, it is possible to
analyze the behavior of individuals in their natural environ-
ment: populations. The harshest dilemma situation to study is
offered by the prisoner’s dilemma (PD) game [1,3,5]. In this
game, both interacting individuals have the option to pay the
cost c in order to provide a greater benefit b to the partner. The
dilemma lies in the fact that an individual is always better off
by not paying the cost, independently of the decision of her
partner. If the partner sacrifices the cost, then she would get the
whole benefit b, instead of the payoff b − c, which she would
get for a mutually cooperative choice. If the partner withholds
the donation, then she gets nothing, but it is still a better
outcome for her than the −c cost for the decision to support a
defective partner. However, if both of them follow this rational
reasoning, they receive nothing instead of the positive income
b − c for mutual cooperation. Thus, the pure mathematical
analysis of the PD predicts the reign of defective behavior.

This prediction is quite different from what we observe in
nature. Consequently, game theorists improved the model to
contain more, realistic elements of situations where coopera-
tion is at stake. The analysis of kin selection [13], reputation
effects [14–17], direct and indirect reciprocity [4,18,19],
voluntary participation [20,21], and different punishment
methods [22–28] could help explain many aspects of a
cooperative society. However, our knowledge does not seem
to be complete yet. One of the attempts was the introduction of
structured populations [29–34]. In these models, individuals
cannot interact with any member of the community, only with
their acquaintances. As a consequence of this, cooperation
could have emerged due to the possibility that cooperative

players could form clusters and support each other within the
cluster. At the boundaries of the cluster, defective players try to
break in but cooperators’ higher payoff earned from mutually
cooperative individuals can keep the cluster intact. This
window of opportunity for cooperation to emerge is, however,
a narrow one; it only works for a small set of payoff parameters
and even for these values, the level of cooperation is quite low
in the whole population. Many different types of population
structures such as lattices [29,31], random graphs [35], small
world networks [36,37], scale-free networks [38], etc., were
studied to describe various connectivity situations and some of
them provided additional mechanisms to enhance the level of
cooperation due to the specific structure. In the present paper,
we use a simpler underlying structure, the square lattice, in
order to be able to focus on other features of the model.

In some of our recent papers [39,40], we gave up the tra-
ditional game theoretical approach of unconditional strategies
and endowed our players with incipient cognitive capabilities.
Players were able to distinguish their coplayers, remember
their last action and take this last action into account when
they decided what move they should choose towards the
given coplayer. Even these incipient cognitive abilities were
sufficient to tip the scales in favor of cooperation’s success.
In this paper, we take a further step into this direction by
improving the cognitive capabilities of players so that they
can take into account not only the opponents’ last move but
also their own. This seemingly small modification basically
doubles the capacity needed to react to different outcomes; the
players have to possess a scheme for all four possible outcomes
of a one-shot PD interaction. In addition, the memory capacity
has to be also improved as now not only the opponent’s last
move is stored but the player’s own decision towards the
partner as well. However, this “investment” opens up new
possibilities: It enables the fine tuning of decisions, situations
can be evaluated more precisely, and the appropriate action can
be chosen more accurately. This presents itself in the measure
of cooperation: It reaches even higher levels and blooms in
any payoff parameter range. The improved efficiency is not
without a price, though; it requires accurate data to process. In a
noisy environment, where individuals’ decisions do not always
reflect their intentions, overthinking may be disadvantageous
for cooperation.
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II. THE MODEL

We consider a spatial PD game where individuals (the
players) engage in one-shot games with their neighbors. In
a PD game, the two participants have to choose between
two options—to cooperate (C) or to defect (D)—and they
receive a payoff depending on their simultaneous decisions. A
cooperator pays the cost c to grant the partner the greater ben-
efit b. Mutual cooperation (defection) thus yields the reward
R = b − c (punishment P = 0) to both players, whereas if one
player cooperates and the other defects, then the former gets
the sucker’s payoff S = −c and the latter earns the temptation
to defect T = b. We have added the original T , R, P , S payoff
terminology to make the strategy parameter notation easier
to read; moreover, the similarity between the donation game
and the PD is more apparent this way. In the donation game
scenario, the payoff values automatically satisfy the PD payoff
ranking. In order to facilitate the analysis, we fix the reward for
mutual cooperation to b − c = 1, creating a relation between
b and c, thus reducing the number of payoff parameters to one.
In this way using only the parameter b, the payoffs are b for
a successful defector, 1 for mutual cooperation, 0 for mutual
defection, and 1 − b for an exploited cooperator.

In the spatial setting, players are located on the nodes of a
square lattice. The edges of the lattice define the interaction
and imitation neighborhood. Players earn their accumulated
payoff from one-shot games with their four neighbors. They
are able to distinguish their partners and take different actions
towards them. Players have a one-step memory for each of
their partners; i.e., they can remember the outcome of their
last encounter. The strategy of a player in the spatial position
x is thus given by a four-element vector px = (pR,pS,pT ,pP ).
Each element of the vector defines the probability of future
cooperation with a neighbor from whom Player x earned
the payoff R, S, T , or P , respectively, during their last
interaction (see Fig. 1 for the explanatory meaning of the
parameters). In other words, the four strategy parameters
indicate the probability of subsequent cooperation following
the four different possible decision pairs (CC, CD, DC, DD) of
an interaction. We refer to these strategies as mem-1 strategies
[41,42] (indicating their memory capacity) opposing to the
reactive strategies that can only remember the last decision
of their partner [43–45]. This new strategy space is huge; a
strategy can be drawn anywhere from the four-dimensional
unit cube. For simulation reasons, we discretize the strategy
parameter space: Each vector element can take values from
0 to 1 in 0.01 steps; i.e., the strategy vector of a player
takes the form (i · 0.01,j · 0.01,k · 0.01,l · 0.01), where 0 �
i,j,k,l � 100. This results in more than 108 possible strategies
in this discretized strategy space. Computer simulations are
started from an initial state where players are assigned
random strategy parameter values. Given the lack of past
encounters at the start of the simulation, individuals cooperate
with probability (pR + pS + pT + pP )/4 in the first step or
defect with probability 1 − (pR + pS + pT + pP )/4. In each
interaction, players make decisions depending on their strategy
parameters, their last action towards the partner, and the latest
action of the partner.

In an elementary simulation step, two neighboring individu-
als (x and y) are picked randomly and their accumulated payoff

FIG. 1. (Color online) Explanatory meaning of the strategy pa-
rameters. The probability of cooperating after a mutually cooperative
encounter (pR) can be described as mutualism, the complementary
probability (the probability of defection) (1 − pR) as treason. Co-
operating (pS) after being a victim of a successful defection is the
patience of Job (in line with Christianity’s “turn the other cheek”),
while paying with defection to the defective partner is qualified as
retaliation (1 − pS). The probability of cooperating after successfully
exploiting the partner is the propensity for repentance (pT ) and the
probability of continued defection (1 − pT ) can be described as greed.
Finally, acting friendly after a mutually defective round (pP ) is a
measure of forgiveness, while for keeping up the defective series of
decisions (1 − pP ) the term could be “negative mutualism.”

is calculated. Player x adopts the strategy of player y according
to the pairwise comparison rule with probability W (x ← y) =

1
1+exp [(Px−Py )/K] . Px and Py stand for the individual payoff of
the players and K is associated with errors in decision making
that can be originated from various sources such as emotions,
free will, fluctuation in the payoffs, and external effects (noise).
As a consequence of K , it is possible to occasionally adopt
the strategy of a player who performed worse than the focal
individual, although most of the time the more successful
players are imitated. Whenever a player adopts the strategy
of one of her neighbors, the new strategy parameters are
determined by a normal distribution with standard deviation σ

centered on the adopted values, i.e., p′
Rx

= pRy
+ ξ1(σ ) [with

ξ1(σ ) being a normally distributed random variable with zero
mean and standard deviation σ ] and likewise for the other
three strategy vector elements. This adoption method models
a slight blur in the perception and/or an inaccuracy in the
copying or succession process. Moreover, it helps avoid the
stochastic extinction of strategies and eliminates the pairwise
rule’s imperfection that it does not introduce new strategies, as
this could cause serious issues in the case of so huge a strategy
space. In a full Monte Carlo step (MCS), each individual
has the chance to change her strategy once on average. We
emphasize that this is not an iterated PD game in the sense
that players have the option to revise their strategy after each
interaction; they do not play long series of PD games with
each other before reconsidering their strategies. On the other
hand, players play with the same partners all the time as the
interaction network is fixed, so in this sense the interactions
are repeated.

We have performed extensive computer simulations on
a square lattice of the size N = 100 × 100 with periodic
boundary conditions taking into account the four nearest
neighbors as interaction partners (von Neumann neighbor-
hood). The chosen system size is sufficient as the blurred
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strategy adoption method prevents the formation of huge
clusters of identical players; thus, the correlation length does
not approach the system size. Starting from the random
initial condition, the system evolves for a transient period of
20 000 generations; then we record the appropriate quantities
(number of cooperative and/or defective decisions, strategy
parameter values, etc.) in the population for 100 000 MCS
and calculate the respective averages. The system reaches the
(quasi-)stationary state quite fast, yet, the long averaging time
is needed as the selection pressure is low on some of the
strategy components and their values drift slowly. Averaging
from different initial conditions is not needed because, due
to the defined adoption method, the system evolves to the
same state. This statement is true even if the population is
started from an absolutely defective state, with all players
having the (pR = 0,pS = 0,pT = 0,pP = 0) strategy vector.
The dynamics and the data collection for reactive strategies
were similar to the mem-1 strategy case. The K parameter
associated with errors in decision making was set to 0.4, a
value that was advantageous for cooperation in the scenario
when only unconditional strategies were allowed [31]. The
established final state is qualitatively the same for synchronous
and asynchronous updating.

III. RESULTS AND DISCUSSION

We have displayed the level of cooperation in Fig. 2 for
different σ and temptation values when the population consists
of mem-1 or reactive strategies. We have plotted the results
for extremely large σ values (σ = 0.03 and 0.05) to show how
detrimental unfaithful copying can prove for cooperation. This
effect is present for both reactive and mem-1 strategy types.
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FIG. 2. (Color online) The level of cooperation as a function of
the temptation to defect b for different σ values. Dashed blue curves
with open symbols show the results for the mem-1 strategies, while
solid red curves with solid symbols stand for the less cognitive
reactive strategies. Blue curves run above red ones (for the same
σ parameter): the more accurate handling of specific situations can
help create more cooperative societies. However, as the inaccuracy
in the copying process grows (increasing σ ) the level of cooperation
drops for increasing b values.

In comparison to mem-1 strategies, reactive strategies use
only two strategy parameters: p, the probability of cooperation
after the partner cooperated in the previous round (associated
with mutualism), and q, the probability of cooperation after
the partner defected in the previous round (associated with
forgiveness). As a consequence of this, they cannot assess
exactly why a partner made a specific decision towards them.
They do not (and cannot) differentiate between situations like
rightful retaliation, continuous defection, or treason.

Using these strategy sets, there are no unconditional
strategies, and, as such, no “real” cooperators, in the system;
therefore, the level of cooperation is defined as the average
fraction of cooperative decisions made by the players. It
can be seen that mem-1 strategies achieve more cooperative
societies for almost any σ and b parameter values; the
increased level of incipient cognition enables the more accurate
handling of situations and as a consequence it can partly
eliminate the decisions originated from faulty perception or
“misunderstandings.” The measure of cooperation decreases
monotonously with the increase of the temptation to defect
b. This is a natural effect widely observable in PD models:
The support to defective behavior enhances their chances in
the evolutionary process. For low σ values, i.e., for faithful
copying of more successful strategies, this support has a very
small effect on the final outcome of the evolution in the
whole b range. The cause for this behavior is that the level
of cooperation is very close to 100% in these cases; i.e.,
individuals hardly ever try to defect. Moreover, individuals
use an imitation based strategy adoption rule; consequently,
the payoff value for a successful defection (b) does not play a
significant role. For higher σ values, however, it begins to act,
and cooperation drops significantly with increasing b.

The very high level of cooperation indicates that the
interaction pattern largely consists of mutually cooperative
relations. In other words, pR is close to 1 in the whole
population. Players with such a strategy parameter decide
basically deterministically after a mutually cooperative move
with their partner. The effect of increasing σ , an unfaithful
strategy adoption, is most prominent in such a case be-
cause it can change the deterministic behavior to stochastic.
Consequently, occasional defective decisions can break the
mutually cooperative chains and move the population from
the fully cooperative state. The higher σ is, the higher the
probability is for lower pR parameters to be adopted during
a strategy imitation step (cf. the solid red line in Fig. 4) and,
as a consequence, more and more “unintentional” defection
can occur in the population. With defection present, the
evolutionary advantage originating from a higher b can be
expressed in the average cooperation level as well; thus, in
this case it decreases as b gets larger. For extremely large σ

values, this advantage can become so impressive that even
full defectors—(0,0,0,0) players—can appear in the system.
However, due to the players’ capabilities to react to different
neighbors differently, they can identify the defectors and can
protect the cooperative cluster from them. As a result, a
dynamically changing cluster structure can be observed in the
population that yields the displayed cooperation levels.

This analysis only considers the final state of the popula-
tion. What happens during the evolutionary process? In the
beginning, in the random initial state, small—more or less—
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cooperative groups are formed and with the help of mutually
cooperative links from each other, they can achieve a slight
payoff advantage and spread their strategy; the population
starts to homogenize. When the whole society consists of
the same (or a very similar) strategy—this is the case when
the simulation is started with exclusively defective players as
well—a mutationlike process starts to act: Individuals try to
imitate each other and during this process, due to the inherent
inaccuracy in perception and/or copying, new breeds emerge.
The more successful ones can spread and thus, step by step, the
society eventually reaches the final state where the emerging
new strategies only represent fluctuations around the optimal
strategy. For this reason, the population evolves into the same
final state independently of the initial strategy distribution.

Analyzing the stationary strategy parameter values in Fig. 3,
it becomes clear why mem-1 strategies can achieve a higher
level of cooperation and, as a consequence, higher average
payoff on the population level. The main difference between
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FIG. 3. (Color online) Average strategy parameter values for the
reactive (top panel) and mem-1 (bottom panel) strategies as a function
of the temptation b for σ = 0.005. It can be seen that having access
to a more cognitive strategy arsenal enables the more accurate
handling of specific situations. The average final strategies have
similar characteristics in the two cases but the reactive strategies can
only give “averaged reactions” to situations where mem-1 strategies
fine tune their answers. Note the different scales on the y axis for the
two panels.

reactive and mem-1 players is that the latter can differentiate
between cases when their opponents defected against them.
Exploitation can be met with retaliation (very low pS value)
but mutual defection chains can be interrupted by a milder,
forgiving reaction: The average value of pP is rather high.
If the partner does not also switch to cooperation, then in
the subsequent round, retaliation can ensue again. Reactive
players do not have this option. They have only one parameter
(q) handling these cases; thus they either decide to adopt a
forgiving behavior to avoid costly defective chains (thereby
being vulnerable to ruthless defectors) or they retaliate against
most defective moves and risk the possibility of getting into
long mutually punishing quarrels with (mostly) cooperative
partners who accidentally defected once. As the Figure shows,
reactive players try to balance between these two extremes and
adopt an average behavior: Parameter q runs between the pP

and the pS curves. The achieved level of cooperation proves
that this behavior can be perfected using more developed
behavioral parameters.

Concerning the other two strategy parameters, pR and pT ,
it can be seen that they are both steadily very close to the
maximal value 1. We have already examined the very important
role of pR in keeping up the mutual cooperative chains and its
vulnerability to σ . The behavior of the strategy parameter pT —
responsible for handling successful exploitations—is slightly
more complicated to explain. One could imagine that after a
successful defective move it pays off to keep defecting as this
is the highest individual payoff that can be attained. However,
this payoff cannot be kept up on the population level; thus,
the dominant strategy aims to get hold of the second highest
payoff. In order to achieve this, it tries to get back to mutual
cooperation as soon as possible. The lower values of the other
two strategy parameters do not contradict this endeavor as
they basically deal with “defensive” tasks: They prevent the
exploitation of the strategy.

To sum up, we can state that, in fact, only pP is affected
by the increase of b. This does not happen because of the
increase of the temptation to defect (T = b) but through the
jointly influenced sucker’s payoff (S = 1 − b). This means
that in the decrease of pP the governing force is the fear from
being exploited: Forgiving carries the risk of exploitation if
the partner keeps defecting and the cost of being the victim of
an exploitation increases with b.

For higher b and σ values the other average strategy
parameters start to decline as well; however, it is not the result
of the increase in b but the above mentioned appearance of
(0,0,0,0) players that pulls down the averages.

It is worth noting that although having similar character-
istics, the winning mem-1 strategies do not belong to the
family of the recently discovered generous zero-determinant
strategies [42,46]; such strategies should satisfy the pP +
pR = pT + pS relation.

Figure 4 illustrates how the strategy parameters are typically
distributed in the stationary state. It can be seen that the
distribution of pR is sharply peaked while the other parameters
have a flattened distribution. As we already mentioned, pR is
the most used strategy parameter in the stationary state; players
mostly cooperate, forming mutually cooperative chains with
each other. Thus, a small deviation from the optimal value in
this parameter can have serious consequences; an occasional,
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FIG. 4. (Color online) Distribution of the four strategy param-
eters in the stationary state for b = 1.5 and σ = 0.005. The most
frequently used strategy parameter, pR is exposed to the highest
selection pressure. As players mostly mutually cooperate, a small
deviation from the optimal value (pR = 1) can have a high impact
on their later interaction history. The other strategy parameters are
only needed when the chain of mutual cooperation breaks in some
form and, as such, the selection pressure is much lower on them; their
distribution is flattened. The small cutoffs at the edges are artifacts
of the strategy imitation method and do not influence the qualitative
behavior of the model.

accidental defective move can cause serious loss for both
players. These deviations can come from the mutationlike
events of the strategy adoption process. As this kind of decision
situation occurs often, players with suboptimal parameters are
eliminated promptly. In other words, the selection pressure is
high on pR . The distribution is just as much diffused as the
Gaussian strategy adoption (with half-width of σ ) forces it to
be. On the contrary, mutationlike events in less frequently used
strategy parameters can go mostly unnoticed. For example, in
a cooperative society, a small change in the pP parameter
(responsible for the handling of mutually defective cases) will
not have a big impact; its exact value does not influence the
accumulated payoff of the player so significantly. As a conse-
quence, these distributions are much more flattened and broad.

IV. SUMMARY

We have studied a spatial evolutionary PD game with the
so called mem-1 players who could recognize their partners;
remember the outcome of their last interactions and act
taking these information into account. Evolution selects a
generous tit-for-tat-like strategy from the mem-1 strategy
set that originates its success from the fact that it can give
personalized reactions to its partners’ decisions and inspire
them to cooperate on the long run. We have compared the
performance of these strategies to the efficiency of reactive
strategies where players could only remember the last action
of their partners, not the exact outcome of the encounter. We
have found that the selected mem-1 strategies can outshine the
already great success of reactive strategies and can establish
even more cooperative societies. The price for the greater
performance comes in the form of larger memory capacity and
a more complex strategy description. This increased amount
of cognition works great when the information available to the
participating individuals is accurate. However, these strategies
can prove very vulnerable to errors originated from various
sources. Errors in perception or in the strategy adoption process
can result in faulty decisions that can cause large turmoil in
the interaction pattern and ruin the finely tuned behavioral
answers. We have shown that the most important strategy
parameter is the one responsible for handling the mutually
cooperative scenarios; selection pressure is much lower on the
other parameters.

The improvement in the cooperation level is the conse-
quence of a small change in the memory usage of individuals:
going from remembering the decision of the partners in the
previous round to remembering all decisions in that round.
With strategies that can remember the outcomes of more past
rounds, this result can probably be enhanced; however, such
strategies could be even more susceptible to copying errors,
faulty decisions, or external noise due to the increased number
of strategy parameters.
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