
Informatics in Medicine Unlocked 35 (2022) 101120

A
2

Contents lists available at ScienceDirect

Informatics in Medicine Unlocked

journal homepage: www.elsevier.com/locate/imu

Detection of mild cognitive impairment based on mouse movement data of
trail making test
Gergely Hanczár a,b, Erika Griechisch a,b, Nóra Ovád a, Olivér Máté Törteli a, Gábor Tóth b,
Dávid Hanák a,∗, Balázs Vértes c, András Horváth d,e, Anita Kamondi d,f

a Cursor Insight Ltd., 20-22 Wenlock Road, N1 7GU, London, United Kingdom
b Patient Record, 20-22 Wenlock Road, N1 7GU, London, United Kingdom
c Precognize, Németvölgyi út 2, 1126, Budapest, Hungary
d National Institute of Mental Health, Neurology and Neurosurgery, Amerikai út 57, 1145, Budapest, Hungary
e Semmelweis University, Department of Anatomy, Histology and Embryology, Tűzoltó u. 58, 1094, Budapest, Hungary
f Semmelweis University, Department of Neurology, Balassa u. 6, 1083, Budapest, Hungary

A R T I C L E I N F O

Keywords:
Mouse movement
Mild cognitive impairment
Early detection
Machine learning

A B S T R A C T

Mild cognitive impairment (MCI) has 10%–20% prevalence in the population above the age of 65, and a
significant portion of these people will go on to develop dementia later in their lives. However, if MCI is
detected early, preventative measures can be taken to delay the onset of severe symptoms. Current diagnostic
methods for MCI are not suitable for regular wide-scale screening. Advances in machine learning algorithms
in combination with digital movement data offer rich possibilities for automated MCI detection. This paper
introduces a machine learning model that effectively predicts MCI based on only a few seconds of computer
mouse movement. To our knowledge, studies directly comparable to ours have not been done before. On a
dataset of 70 participants, we demonstrated 80% accuracy in distinguishing healthy controls from patients
with MCI. This gives an opportunity to develop a cost-efficient and easy-to-use screening method that could
aid the work of healthcare professionals.
1. Introduction

Dementia affects over 50 million people worldwide and causes 2.4
million deaths a year. By 2050, the number of sufferers is predicted to
increase to over 150 million [1]. Dementia is currently the 7th leading
cause of death. In the coming decades, however, it will become the
top mortality cause among elderly people [2], unless suitable early
screening and prevention methods are introduced.

10%–20% of the world population above 65 years of age has mild
cognitive impairment (MCI), which is often a precursor to dementia [3].
Early detection of MCI allows preventative actions to be taken before
the condition develops to a stage where it significantly affects the
patient’s quality of life [4]. There is evidence that lifestyle changes,
non-pharmacological approaches, and medical treatment can effec-
tively delay the onset of the most debilitating symptoms [5–7]. Slowing
the progression of dementia even by as little as one year could eliminate
more than 9 million cases by 2050 [8].

The current diagnostic method for MCI is a medical workup in-
cluding cognitive assessment tests, neurological exams, laboratory tests,
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and in some cases, brain imaging. This is not suitable for wide-scale
screening of the population at risk because of the time-consuming
and/or expensive nature of these tools, and the fact that they require
highly skilled medical personnel. Full or partial automation of neu-
rocognitive assessment protocols could eventually replace medical staff
to some extent [9–11], providing cost-efficient pre-screening methods
that decrease the pressure on healthcare systems.

Machine learning (ML) based movement analysis could provide
significant advances in developing an automated MCI screening tool.
Studies using in-home monitoring sensor technologies have shown that
movement patterns of patients can be indicative of cognitive impair-
ment [12,13]. ML has been used for gait assessment to effectively detect
MCI [14]. Eye movement analysis with machine learning algorithms
also seems promising based on existing research [15]. Our focus, how-
ever, has been on examining hand movements through recording and
analysing mouse movement data. This has the potential to be the basis
of a non-invasive MCI detection tool that supports wide-scale screening
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Table 1
Descriptive statistics about the patients. The categorical variables are given as quanti-
ties, the continuous variables are given as mean ± standard deviation. The mean age
is significantly higher in the MCI group.

MCI Healthy

Count 22 48
Gender (male/female/unspecified) 10/12/0 18/27/3
Age (years) 71.18 ± 5.82 66.88 ± 7.25
Education (years) 14.40 ± 2.37 15.43 ± 2.09

in a cost-efficient way, since no special hardware is required, in contrast
with other movement analysis based approaches. A computer with a
mouse is sufficient.

In this paper, we propose an ML prediction model that analyses
a few seconds of mouse movement data to differentiate subjects with
some level of cognitive decline from healthy controls. Computer use
has been examined in connection with cognitive impairment before,
however, these studies investigated the association with MCI using
statistical approaches [16]. Notable work relevant to our objective is
an exploratory study by Seelye et al. that analysed mouse movement
patterns of participants collected over the course of a week, and the re-
sults showed that these patterns were different for cognitively impaired
and healthy subjects in a statistically significant way [17]. We are not
aware of prior work that uses machine learning algorithms on mouse
movement data to detect MCI, and thus would be directly comparable
to ours.

2. Method

The analysis relies on data gathered at the National Institute of
Mental Health, Neurology and Neurosurgery, Neurocognitive Research
Center in Budapest, Hungary (NIMHNN). In the framework of the Hun-
garian National Brain Research Program II, NIMHNN’s research group
conducted a clinical observation called Precognize Pilot Study (PPS)
between 2017 and 2021. The data used in our work were provided by
NIMHNN. The data have been anonymised, thus no personally identifi-
able information was exchanged. The original research was authorised
by the Hungarian Medical Research Council with reference number
024505/2015/OTIG. All participants signed an informed consent form.

2.1. Subjects

Seventy individuals took part in the PPS (22 patients with MCI
and 48 healthy controls), who were recruited from the AlzEpi Cohort
Observational Library (ACOL database) of NIMHNN. The library is part
of the Euro-Fingers international database.1

All participants took part in detailed diagnostic procedures. The test
battery included neurological examination, blood tests, neuropsycho-
logical tests, and structural MRI. Neuropsychological tests consisted
of Mini Mental State Examination (MMSE), Addenbrooke Cognitive
Examination (ACE), Rey Auditory Verbal Learning Test (RAVLT), and
Trail Making Tests A and B (TMT-A and TMT-B). These tests had
been selected because they are well established methods for sensitively
identifying cognitive impairment via the analysis of different cogni-
tive domains [18–21]. Neuropsychological tests were administered by
trained neuroscientists, neurologists, or neuropsychologists. Metadata,
such as group (0 for healthy, 1 for MCI), age (in years), gender (1 for
male, 2 for female), and education (in years) were also collected. Every
participant in the PPS was right-handed. See Table 1 for more details.

Control subjects met the following criteria: negative neurological
status; cognitive performance in normal range based on the cut-off
scores of the applied neuropsychological test battery; absence of signifi-
cant lesions or cortical atrophy on brain MRI. The diagnosis of MCI was

1 https://www.eufingers.com/, retrieved on October 12, 2022.
2

Table 2
Descriptive statistics about the mouse movement data. Three tasks (DTMT = Digitised
Trail Making Test, PM = Pair Matching game) were performed with right and left hands

Task Hand Total

Left Right

DTMT-1 67 70 137
DTMT-2 67 70 137
PM 47 50 97

Total 181 190 371

based on the revised Petersen criteria [22]. MCI population fulfilled the
proposed criteria: negative neurological status; objective impairment
in neuropsychological performance; presence of cortical thinning of
the entorhinal cortex, and the reduction of total grey matter volume
confirmed by MRI.

2.2. Data collection

Mouse movement information was acquired from participants with
the use of a browser-based testing programme developed specifically
for PPS. The tests were conducted on a single computer using the same
mouse and mouse pad during the full span of the PPS. In the test,
participants had to perform exercises first with their right and then
with their left hands. Subjects performed two digitised tests inspired by
TMT-A and a Pair Matching (PM) game. In the digitised trail making
tests (DTMT), participants have to connect circled numbers from 1 to
9 in growing order by moving the mouse cursor over them. In the first
test (DTMT-1), all the circles are visible during the full duration of the
task. The second test (DTMT-2) repeats the full sequence, but this time
only the circle that comes next in the sequence is visible, all the others
are hidden. In the PM game, which is a kind of memory test, individuals
are shown a grid of 16 cards and must click on them in the right order
to identify the eight matching pairs. During all three exercises, the
programme collects the position of the mouse on the screen (at 60 Hz),
and the timestamp and position of the mouse actions performed by the
participants during the game, such as scrolling the wheel or clicking on
a target. For the DTMT tasks, the number of the circle that comes next
in the sequence is also collected. The number of completed exercises
and the used hand are shown in Table 2 for each task.

2.3. Using the Rey Auditory Verbal Learning Test

RAVLT [23] is one of the most widely used word learning tests
in clinical practice to assess memory and learning abilities [24,25].
In RAVLT, subjects need to memorise a list of 15 words and recall
them with 5 repetitions. The performance is expressed in the RAVLT-
sum5 score, which is the total number of correctly recalled words,
hence lower scores mean lower cognitive performance. The validated
Hungarian version of RAVLT [26] was administered to objectively
assess memory complaints according to the Petersen criteria [27].

Previous studies revealed its prominent sensitivity in the detection
of amnestic MCI [19] due to the early involvement of verbal learning-
oriented memory functions. The participants of our current study were
carefully examined for the presence of MCI by a multidisciplinary
medical team using the detailed procedures mentioned above, and
RAVLT-sum5 showed the strongest correlation with the diagnosis. This
is shown in Fig. 1, where normalised RAVLT-sum5 and other test
scores (MMSE, ACE, and RAVLT with 7 repetitions) are plotted for
both groups. Therefore, we used the RAVLT-sum5 score to ensure
that participants are sampled representatively when selecting training
samples for our models. This score, however, was not used directly
during the model training and evaluation phases.

The RAVLT-sum5% value, used in the rest of this document, is
he RAVLTsum5 score expressed as a percentage of the theoretical
aximum of 75. In the PPS, the range of the RAVLT-sum5% scores

https://www.eufingers.com/
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Fig. 1. Various test scores of the participants. (Group 0: healthy subjects, group 1: subjects with MCI.) RAVLT-sum5 score shows correlation with the diagnosis.
Fig. 2. Histogram of the RAVLT-sum5% score. Red is MCI, blue is healthy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
was 46.67–81.33 for healthy controls and 21.33–61.33 for patients
with MCI [28]. The distribution of this score is shown as two overlaid
histograms in Fig. 2.

2.4. Data analysis

The main steps of the data analysis were: data cleaning (including
reconstruction of the pointer device movement, which is the closest
we can get to reconstructing the true movement of the subject’s hand
from this data), subset bundling, feature extraction using two differ-
ent algorithms, data augmentation, prediction model building, model
evaluation, and visualisation.

Due to the nature of the web-based data collection environment,
significant data preparation had to be conducted. The collector is
capable of measuring the coordinates of the mouse cursor. To analyse
the movement patterns of the subjects, however, we needed to recon-
struct the pointer device movements that generated the recorded cursor
3

movements. There are several properties of the hardware and software
involved that make this task non-trivial. For example, because of the
operating system-level mouse acceleration feature, the relationship
between mouse and cursor speed is non-linear. Cursor Insight’s (CI)2

proprietary mouse data cleaning toolchain was applied to reconstruct
pointer device movement data as accurately as possible.

Owing to the limited size of the dataset, and also aiming for inter-
pretable prediction models, decision trees became our primary choice
of ML algorithm. There are numerous other classification techniques,
including neural networks, that were not covered in the current study
because of the aforementioned reasons.

Reasonably small decision trees are generally a good choice when
there are few samples to train on, as in our case. To improve the

2 https://cursorinsight.com/.

https://cursorinsight.com/
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Fig. 3. Steps of the classification algorithm.
Fig. 4. 𝑥–𝑦 plots of a selection of mouse motion samples. The participants had to perform an ideally diagonal motion.
situation, a technique called data augmentation [29] was applied to
artificially boost the number of training samples. The usual measures,
such as limiting tree depth and impurity decrease, using separate
training and test sets, and cross-validation (via repeated randomised
data augmentation) were also taken to avoid overfitting.

In the following sections, we describe how the dataset was split into
training and test sets, what feature sets were applied, and our approach
to generate samples using data augmentation. The flowchart in Fig. 3
illustrates the steps of the algorithm.

2.4.1. Training and test set separation
The PPS dataset was split into two subsets: test data, consisting of

the samples of 14 people (7 with diagnosed MCI and 7 healthy; 20% of
participants); and training data, consisting of the samples of everyone
else (80% of participants). Furthermore, we focused our attention on:

1. only one of the three tasks that the subjects had to complete
(DTMT-1);

2. the exercise performed with the right hand;
3. a single stroke of mouse movement within the exercise, where

every subject had to move the mouse from one fixed point on
the screen to another (connecting circles number 4 and 5).

The test subjects were chosen such that the distribution of their medical
condition roughly matched that of the full population of the 70 partic-
ipants, according to their RAVLT-sum5% scores. A small selection of
the inspected samples (performing an ideally diagonal motion) can be
seen in Fig. 4. Note that the average duration of the considered strokes
was no more than two seconds, which means 100–200 data points at
most.

After separating the test set, samples from 56 people (15 MCI, 41
healthy) remained to train our model.
4

2.4.2. Feature sets
Two different feature sets were used to measure the performance

of the applied ML algorithms: a small baseline set and three features
(chosen by their performance in the classification) from CI’s proprietary
feature space. The latter, consisting of up to several thousand scalar fea-
tures, has been crafted and refined in various research and commercial
projects, which all relied on movement analysis, mouse movement in
particular.

Before computing the features, a Savitzky–Golay filter [30] was
applied to the raw time series of 𝑥 and 𝑦 coordinates to remove the
undesired effects of discrete sampling and integer rounding, and restore
the original, continuous motion patterns as closely as possible. The
filter had a window radius of 10 and a polynomial order of 3. These
parameters were found to be the best for smoothing out noise that did
not originate from human motion, while leaving acceleration and jerk
detectable in the coordinates.

Baseline feature set. The baseline set comprises 66 (6 × 11) features:
11 statistical values (minimum, maximum, mean, standard deviation,
skewness, kurtosis, and 10th, 25th, 50th, 75th, 90th percentile values)
of six different properties: 𝑥(𝑡), 𝑦(𝑡), 𝛥𝑥(𝑡), 𝛥𝑦(𝑡), 𝛥𝛥𝑥(𝑡), and 𝛥𝛥𝑦(𝑡). Here
𝑥(𝑡), 𝑦(𝑡) denote the coordinates of the mouse cursor at a given time 𝑡,
the derivatives 𝛥𝑥(𝑡), 𝛥𝑦(𝑡) express the instantaneous velocity, and the
second derivatives 𝛥𝛥𝑥(𝑡), 𝛥𝛥𝑦(𝑡) express the instantaneous acceleration.

Reduced CI feature set. In the case of the PPS, the larger CI feature set
included 441 features for each sample. With preliminary experiments,
however, we identified three features which were sufficient for building
a basic model. In the following, this feature set has been used, and we
will refer to it as reduced CI feature set. The reduction decreases the
complexity of the problem and helps to avoid overfitting.
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Fig. 5. Augmentation of training data for two features. Each colour coded dot represents an instance: red — original, pink — augmented/generated. The generation method works
similarly in higher dimensions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
2.4.3. Training data generation with data augmentation
To generate more training data, data augmentation by linear com-

bination [29] was used after extracting features from the original
training samples. Although there are undoubtedly more sophisticated
augmentation techniques, this approach was used because of its sim-
plicity, scalability, and domain independence, and because it generates
a robust sample space with large amounts of new features.

For every generated feature representation, two of the original
samples were randomly selected, and a convex combination of them
was computed. The weights used to combine the input features were
chosen randomly from a uniform distribution over [0, 1]. This method
guarantees that all generated feature representations are within the
convex hull of the representations of the original training samples.
Note, however, that the generated representations are all located along
the multidimensional segments connecting the vertices of the original
samples and are not evenly distributed inside this convex hull, see Fig. 5
for a 2-D example.

2.4.4. Classifier
For the classification of the samples, a decision tree was used

with a maximum depth of 2. This ensures that the results are inter-
pretable, which is preferred over black box methods for medical appli-
cations [31]. Other parameters of the decision tree were: n_subfeatures
= -1, min_samples_leaf = 4, min_samples_split = 4, min_purity_increase =
0.1. (n_subfeatures = −1 means that the number of features to consider
at random per split is the square root of the number of features.)

In theory, higher accuracy could be achieved given sufficient
amounts of training data using random forests instead of single trees.
With the PPS dataset, however, the application of forests would result
in overfitting and less interpretable models.

A visual representation of one such classification tree is shown in
Fig. 6, which displays a projection of 14 test samples onto the 2-D
plane. The horizontal axis shows the values of the primary feature
chosen as the root of the tree, while the vertical axes to the left and
right of the vertical divide show the values of features chosen for the
left and the right branches of the tree, respectively. The actual scales of
the axes are irrelevant. Blue dots represent healthy subjects, whereas
red dots represent subjects with diagnosed MCI. Likewise, blue areas
are predicted as healthy, whereas red areas are predicted as patients
with MCI by the model.
5

Table 3
Averaged confusion matrix using the baseline feature set.

Predicted

Healthy MCI

Diagnosed Healthy 3.02 (22%) 3.98 (28%)
MCI 1.01 (7%) 5.99 (43%)

Table 4
Averaged confusion matrix using the reduced CI feature set.

Predicted

Healthy MCI

Diagnosed Healthy 5.32 (38%) 1.68 (12%)
MCI 1.15 (8%) 5.85 (42%)

3. Results

Two specific parameters of the experiments were grid searched.
1000 to 5000 (in steps of 1000) training and an equal number of test
samples per class (healthy vs. MCI) were generated with randomised
data augmentation, which was repeated 50 to 500 times (in steps of 50),
using a different (but deterministic) random seed every time. For each
experiment, both feature sets were evaluated the given number of times
using random forests, and the aggregate mean of the confusion matrices
was calculated. The results presented below were computed using
an augmentation of 5000 samples and 200 iterations of randomised
augmentation. Fewer than 200 repetitions resulted in larger deviations
in the cells of the averaged confusion matrices, and more than that
did not cause a significant improvement. Using 5000 training and test
samples was still feasible, and it also produced the least variance in the
results. As a result of the uniform size of the augmented sets, the ratio
of MCI to healthy subjects both in the training and test data came out
as 50%–50%.

Using the baseline feature set, healthy participants seem to be
classified randomly. In contrast, only 1 out of 7 MCI participants were
misclassified on average, see the averaged confusion matrix in Table 3.

Using the reduced CI feature set, an 80% averaged accuracy could
be achieved, see the averaged confusion matrix in Table 4.
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Fig. 6. A projection of the 14 test samples onto the 2-D plane (dots coloured according to diagnosis), and the segmentation of the plane into prediction classes (areas coloured
according to prediction); blue — healthy, red — MCI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 5
Comparison of metrics calculated from the averaged confusion matrices.

Baseline Reduced CI

Sensitivity 85.6% 83.6%
Specificity 43.1% 76%
Precision 60.1% 77.7%
Accuracy 64.4% 79.8%
F1-score 70.6% 80.5%

From these numbers, we calculated some commonly used metrics
to compare the performance of the two feature sets, see Table 5. When
using the reduced CI feature set, 83.6% of patients who truly have
MCI will get correctly diagnosed, and 76% of patients who do not
have MCI will be correctly classified as healthy. Thus, the false positive
rate is 24%, the false negative rate is 16.4%. While the sensitivity is
slightly better in the case of the baseline feature set, specificity and
other metrics are significantly worse.

Due to the small number of samples, runtime of our algorithm
was not significant, hardware and software requirements were also
minimal. It is important to mention that the small sample size is not
ideal and a weakness of our result. It is likely that we would be able to
build a more robust and accurate model using a larger dataset, which
in turn would be more resource intensive.

4. Conclusion and future work

People with MCI and healthy people were distinguished using only
a few seconds of computer mouse data, dynamic features, and a single
decision tree.

In previous research projects, the proprietary CI feature set had
successfully been used to train models to recognise or classify large
numbers of individuals based on their motion patterns, given that there
were enough samples to learn from. In this case, however, consid-
ering the small amount of samples at our disposal, special care was
necessary to avoid model overfitting. To achieve that, we employed
data augmentation and used a restricted feature space, applied an aug-
mented training set and representative test set, and took the customary,
industry standard measures to ensure that overfitting stayed within
acceptable limits in the generated ML model.
6

The results indicate that MCI can be predicted effectively from
mouse movement data using machine learning techniques. The ap-
proximately 80% accuracy, even with a fairly low confidence, is a
major achievement, considering that only a few seconds of mouse
navigation were examined. The 83.6% sensitivity and 76% specificity
values are also remarkable. Our result holds the promise of developing
a cost-efficient and automated MCI screening tool, which bears special
significance, since current diagnostic methods are not suitable for wide-
scale screening. Generating interpretable models is an added benefit,
given that such methods are preferred in medical applications, as
doctors have higher confidence in them than in black box solutions.

The next step could be a larger scale study with significantly more
collected samples, as this would produce ML models with potentially
higher accuracy rates. Furthermore, these models could also be tuned
to achieve (or stay below) specific target false positive and/or false
negative rates, and thus reach a target sensitivity/specificity ratio that
fits the health economy optimum.

Having a larger dataset would also open up feasible opportunities
to research certain areas in greater depth in the future. These areas,
that push the boundaries of our current research, include, but are not
limited to:

• various other machine learning and classification algorithms,
such as support vector machines and neural networks;

• more sophisticated data augmentation techniques, which capture
the dimensionality and arrangement of the samples better;

• the effect of data augmentation on accuracy and generalisation
capability;

• a more thorough grid search of the hyperparameters;
• proper 𝑁-fold cross-validation.

That being said, acquiring large amounts of labelled data is not a
trivial task, as such data are not readily available in medical circles.
Nevertheless, the option is worth investigating.

5. About the participants

Cursor Insight has developed a proprietary toolchain which is able
to analyse time series via computation of a large-scale feature set
and application of ML technologies. This toolchain has proved to be
effective on human motion data analysis for both academic and real-life
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applications in various areas in the past decade. In 2015, CI won 1th
prize in the largest global competition on automatic on-line (dynamic)
handwritten signature verification on skilled forgeries [32]. In 2016,
CI won the Mouse Dynamics Challenge competition of Balabit [33], a
leading cyber-security company in Hungary. Since 2016, CI has been
operating signature verification systems in sectors with high security
demands. Patient Record, a subsidiary of CI, is focusing on healthcare
applications.

Precognize was founded by Balázs Vértes with healthcare at its
focus, to research the possibility of early detection of Alzheimer’s
Disease via hand movements.
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