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A LINK BETWEEN BOUGEROL’S IDENTITY AND A FORMULA

DUE TO DONATI-MARTIN, MATSUMOTO AND YOR

MÁTYÁS BARCZY AND PETER KERN

Abstract. We point out an easy link between two striking identities on exponen-
tial functionals of the Wiener process and the Wiener bridge originated by Bougerol,
and Donati-Martin, Matsumoto and Yor, respectively. The link is established us-
ing a continuous one-parameter family of Gaussian processes known as α-Wiener
bridges or scaled Wiener bridges, which in case α = 0 coincides with a Wiener
process and for α = 1 is a version of the Wiener bridge.

1. Introduction

Our starting point is Bougerol’s identity in [5] which states that

(1.1) sinh(Bt)
d
= WAt for every fixed t ≥ 0,

where (Bt)t≥0 and (Wt)t≥0 are independent standard Wiener processes,
d
= denotes

equality in distribution, and

At =

∫ t

0

exp(2Bs) ds for t ≥ 0.

In fact there is also a generalization of Bougerol’s identity with equality in law for

stochastic processes due to Alili, Dufresne and Yor [1, Proposition 2]; cf. also [13,

formula (69)] or [15, page 200]. Recently, there has been a renewed interest in gener-

alizations of Bougerol’s identity (1.1). Bertoin et al. [3] presented a two-dimensional

extension of (1.1) that involves some exponentional functional and the local time at

0 of a standard Wiener process. For another two-dimensional extension of (1.1), and

even a three-dimensional one we refer to Vakeroudis [13, Sections 4.2 and 4.3].

We are only interested in the following particular case of the identity (1.1) presented

in [13, 14]. Bougerol’s identity (1.1) is equivalent to the equality of the corresponding
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continuous Lebesgue densities, which yields

1
√

(1 + x2)t
exp

(

−Arsinh2(x)

2t

)

= E

[

1√
At

exp

(

− x2

2At

)]

for all t > 0 and x ∈ R, see, e.g., [14, formula (1.e)]. Especially, for x = 0, by the

1/2-self-similarity of a standard Wiener process and a change of variables r = (4/β2)s

for some β > 0 we get

t−1/2 = E

[

(
∫ t

0

exp(2Bs) ds

)−1/2
]

= E

[

(
∫ t

0

exp(βB(4/β2)s) ds

)−1/2
]

=
2

β
· E





(

∫ (4/β2)t

0

exp(βBr) dr

)−1/2


 .

(1.2)

Hence, setting t = β2/4 we get for every β > 0

E

[

(
∫ 1

0

exp(βBs) ds

)−1/2
]

= 1.

This formula is a consequence of Bougerol’s identity (1.1) which obviously holds for

β = 0 and also remains true for β < 0, since (−Bt)t≥0 is a Wiener process, i.e.,

(1.3) E

[

(
∫ 1

0

exp(βBs) ds

)−1/2
]

= 1 for every β ∈ R.

A similar identity due to Donati-Martin, Matsumoto and Yor [7, 8] holds when

replacing the Wiener process (Bt)t≥0 by a Wiener bridge (B◦
t = Bt − t B1)t∈[0,1], a

zero mean Gaussian process with covariance function Cov(B◦
s , B

◦
t ) = s(1 − t) for

0 ≤ s ≤ t ≤ 1. Namely, this identity states that

(1.4) E

[

(
∫ 1

0

exp(βB◦
s ) ds

)−1
]

= 1 for every β ∈ R.

Hobson [9] provides a simple proof of (1.4) using a relationship between a Wiener

bridge and a Wiener excursion obtained by Biane [4]. A further elementary proof of

(1.4) is given in [7, Proposition 2.1].

Donati-Martin et al. [7] already pointed out how to obtain a link between the two

identities (1.3) and (1.4) in the sense that the identity (1.3) follows from the identity

(1.4) as a consequence of a formula combining exponential functionals of the Wiener

process and the Wiener bridge, for details we refer to [7, Proposition 3.2].
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Our aim is to give a different link between the two identities (1.3) and (1.4) using

so-called α-Wiener bridges (also known as scaled Wiener bridges). These processes

build a one-parameter family of Gaussian processes for parameter α ∈ R. They

have been first considered by Brennan and Schwartz [6] and later have been investi-

gated by Mansuy [11] and Barczy and Pap [2]. For our purposes an α-Wiener bridge

(X
(α)
t )t∈[0,1) can be defined as a (weak) solution of the stochastic differential equation

(SDE)

(1.5) dX
(α)
t = − α

1− t
X

(α)
t dt + dBt, t ∈ [0, 1),

with initial condition X
(α)
0 = 0. Barczy and Pap [2] have shown that (X

(α)
t )t∈[0,1)

is a bridge in the sense that X
(α)
t → 0 =: X

(α)
1 as t ↑ 1 almost surely if and only if

α > 0. Moreover, for α ≥ 0 it is shown in [2] that (X
(α)
t )t∈[0,1] is a zero mean Gaussian

process with covariance function

(1.6) Cov(X(α)
s , X

(α)
t ) =

{

(1−s)α(1−t)α

1−2α
(1− (1− s)1−2α) if α 6= 1

2
√

(1− s)(1− t) log
(

1
1−s

)

if α = 1
2

for 0 ≤ s ≤ t ≤ 1. Note that for fixed 0 ≤ s ≤ t ≤ 1, (1.6) is continuous in α ≥ 0,

which for α → 1
2

can be easily seen by l’Hospital’s rule. The unique strong solution

of the SDE (1.5) with initial condition X
(α)
0 = 0 is given by

(1.7) X
(α)
t =

∫ t

0

(

1− t

1− s

)α

dBs for t ∈ [0, 1),

and shows that (X
(0)
t )t∈[0,1] = (Bt)t∈[0,1] and (X

(1)
t )t∈[0,1]

d
= (B◦

t )t∈[0,1]. The latter is due

to the fact that both sides of the equation are zero mean Gaussian processes with the

same covariance function. Hence, variation of the parameter α ∈ [0, 1] continuously

connects the Wiener process for α = 0 with the Wiener bridge for α = 1 in the sense

that for α, α0 ≥ 0, the finite dimensional distributions of (X(α))t∈[0,1] converge weakly

to those of (X(α0))t∈[0,1] as α → α0. This follows directly from the continuity in α

of the covariance function (1.6) and is the key observation for our link between the

identities (1.3) and (1.4).

The paper is organized as follows. We will first show that certain space-time rescal-

ings of an α-Wiener bridge either coincide in law with a usual Wiener bridge for α > 1
2

or with the Wiener process for 0 ≤ α < 1
2
, see Proposition 2.1. Then an application of

these space-time rescalings to the dentity (1.4) and (1.3), respectively, yields two new
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identities for certain transformations of exponential functionals of α-Wiener bridges

which coincide when α = 1
2
, see Theorem 2.2. We further show that a 1

2
-Wiener

bridge can be scaled to both, a Wiener bridge and a standard Wiener process, see

Proposition 2.4. As a consequence, we present another two identities for certain

transformations of exponential functionals of 1
2
-Wiener bridges in Theorem 2.5.

2. Link between the identities

In the sequel,
D
= denotes equality in law for stochastic processes on the space of

continuous functions C([0, 1]) or C([0,∞)), respectively.

Proposition 2.1. (a) For α > 1
2

we have
(√

2α− 1 t
α−1
2α−1X

(α)

1−t1/(2α−1)

)

t∈[0,1]

D
=(X

(1)
t )t∈[0,1].

(b) For 0 ≤ α < 1
2

we have
(√

1− 2α (1− t)−
α

1−2αX
(α)

1−(1−t)1/(1−2α)

)

t∈[0,1]

D
=(X

(0)
t )t∈[0,1].

Proof. We will first prove that the processes under consideration are zero mean Gauss-

ian processes having almost surely continuous trajectories, which is not obvious for

the left-hand sides as t ↓ 0 for α ∈ (1
2
, 1) in (a), and as t ↑ 1 in (b), respectively. Once

we know this, it remains to show the equality of covariance functions.

(a) Let (Mt)t∈[0,1) be the continuous martingale part of the process X(α) given by

(1.7)

Mt :=
X

(α)
t

(1− t)α
=

∫ t

0

1

(1− s)α
dBs for t ∈ [0, 1)

with quadratic variation 〈M〉t = (1− (1− t)1−2α)/(1−2α) → ∞ as t ↑ 1 for α > 1
2

as

obtained in [2, formula (3.1)]. Then, similarly to the proof of [2, Lemma 3.1], for the

increasing function [1,∞) ∋ x 7→ f(x) = x3/4 with
∫∞

1
(f(x))−2 dx < ∞, an applica-

tion of [10, Theoreme 1] or Exercise 1.16 in Chapter V of [12] gives Mt/f(〈M〉t) → 0

a.s. as t ↑ 1. Letting t = 1− s1/(2α−1) ↑ 1 as s ↓ 0 this shows

s
−α

2α−1X
(α)

1−s1/(2α−1)

(

(1− s−1)/(1− 2α)
)3/4

→ 0 a.s. as s ↓ 0.

To obtain s
α−1
2α−1X

(α)

1−s1/(2α−1) → 0 a.s. as s ↓ 0 it suffices to see that for s ↓ 0 we have

s
α−1
2α−1 s

α
2α−1 (s−1 − 1)3/4 = s(s−1 − 1)3/4 = s1/4(1− s)3/4 → 0.
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Hence the centered Gaussian processes under consideration almost surely have con-

tinuous sample paths on [0, 1] starting in the origin. Thus it remains to show the

equality of their covariance functions for 0 < s ≤ t ≤ 1. Using (1.6) and the fact that

the function (0, 1] ∋ t 7→ 1− t1/(2α−1) is decreasing, we get for 0 < s ≤ t ≤ 1

Cov
(

X
(α)

1−s1/(2α−1) , X
(α)

1−t1/(2α−1)

)

=
s

α
2α−1 t

α
2α−1

1− 2α
(1− t−1)

=
s

α
2α−1 t

α
2α−1

−1

2α− 1
(1− t) =

s
1−α
2α−1 t

1−α
2α−1

2α− 1
s(1− t)

from which the assertion easily follows.

(b) In case α = 0 the identity is trivially fulfilled. For 0 < α < 1
2

it is shown in the

proof of [2, Lemma 3.1] that limt↑1(1 − t)−αX
(α)
t exists in R almost surely and has

a normal distribution as a limit of normally distributed random variables. Letting

t = 1− (1− s)1/(1−2α) ↑ 1 as s ↑ 1 we have

lim
s↑1

(1− s)−
α

1−2αX
(α)

1−(1−s)1/(1−2α) exists a.s.,

which shows that the centered Gaussian processes under consideration almost surely

have continuous sample paths on [0, 1] starting in the origin. Thus it remains to show

the equality of their covariance functions. Using (1.6) and the fact that the function

[0, 1] ∋ t 7→ 1− (1− t)1/(1−2α) is increasing, we get for 0 ≤ s ≤ t ≤ 1

Cov
(

X
(α)

1−(1−s)1/(1−2α) , X
(α)

1−(1−t)1/(1−2α)

)

=
(1− s)

α
1−2α (1− t)

α
1−2α

1− 2α
s

from which again the assertion easily follows. �

Theorem 2.2. (a) For α > 1
2

and any β ∈ R we have

E

[

(
∫ 1

0

exp

(

β

(1− s)1−α
X(α)

s

)

ds

(1− s)2(1−α)

)−1
]

= 2α− 1.

(b) For 0 ≤ α < 1
2

and any β ∈ R we have

E

[

(
∫ 1

0

exp

(

β

(1− s)α
X(α)

s

)

ds

(1− s)2α

)−1/2
]

=
√
1− 2α.

(c) For α = 1
2

and any β ∈ R both identities in (a) and (b) hold.

Remark 2.3. For the 1
2
-Wiener bridge the two identities in (a) and (b) of Theorem

2.2 are valid by part (c) and are in fact equivalent, since both identities show that
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for any β ∈ R the non-negative random variable

Y (β) :=

(
∫ 1

0

exp

(

β√
1− s

X(1/2)
s

)

ds

1− s

)−1/2

= 0 almost surely.

Hence the version of the Bougerol identity in (b) represents the mean E[Y (β)] = 0,

whereas the formula (a), as a version of the identity due to Donati-Martin, Matsumoto

and Yor, represents the second moment E[(Y (β))2] = 0.

Proof of Theorem 2.2. (a) An application of Proposition 2.1 (a) to (1.4) together with

a change of variables s = 1− t
1

2α−1 yields for any β ∈ R

1 = E

[

(
∫ 1

0

exp(βX
(1)
t ) dt

)−1
]

= E

[

(
∫ 1

0

exp
(

β
√
2α− 1 t

α−1
2α−1X

(α)

1−t1/(2α−1)

)

dt

)−1
]

= E





(

∫ 1

0

exp

(

β̃

(1− s)1−α
X(α)

s

)

· (2α− 1)
ds

(1− s)2(1−α)

)−1


 ,

where β̃ = β
√
2α− 1 ∈ R is arbitrary.

(b) For α = 0 the identity is a restatement of (1.3). For 0 < α < 1
2

an application of

Proposition 2.1 (b) to (1.3) together with a change of variables s = 1− (1− t)1/(1−2α)

yields for any β ∈ R

1 = E

[

(
∫ 1

0

exp(βX
(0)
t ) dt

)−1/2
]

= E

[

(
∫ 1

0

exp
(

β
√
1− 2α (1− t)−

α
1−2αX

(α)

1−(1−t)1/(1−2α)

)

dt

)−1/2
]

= E





(

∫ 1

0

exp

(

β̃

(1− s)α
X(α)

s

)

· (1− 2α)
ds

(1− s)2α

)−1/2


 ,

where β̃ = β
√
1− 2α ∈ R is arbitrary.

(c) For α = 1
2

the process (Mt)t∈[0,1) with Mt = (1− t)−1/2X
(1/2)
t =

∫ t

0
(1−s)−1/2dBs is

a centered continuous martingale with quadratic variation 〈M〉t = − log(1− t) → ∞
as t ↑ 1; see formulas (3.1) and (3.2) in [2]. Hence by the Dambis, Dubins-Schwarz

theorem there exists a Wiener process (B̃t)t≥0 such that (Mt)t∈[0,1) = (B̃〈M〉t)t∈[0,1)
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almost surely; see Theorem 1.6 in Chapter V of [12]. It follows by a change of

variables t = 〈M〉s = − log(1− s) and monotone convergence that for β 6= 0

E

[

(
∫ 1

0

exp

(

β√
1− s

X(1/2)
s

)

ds

1− s

)−1/2
]

= E

[

(
∫ 1

0

exp
(

βB̃− log(1−s)

) ds

1− s

)−1/2
]

= E

[

(
∫ ∞

0

exp
(

βB̃t

)

dt

)−1/2
]

= lim
T→∞

E

[

(
∫ T

0

exp
(

βB̃t

)

dt

)−1/2
]

= lim
T→∞

T−1/2 = 0,

where the last but one equality follows by setting t = β2T/4 in (1.2). Since in case

β = 0 the expectation is obviously vanishing, this shows that the identity in (b) is

fulfilled for α = 1
2
. In particular it shows that a non-negative random variable has zero

expectation and thus is equal to zero almost surely. Hence also its second moment

vanishes, which proves the identity in (a) for α = 1
2
. �

In case α = 1
2

it is possible to link the 1
2
-Wiener bridge (X

(1/2)
t )t∈[0,1] to both

identities (1.4) and (1.3) with non-vanishing expectation by either introducing an

additional log-term in the integrand or by integrating over a smaller domain as follows.

We first present the corresponding space-time scalings, which might be of independent

interest.

Proposition 2.4. We have
(

t
√

exp(t−1 − 1)X
(1/2)

1−exp(1−t−1)

)

t∈[0,1]

D
=(X

(1)
t )t∈[0,1].(2.1)

(

et/2X
(1/2)
1−exp(−t)

)

t≥0

D
=(X

(0)
t )t≥0.(2.2)

Proof. We first show that as t ↓ 0 we have

(2.3) t
√

exp(t−1 − 1)X
(1/2)
1−exp(1−t−1) → 0 a.s.

From the proof of part (c) of Theorem 2.2 we know that there exists a Wiener process

(B̃t)t≥0 such that ((1− s)−1/2X
(1/2)
s )s∈[0,1) = (B̃− log(1−s))s∈[0,1) almost surely. Letting

s = 1− exp(1− t−1) we get
(

√

exp(t−1 − 1)X
(1/2)

1−exp(1−t−1)

)

t∈(0,1]
=
(

B̃t−1−1

)

t∈(0,1]
a.s.
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from which (2.3) follows by the strong law of large numbers for Brownian motion,

since almost surely

t
√

exp(t−1 − 1)X
(1/2)

1−exp(1−t−1) = t B̃t−1−1 = (1− t)
t

1− t
B̃ 1−t

t
→ 0

as t ↓ 0. Hence the centered Gaussian processes under consideration in (2.1) almost

surely have continuous sample paths on [0, 1] starting in the origin. Thus it remains

to show the equality of their covariance functions for 0 < s ≤ t ≤ 1. Using (1.6) and

the fact that the function (0, 1] ∋ t 7→ 1 − exp(1 − t−1) is decreasing, we get for any

0 < s ≤ t ≤ 1,

Cov
(

X
(1/2)

1−exp(1−s−1), X
(1/2)

1−exp(1−t−1)

)

=
√

exp(1− s−1)
√

exp(1− t−1)(t−1 − 1)

=

√

exp(1− s−1)
√

exp(1− t−1)

s · t s(1− t),

from which (2.1) easily follows. Similarly, for any 0 ≤ s ≤ t we get using (1.6)

Cov
(

X
(1/2)
1−exp(−s), X

(1/2)
1−exp(−t)

)

= e−s/2e−t/2 s

from which (2.2) easily follows. �

Theorem 2.5. For any β ∈ R we have

E

[

(
∫ 1

0

exp

(

β√
1− s (1− log(1− s))

X(1/2)
s

)

ds

(1− s) (1− log(1− s))2

)−1
]

= 1

and

E





(

∫ 1−e−1

0

exp

(

β√
1− s

X(1/2)
s

)

ds

1− s

)−1/2


 = 1.

Proof. Applying (2.1) to (1.4) together with a change of variables s = 1 − e−(t−1−1)

yields for any β ∈ R

1 = E

[

(
∫ 1

0

exp(βX
(1)
t ) dt

)−1
]

= E

[

(
∫ 1

0

exp
(

βt
√

exp(t−1 − 1)X
(1/2)
1−exp(1−t−1)

)

dt

)−1
]

= E

[

(
∫ 1

0

exp

(

β√
1− s (1− log(1− s))

X(1/2)
s

)

ds

(1− s) (1− log(1− s))2

)−1
]
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which proves the first identity. Similarly, an application of (2.2) to (1.3) together

with a change of variables s = 1− e−t yields for any β ∈ R

1 = E

[

(
∫ 1

0

exp(βX
(0)
t ) dt

)−1/2
]

= E

[

(
∫ 1

0

exp
(

β et/2X
(1/2)

1−e−t

)

dt

)−1/2
]

= E





(

∫ 1−e−1

0

exp

(

β√
1− s

X(1/2)
s

)

ds

1− s

)−1/2




which proves the second identity. �

Remark 2.6. Motivated by the identities (1.3) and (1.4), one can formulate the open

question whether there exists a (continuous) function p : [0, 1] → (−∞, 0) such that

E

[

(
∫ 1

0

exp
(

βX
(α)
t

)

dt

)p(α)
]

= 1 for every β ∈ R.
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