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A LINK BETWEEN BOUGEROL’S IDENTITY AND A FORMULA
DUE TO DONATI-MARTIN, MATSUMOTO AND YOR

MATYAS BARCZY AND PETER KERN

ABSTRACT. We point out an easy link between two striking identities on exponen-
tial functionals of the Wiener process and the Wiener bridge originated by Bougerol,
and Donati-Martin, Matsumoto and Yor, respectively. The link is established us-
ing a continuous one-parameter family of Gaussian processes known as a-Wiener
bridges or scaled Wiener bridges, which in case @ = 0 coincides with a Wiener
process and for o =1 is a version of the Wiener bridge.

1. INTRODUCTION

Our starting point is Bougerol’s identity in [5] which states that
(1.1) sinh(B;) 4 Wy,  for every fixed t > 0,

where (Bi)i>o and (W;)i>o are independent standard Wiener processes, 4 denotes

equality in distribution, and
t
A = / exp(2 Bs)ds  fort > 0.
0

In fact there is also a generalization of Bougerol’s identity with equality in law for
stochastic processes due to Alili, Dufresne and Yor [I, Proposition 2|; cf. also [13]
formula (69)] or [I5, page 200]|. Recently, there has been a renewed interest in gener-
alizations of Bougerol’s identity (ILI)). Bertoin et al. 3] presented a two-dimensional
extension of (LI that involves some exponentional functional and the local time at
0 of a standard Wiener process. For another two-dimensional extension of (LII), and
even a three-dimensional one we refer to Vakeroudis [13, Sections 4.2 and 4.3].

We are only interested in the following particular case of the identity (I]) presented
in [13, 14]. Bougerol’s identity (L1]) is equivalent to the equality of the corresponding
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continuous Lebesgue densities, which yields

e () [ (5n)

for all t > 0 and = € R, see, e.g., [14, formula (1.e)]. Especially, for z = 0, by the

1/2-self-similarity of a standard Wiener process and a change of variables r = (4/4%)s

t —1/2
(/0 eXp(ﬁB(4/62)s) dS) ]

—1/27

for some 3 > 0 we get

( /0 exp(2B.) ds)
_ % E < /0 e exp(8B,) dr)

Hence, setting t = 5%/4 we get for every 3 > 0

—-1/2

A ) )

(1.2)

~1/27

< /0 ' exp(8B.) ds) _1

This formula is a consequence of Bougerol’s identity (1)) which obviously holds for

E

f =0 and also remains true for 8 < 0, since (—By);>0 is a Wiener process, i.e.,

(1.3) E

1 -1/2
(/ exp(8By) ds) ] =1 forevery g €R.
0

A similar identity due to Donati-Martin, Matsumoto and Yor [7, [§] holds when
replacing the Wiener process (B;)i>o by a Wiener bridge (B; = By — t B1)cjoq], &
zero mean Gaussian process with covariance function Cov(B?, By) = s(1 —t) for
0 < s <t < 1. Namely, this identity states that

(1.4) E

-1
</1 exp(5By) ds) ] =1 forevery g € R.
0

Hobson [9] provides a simple proof of (L4) using a relationship between a Wiener
bridge and a Wiener excursion obtained by Biane [4]. A further elementary proof of
(L4) is given in |7, Proposition 2.1].

Donati-Martin et al. [7] already pointed out how to obtain a link between the two
identities (L3 and (L4) in the sense that the identity (L3]) follows from the identity
(L4) as a consequence of a formula combining exponential functionals of the Wiener

process and the Wiener bridge, for details we refer to |7, Proposition 3.2].
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Our aim is to give a different link between the two identities ([L3]) and (L4]) using
so-called a-Wiener bridges (also known as scaled Wiener bridges). These processes
build a one-parameter family of Gaussian processes for parameter a € R. They
have been first considered by Brennan and Schwartz [6] and later have been investi-
gated by Mansuy [I1] and Barczy and Pap [2]. For our purposes an a-Wiener bridge
(Xt(a))te[o,l) can be defined as a (weak) solution of the stochastic differential equation
(SDE)

(1.5) ax® = —li_tX}“) dt+dB,  telo1),

with initial condition X{* = 0. Barczy and Pap [2] have shown that (Xt(a))te[o,l)
is a bridge in the sense that X® — 0 =: X\® as t 1 1 almost surely if and only if
a > 0. Moreover, for > 0 it is shown in [2] that (Xt(a))te[o,l] is a zero mean Gaussian

process with covariance function

A=s)* A=) 1 (1 _ g)1—2a if
(1.6) Cov(X(, x{) = ¢ 1o (1=l =op ) e 7

V(1 —=s)(1—1t)log () if o =
for 0 < s <t < 1. Note that for fixed 0 < s < ¢ < 1, (L) is continuous in a > 0,
which for o — % can be easily seen by 'Hospital’s rule. The unique strong solution

of the SDE ([LT) with initial condition Xéa) = 0 is given by

n o @
(1.7) X§a>:/ <1 t) dB, forte [0,1),
0

D= D=

1—s

and shows that (Xt(O))te[O,l} = (B4)tefo,1) and (Xt(l))te[o,l} 4 (BY)tepo,1)- The latter is due
to the fact that both sides of the equation are zero mean Gaussian processes with the
same covariance function. Hence, variation of the parameter a € [0, 1] continuously
connects the Wiener process for o = 0 with the Wiener bridge for &« = 1 in the sense
that for a, ag > 0, the finite dimensional distributions of (X (a))te[O,l} converge weakly
to those of (X@)),ci01 as a — ap. This follows directly from the continuity in o
of the covariance function (L) and is the key observation for our link between the
identities (L3) and (I.4]).

The paper is organized as follows. We will first show that certain space-time rescal-
ings of an a-Wiener bridge either coincide in law with a usual Wiener bridge for a > %
or with the Wiener process for 0 < a < %, see Proposition 2.1l Then an application of

these space-time rescalings to the dentity (L4 and (L3]), respectively, yields two new
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identities for certain transformations of exponential functionals of a-Wiener bridges
which coincide when a = %, see Theorem 2.2 We further show that a %—Wiener
bridge can be scaled to both, a Wiener bridge and a standard Wiener process, see
Proposition 2.4l As a consequence, we present another two identities for certain

transformations of exponential functionals of %—Wiener bridges in Theorem 2.5

2. LINK BETWEEN THE IDENTITIES

In the sequel, 2 denotes equality in law for stochastic processes on the space of

continuous functions C'([0, 1]) or C(]0, 00)), respectively.

Proposition 2.1. (a) For a > 1 we have
a—1 o D 1
(\/ 205 — 1 t2a71 Xl(—)lfl/(2a1)>te[0 1} :(Xt( ))t€[071].
(b) For 0 < a < 1 we have

__a « D
<\/ 1 - 20& (1 - t) 1-2c X:f_)(l_t)l/(l—2a)) (Xt(O))tE[Ovl}

te[0,1]
Proof. We will first prove that the processes under consideration are zero mean Gauss-
ian processes having almost surely continuous trajectories, which is not obvious for
the left-hand sides as ¢ | 0 for o € (3, 1) in (a), and as ¢ 1 1 in (b), respectively. Once
we know this, it remains to show the equality of covariance functions.

a) Let (M,)ici01) be the continuous martingale part of the process X(®) given b
[0,1) g g y

@)

x@ Lt
M=—" = [ — 4B, fort 1
CE T /o<1—s>a ertel01)

with quadratic variation (M), = (1—(1—¢)""2%)/(1 —2a) - co as t 1 1 for a > 1 as
obtained in [2], formula (3.1)]. Then, similarly to the proof of |2, Lemma 3.1|, for the
increasing function [1,00) 3 z +— f(z) = 2¥* with [[*(f(z))?dz < oo, an applica-
tion of [10, Theoreme 1] or Exercise 1.16 in Chapter V of [12] gives M;/f((M);) — 0
a.s.ast 1. Letting t =1 — s/C* D 11 as s | 0 this shows

S%Xl((il/(mm

(1=s"1)/(1=2a))"

To obtain s;a—ille(i)Sl/mfl) — 0 a.s. as s | 0 it suffices to see that for s | 0 we have

—0 as.ass)O0.

a—1 el

Smsm(s—l . 1)3/4 _ S(S_l . 1)3/4 _ 81/4(1 . 8)3/4 0.
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Hence the centered Gaussian processes under consideration almost surely have con-
tinuous sample paths on [0, 1] starting in the origin. Thus it remains to show the
equality of their covariance functions for 0 < s <t < 1. Using (L6) and the fact that
the function (0,1] 3 ¢ > 1 — /2= is decreasing, we get for 0 < s <t < 1

(@) (@) . Sﬁtﬁ _1
Cov (Xl—sl/(Zafl)aXl_tl/(2a71)> ﬁ (1 —1 )
Sﬁtzaa—*l_l S%t%
= —ga 1 Ut =g s

from which the assertion easily follows.

(b) In case a = 0 the identity is trivially fulfilled. For 0 < a < % it is shown in the
proof of |2, Lemma 3.1] that limsq (1 — t)_aXt(a) exists in R almost surely and has
a normal distribution as a limit of normally distributed random variables. Letting

t=1—(1-5)"Y0720 41 as 51 1 we have
. PR © S (a)
151%1(1 - S) 12 Xl_(l_s)l/(1—2a)

which shows that the centered Gaussian processes under consideration almost surely

exists a.s.,

have continuous sample paths on [0, 1] starting in the origin. Thus it remains to show
the equality of their covariance functions. Using (LO) and the fact that the function
[0,1] ¢+ 1 — (1 —#)Y/(72% ig increasing, we get for 0 < s <t < 1

@ _(-9)TE( -
Xl—(l—t)l/(1’2“)> N 1 -2«

from which again the assertion easily follows. OJ

Cov (X () s

1_(1_3)1/(17201) ’

Theorem 2.2. (a) For a > § and any 5 € R we have

(/01 exp <# Xs(a)) %) _1] — 90 — 1.

(b) For 0 < a < 5 and any 8 € R we have

([ oo () ) ] e

(¢) For a =% and any 8 € R both identities in (a) and (b) hold.

E

E

Remark 2.3. For the 1-Wiener bridge the two identities in (a) and (b) of Theorem
are valid by part (c¢) and are in fact equivalent, since both identities show that
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for any € R the non-negative random variable

1 5 ds -1/2
Y(B) = </(; exp <\/17TS Xs(1/2)) :) =0 almost surely.

Hence the version of the Bougerol identity in (b) represents the mean E[Y (5)] = 0,
whereas the formula (a), as a version of the identity due to Donati-Martin, Matsumoto
and Yor, represents the second moment E[(Y(3))?] = 0.

Proof of Theorem[22. (a) An application of Proposition 2] (a) to (4] together with
a change of variables s =1 — {71 yields for any f € R

1=F (/01 exp(BX™M) dt) _1]

1 —1
=FE (/ exp (ﬁ\/Qa — 1t;a—:11X1(i11/(2a,1)> dt) ]
0

[ 3 o ds -
=E (/0 exp(me()>-(2a—l)m> ,

where 3 = 8v/2a — 1 € R is arbitrary.
(b) For a = 0 the identity is a restatement of (I3). For 0 < o < % an application of

Proposition 21 (b) to (L3) together with a change of variables s = 1 — (1 —¢)1/(172)
yields for any 5 € R

1 -1/2
1=E < / exp(5X§°>)dt> ]
0

' ~1/2
= | ([ o (VT30 -0 X ) ) ]

i ~ -1/2
: b e ds
=K (/0 eXp<(1_8)aXs()>.(1—2@)m> 5

where 3 = 8v/1 — 2a € R is arbitrary.

(¢) For a = £ the process (M;)iejo,1) with M, = (1 —)~12x D = [(1—s)"12dB, is
a centered continuous martingale with quadratic variation (M), = —log(1 —t) — oo
as t T 1; see formulas (3.1) and (3.2) in [2]. Hence by the Dambis, Dubins-Schwarz

theorem there exists a Wiener process (Bt)tzo such that (M)eo,1) = (B(M)t)te[o,l)
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almost surely; see Theorem 1.6 in Chapter V of [12]. It follows by a change of
variables t = (M), = —log(1 — s) and monotone convergence that for 3 # 0

1 ~1/2
B va) _ds
([ o () 2)

E

1 ~ ds —1/2 00 ~ —1/2
=FE (/ exp (ﬁB_log(l_S)) 1 ) =E (/ exp (ﬁBt) dt)
0 - S 0
T -1/2
= TlggoE (/0 exp (ﬁBt) dt) ] = Th—ri)lo T2 =,

where the last but one equality follows by setting ¢t = $*T'/4 in (LZ). Since in case
B = 0 the expectation is obviously vanishing, this shows that the identity in (b) is
fulfilled for ao = % In particular it shows that a non-negative random variable has zero
expectation and thus is equal to zero almost surely. Hence also its second moment

vanishes, which proves the identity in (a) for a = 1. O

In case @ = % it is possible to link the %—Wiener bridge (Xt(lm)te[o,l} to both
identities ([4)) and (3]) with non-vanishing expectation by either introducing an
additional log-term in the integrand or by integrating over a smaller domain as follows.
We first present the corresponding space-time scalings, which might be of independent

interest.

Proposition 2.4. We have

_ 1/2) D 1
(2.1) (t exp(t L - XD 1>>t€[0,1]:(Xt( Mo

1/2 D 0
(2:2) (X2 ) B0,

Proof. We first show that as ¢t | 0 we have
(2.3) t\/exp(t— l)X( /2) w(_t-1) 0 as.

From the proof of part (c) of Theorem 2.2l we know that there exists a Wiener process
(By)1>0 such that ((1 — S)_1/2XS(1/2))S€[0’1) = (B_ log(1—s))se[0,1) almost surely. Letting
s=1—exp(l —t7') we get

v 1)x (/2 ) - (B, ) ) s,
( exp(t 1—exp(1 t€(0,1] e t€(0,1] s
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from which (23)) follows by the strong law of large numbers for Brownian motion,

since almost surely

texpt T —DXY2 =tBa = (1—1) %_t Bii—0
as t | 0. Hence the centered Gaussian processes under consideration in (2.I]) almost
surely have continuous sample paths on [0, 1] starting in the origin. Thus it remains
to show the equality of their covariance functions for 0 < s <t¢ < 1. Using (@) and
the fact that the function (0,1] 3 ¢ = 1 — exp(1 — ¢™') is decreasing, we get for any
0<s<t<,

Cov (Xl(l_/f)p(l 1) X1(1/02xp(1 -1 ) = \/exp(l \/exp Yt —1)
_ vexp(l — s*);/exp(l —t1) S(1—1),
S .

from which (2.1]) easily follows. Similarly, for any 0 < s < ¢ we get using (L.0)
COV( (1/2) 5(1/2) ) — o212

1—exp(—s)’ “*1—exp(—t)

from which ([2.2)) easily follows. O

Theorem 2.5. For any 5 € R we have

. </ o (mu - log(1 — 5)) Xél/z)) 1 - fog(l - s>>2>_1] -

and

l1—e™ B ds —1/2
E L x0m) = =1
(/0 exp(\/l_s ° 1—s

Proof. Applying (2.1 to (L4) together with a change of variables s = 1 — e (71 =1)
yields for any 5 € R

1=F (/01 exp(BX™M) dt) _1]

~1
=FE (/ exp <Bt\/exp Xl(l/eip(l -1 ) dt) ]
0

1

-8[([ = (orms i) i) |
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which proves the first identity. Similarly, an application of (2.2)) to (L3]) together
with a change of variables s = 1 — e~ ! yields for any 3 € R

r 1 -1/2
1=E </ exp(ﬁXt(O)) dt)
0

1
~F < / exp (Be2x{"2,) dt)
0

~1/2

1—e!
g 1 ds
) P x9S
/o exp < T s T

~1/2

which proves the second identity. O

Remark 2.6. Motivated by the identities (L3 and (L4]), one can formulate the open

question whether there exists a (continuous) function p : [0, 1] — (—o0,0) such that
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1 p(e)
E </ exp (ﬁXt(a)> dt) =1 forevery g € R.
0
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