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Abstract

We study integrable models solvable by the nested algebraic Bethe ansatz and described
by gl(2|1) or gl(1|2) superalgebras. We obtain explicit determinant representations for form
factors of the monodromy matrix entries. We show that all form factors are related to each
other at special limits of the Bethe parameters. Our results allow one to obtain determinant
formulas for form factors of local operators in the supersymmetric t-J model.

1 Introduction

The algebraic Bethe ansatz is a powerful method of studying quantum integrable models [1–
4]. It can be used not only for finding spectra of quantum Hamiltonians, but for an efficient
calculation of the form factors and correlation functions as well [5–9].

The main objective of calculating the form factors of local operators in quantum integrable
models is to provide compact and manageable representations for them. This problem was
successfully solved in various integrable models with gl(2) symmetry and its q-deformation.
There a determinant representation for the scalar product [10] of Bethe vectors was used in
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order to obtain determinant formulas for form factors of the monodromy matrix entries. The
latter directly leads to determinant representations for form factors of local operators via the
quantum inverse scattering problem [7, 11]. Furthermore, these determinants formulas allow
one to calculate the form factors of local operators even in the models for which the solution
of the quantum inverse scattering problem is not known [12, 13]. Determinant expressions for
form factors were found to be very useful for analysis of correlation functions. They can be
used either for analytical calculations [14, 15] or for numerical studies [16, 17].

Integrable models with higher rank symmetries were less studied, in spite of the general-
ization of the algebraic Bethe ansatz (nested algebraic Bethe ansatz) was developed long ago
[4, 18]. This was mainly due to technical difficulties in the study of such models. However,
recently determinant representations for form factors of local operators in the models with
gl(3)-invariant R-matrix were obtained in the series of works [19–24]. Partial generalization of
these results to the models with q-deformed algebras was given in [25].

In this paper we study form factors of the monodromy matrix entries in the models described
by gl(2|1) and gl(1|2) superalgebras. Actually, we focus mostly on the gl(2|1) case, because the
Yangians of these two superalgebras Y (gl(2|1)) and Y (gl(1|2)) are related to each other by
a simple isomorphism [26]. In [27] we obtained a determinant representation for the scalar
product of special (semi-on-shell) Bethe vectors in the models with gl(2|1) symmetry. There we
also derived determinant formulas for form factors of diagonal entries of the monodromy matrix
Tii. Using these results and the zero modes method [23] we obtain determinant representations
for all form factors of the operators Tij. These formulas together with the inverse scattering
problem [28] immediately lead to compact expressions for form factors of local operators in the
supersymmetric t-J model [29–35].

The article is organized as follows. In section 2 we introduce the model under consideration
and describe the notation used in the paper. We also define the form factors of the monodromy
matrix entries and describe some mappings between them. Section 3 contains the main results
of the paper. Here we give determinant formulas for form factors of the monodromy matrix
entries Tij. In section 4 we prove determinant representations for form factors of the diagonal
entries Tii with respect to the same state. In section 5 we introduce the zero modes of the
operators Tij and derive their action on Bethe vectors. Using these results we find additional
relations between the different form factors. We show that all the form factors can be obtained
from a single initial one by taking special limits of the Bethe parameters. In section 6 we derive
determinant representations for the form factor of the off-diagonal monodromy matrix elements
Tij. Finally, in section 7 we apply our results to the models with gl(1|2) symmetry.

2 Notation and definitions

2.1 Generalized gl(2|1)-invariant model

The models considered below are described by the an R-matrix acting in the tensor product
V1 ⊗ V2 of two auxiliary spaces Vk ∼ C

2|1, k = 1, 2 with the grading1 [1] = [2] = 0, [3] =
1. Matrices acting in this space are also graded, according to [eij ] = [i] + [j], where eij are
elementary units: (eij)ab = δiaδjb. The R-matrix has the following explicit form:

R(x, y) = I+ g(x, y)P, g(x, y) =
c

x− y
. (2.1)

1Here and below we denote the grading in the gl(2|1) superalgebra by square brackets.
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In the above definition, I is the identity matrix in V1 ⊗ V2, P is the graded permutation matrix
[36], and c is a constant.

The monodromy matrix T (w) satisfies the algebra

R(u, v)
(
T (u)⊗ I

)(
I⊗ T (v)

)
=
(
I⊗ T (v)

)(
T (u)⊗ I

)
R(u, v). (2.2)

Equation (2.2) holds in the graded tensor product V1 ⊗V2 ⊗H, where H is the Hilbert space of
the Hamiltonian of the model under consideration. The entries of the monodromy matrix T (u)
are graded in the same way as the matrices eij : [Tij(u)] = [i]+[j]. Being written in components,
equation (2.2) takes the form

[Tij(u), Tkl(v)} = (−1)[i]([k]+[l])+[k][l]g(u, v)
(
Tkj(v)Til(u)− Tkj(u)Til(v)

)

= (−1)[l]([i]+[j])+[i][j]g(u, v)
(
Til(u)Tkj(v)− Til(v)Tkj(u)

)
,

(2.3)

where we have introduced a graded commutator

[Tij(u), Tkl(v)} = Tij(u)Tkl(v)− (−1)([i]+[j])([k]+[l])Tkl(v)Tij(u). (2.4)

The supertrace in the auxiliary space V ∼ C
2|1 of the monodromy matrix,

T (u) = strT (u) =
3∑

i=1

(−1)[i]Tii(u) (2.5)

is called the transfer matrix. It is a generating functional of the integrals of motion of the
model. The eigenvectors of the transfer matrix are called on-shell Bethe vectors (or simply
on-shell vectors). They can be parameterized by sets of complex parameters satisfying Bethe
equations (see section 2.3).

Define a linear mapping

ψ
(
Tij(u)

)
= (−1)[i][j]+[i]Tji(u), ψ

(
AB
)
= (−1)[A][B]ψ

(
B
)
ψ
(
A
)
, (2.6)

where A and B are arbitrary operators of fixed grading. The mapping (2.6) is an antimorphism
of the algebra (2.2) [26]. It follows from (2.6) that

ψ
(
A1 . . . An

)
= (−1)ϑnψ

(
An

)
. . . ψ

(
A1

)
, ϑn =

∑

1≤i<j≤n

[Ai] · [Aj ]. (2.7)

2.2 Notation

We use the same notation and conventions as in the papers [21, 22]. We recall them for
completeness. Besides the function g(x, y) we also introduce a function f(x, y)

f(x, y) =
x− y + c

x− y
. (2.8)

Two other auxiliary functions will be also used

h(x, y) =
f(x, y)

g(x, y)
=
x− y + c

c
, t(x, y) =

g(x, y)

h(x, y)
=

c2

(x− y)(x− y + c)
. (2.9)
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The following obvious properties of the functions introduced above are useful:

g(x, y) ∼
c

x
, h(x, y) ∼

x

c
, f(x, y) ∼ 1, t(x, y) ∼

c2

x2
, x→ ∞,

g(x, y) ∼ −
c

y
, h(x, y) ∼ −

y

c
, f(x, y) ∼ 1, t(x, y) ∼

c2

y2
, y → ∞.

(2.10)

Before giving a description of the Bethe vectors we formulate a convention on the notations.
We denote sets of variables by bar: x̄, ū, v̄ etc. Individual elements of the sets are denoted by
latin subscripts: wj , uk etc. The notation ūi, means ū\ui etc. We say that x̄ = x̄′, if #x̄ = #x̄′

and xi = x′i (up to a permutation) for i = 1, . . . ,#x̄. We say that x̄ 6= x̄′ otherwise.
In order to avoid too cumbersome formulas we use shorthand notation for products of

operators or functions depending on one or two variables. Namely, if the functions g, f , and h
depend on sets of variables, this means that one should take the product over the corresponding
set. For example,

h(ū, v) =
∏

uj∈ū

h(uj , v); g(z, x̄i) =
∏

xj∈x̄
xj 6=xi

g(z, xj); f(ū, v̄) =
∏

uj∈ū

∏

vk∈v̄

f(uj, vk). (2.11)

This notation is also used for the product of commuting operators,

Tij(ū) =
∏

uk∈ū

Tij(uk), if [i] + [j] = 0, mod (2). (2.12)

One can easily see from the commutation relations (2.3) that in this case [Tij(u), Tij(v)] = 0, and
hence, the operator product (2.12) is well defined. However, if [i]+[j] = 1, then [Tij(u), Tij(v)] 6=
0, therefore we introduce symmetric operator products

Tj3(v̄) =
Tj3(v1) . . . Tj3(vn)∏
n≥ℓ>m≥1 h(vℓ, vm)

, T3j(v̄) =
T3j(v1) . . . T3j(vn)∏
n≥ℓ>m≥1 h(vm, vℓ)

j = 1, 2. (2.13)

It is easy to check that if [i] = [j] = 0, then

ψ
(
Tij(ū)

)
= Tji(ū), ψ

(
Ti3(ū)

)
= (−1)n(n−1)/2

T3i(ū), ψ
(
T3i(ū)

)
= (−1)n(n+1)/2

Ti3(ū),
(2.14)

where n = #ū.

2.3 Bethe vectors

Now we pass to the description of Bethe vectors. A generic Bethe vector is denoted by Ba,b(ū; v̄).
It is parameterized by two sets of complex parameters ū = u1, . . . , ua and v̄ = v1, . . . , vb with
a, b = 0, 1, . . . . They are called Bethe parameters. Dual Bethe vectors are denoted by Ca,b(ū; v̄).
They also depend on two sets of complex parameters ū = u1, . . . , ua and v̄ = v1, . . . , vb. The
state with ū = v̄ = ∅ is called a pseudovacuum vector Ω. Similarly, the dual state with ū = v̄ = ∅
is called a dual pseudovacuum vector Ω†. These vectors are annihilated by the operators Tij(w),
where i > j for Ω and i < j for Ω†. At the same time both vectors are eigenvectors for the
diagonal entries of the monodromy matrix

Tii(w)Ω = λi(w)Ω, Ω†Tii(w) = λi(w)Ω
†, i = 1, 2, 3, (2.15)
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where λi(w) are some scalar functions. In the framework of the generalized model, λi(w) remain
free functional parameters. Below we will often deal with ratios

r1(w) =
λ1(w)

λ2(w)
, r3(w) =

λ3(w)

λ2(w)
. (2.16)

We extend the convention on the shorthand notation for the products to the functions λi(w)
and rk(w), for instance,

r1(ū) =
∏

ui∈ū

r1(ui), λ2(v̄j) =
∏

vi∈v̄
vi 6=vj

λ2(vi). (2.17)

Bethe vectors in the models described by superalgebras were studied in [37]. There exist
several explicit formulas for the Bethe vectors in terms of polynomials in Tij(w) (with i < j)
acting on the pseudovacuum Ω (see [26]). We give here one of those representations in order
to fix normalization. For #ū = a and #v̄ = b we define a Bethe vector Ba,b(ū; v̄) and its dual
vector Ca,b(ū; v̄) as

Ba,b(ū; v̄) =
∑ g(v̄I, ūI)f(ūI, ūII)g(v̄II, v̄I)h(ūI, ūI)

f(v̄, ū)λ2(ū)λ2(v̄II)
T13(ūI)T12(ūII)T23(v̄II)Ω, (2.18)

Ca,b(ū; v̄) = (−1)b(b−1)/2
∑ g(v̄I, ūI)f(ūI, ūII)g(v̄II, v̄I)h(ūI, ūI)

f(v̄, ū)λ2(ū)λ2(v̄II)
Ω†

T32(v̄II)T21(ūII)T31(ūI).

(2.19)
Here the sum is taken over partitions of the set v̄ into two disjoint subsets v̄I and v̄II and over
partitions of ū into disjoint subsets ūI and ūII. The partitions are independent except that
#ūI = #v̄I = n, where n = 0, 1, . . . ,min(a, b). Recall also that we use the shorthand notation
for the products of all the functions and the operators in (2.18), (2.19). Observe, that (dual)
Bethe vectors are symmetric over ū and symmetric over v̄.

If the parameters ū and v̄ of a Bethe vector2 satisfy a special system of equations (Bethe
equations), then it becomes an eigenvector of the transfer matrix (on-shell Bethe vector). The
system of Bethe equations can be written in the following form:

r1(ui) =
f(ui, ūi)

f(ūi, ui)
f(v̄, ui), i = 1, . . . , a,

r3(vj) = f(vj, ū), j = 1, . . . , b.

(2.20)

Recall that ūi = ū \ ui and v̄j = v̄ \ vj .
If ū and v̄ satisfy the system (2.20), then

T (z)Ba,b(ū; v̄) = τ(z|ū, v̄)Ba,b(ū; v̄), Ca,b(ū; v̄)T (z) = τ(z|ū, v̄)Ca,b(ū; v̄), (2.21)

where T (z) is defined by (2.5) and

τ(z) ≡ τ(z|ū, v̄) = λ1(z)f(ū, z) + λ2(z)f(z, ū)f(v̄, z) − λ3(z)f(v̄, z). (2.22)

Remark. In concrete quantum models the functions r1(z) and r3(z) are fixed. Then the
system of Bethe equations (2.20) determines the admissible values of the parameters ū and v̄.

2For simplicity here and below we do not distinguish between vectors and dual vectors.
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Eventually these values characterize the spectrum of the Hamiltonian of the quantum model
under consideration. However, in the generalized model, where r1(z) and r3(z) are free func-
tional parameters, the situation is opposite. The system (2.20) only fixes the values of the
functions r1(z) and r3(z) in several points, while the parameters ū and v̄ remain arbitrary
complex numbers [39].

Apart from the usual transfer matrix it is often convenient to consider a twisted transfer
matrix [5, 8, 20, 27] Tκ(z) = str

(
κ̂T (z)

)
, where κ̂ = diag(κ1, κ2, κ3) and κi are some complex

numbers. Its eigenvectors

Tκ(z)B
(κ)
a,b (ū; v̄) = τκ(z|ū, v̄)B

(κ)
a,b (ū; v̄), C

(κ)
a,b (ū; v̄)Tκ(z) = τκ(z|ū, v̄)C

(κ)
a,b (ū; v̄), (2.23)

are called twisted on-shell Bethe vectors. The parameters of these vectors satisfy a system of
twisted Bethe equations

r1(uj) =
κ2
κ1

f(uj , ūj)

f(ūj , uj)
f(v̄, uj), j = 1, . . . , a,

r3(vj) =
κ2
κ3
f(vj , ū), j = 1, . . . , b.

(2.24)

The twisted eigenvalue τκ(z) has the form

τκ(z) ≡ τκ(z|ū, v̄) = κ1λ1(z)f(ū, z) + κ2λ2(z)f(z, ū)f(v̄, z)− κ3λ3(z)f(v̄, z). (2.25)

The norm of the Bethe vector defined above was calculated in [27]

Ca,b(ū; v̄)Ba,b(ū; v̄) = (−c)a+b
b∏

j=1

a∏

k=1

f(vj, uk)

a∏

j,k=1
j 6=k

f(uj, uk)

b∏

j,k=1
j 6=k

g(vj , vk) det
a+b

N̂ . (2.26)

The determinant in (2.26) is nothing but the Jacobian of the Bethe equations (2.20) in the
logarithmic form (see also [20, 39]). Let

Φj = log
( r1(uj)

f(v̄, uj)

f(ūj , uj)

f(uj , ūj)

)
, j = 1, . . . , a,

Φa+j = log

(
r3(vj)

f(vj, ū)

)
, j = 1, . . . , b.

(2.27)

Then

N̂j,k =
∂Φj

∂xk
j, k = 1, . . . , a+ b, (2.28)

and {x1, . . . , xa+b} = {u1, . . . , ua, v1, . . . , vb}.
It is convenient to extend the action of the antimorphism ψ on vectors. We can always

choose the grading of Ω and Ω† such that [Ω] = [Ω†] = 0. Then we set [AΩ] = [Ω†A] = [A] and
define

ψ(Ω) = Ω†, ψ(AΩ) = Ω†ψ(A),

ψ(Ω†) = Ω, ψ(Ω†A) = ψ(A)Ω,
(2.29)

where A is an arbitrary product of the monodromy matrix entries. It is easy to see that

[Ba,b(ū; v̄)] = [Ca,b(ū; v̄)] = b. (2.30)
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One can also convince oneself that

ψ
(
Ba,b(ū; v̄)

)
= Ca,b(ū; v̄), ψ

(
Ca,b(ū; v̄)

)
= (−1)b Ba,b(ū; v̄). (2.31)

Indeed, let us fix the partitions in (2.18), (2.19) such that #ūI = #v̄I = n. Then using (2.14)
we find

ψ
(
T13(ūI)T12(ūII)T23(v̄II)

)
= (−1)n(n−1)/2+(b−n)(b−n−1)/2+n(b−n)

T32(v̄II)T21(ūII)T31(ūI)

= (−1)b(b−1)/2
T32(v̄II)T21(ūII)T31(ūI), (2.32)

and similarly

ψ
(
T32(v̄II)T21(ūII)T31(ūI)

)
= (−1)n(n+1)/2+(b−n)(b−n+1)/2+n(b−n)

T13(ūI)T12(ūII)T23(v̄II)

= (−1)b(b+1)/2
T13(ūI)T12(ūII)T23(v̄II). (2.33)

These equations immediately imply (2.31).

2.4 Form factors of the monodromy matrix entries

We define form factors of the monodromy matrix entries as

F (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

= Ca′,b′(ū
C ; v̄C)Tij(z)Ba,b(ū

B; v̄B). (2.34)

Here both Ca′,b′(ū
C ; v̄C) and Ba,b(ū

B; v̄B) are on-shell Bethe vectors, the parameter z is an
arbitrary complex number, and

a′ = a+ δi1 − δj1,
b′ = b+ δj3 − δi3.

(2.35)

Similarly to the gl(3) case, one can also introduce universal form factors [23], if {ūC , v̄C} 6=
{ūB, v̄B}. Namely, let

F(i,j)
(

ūC ūB

v̄C v̄B

)a′,a
b′,b

=
F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

τ(z|ūC , v̄C)− τ(z|ūB, v̄B)
. (2.36)

It is easy to show that the functions F(ij) do not depend on z. Indeed, it follows from the
commutation relations (2.3) that

[T (z), Tij(w)] = [T (w), Tij(z)], (2.37)

where T is the transfer matrix (2.5). Hence, for arbitrary on-shell Bethe vectors Ca′,b′(ū
C ; v̄C)

and Ba,b(ū
B; v̄B) we obtain

Ca′,b′(ū
C ; v̄C)[T (z), Tij(w)]Ba,b(ū

B; v̄B) = Ca′,b′(ū
C ; v̄C)[T (w), Tij(z)]Ba,b(ū

B; v̄B). (2.38)

Using (2.21) we find

(
τ(z|ūC , v̄C)− τ(z|ūB, v̄B)

)
Ca′,b′(ū

C ; v̄C)Tij(w)Ba,b(ū
B; v̄B)

=
(
τ(w|ūC , v̄C)− τ(w|ūB , v̄B)

)
Ca′,b′(ū

C ; v̄C)Tij(z)Ba,b(ū
B; v̄B), (2.39)
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where τ are eigenvalues of the transfer matrix. Equation (2.39) immediately yields

Ca′,b′(ū
C ; v̄C)Tij(w)Ba,b(ū

B; v̄B)

τ(w|ūC , v̄C)− τ(w|ūB , v̄B)
=

Ca′,b′(ū
C ; v̄C)Tij(z)Ba,b(ū

B; v̄B)

τ(z|ūC , v̄C)− τ(z|ūB , v̄B)
. (2.40)

We see that the l.h.s. of (2.40) depends on w, while the r.h.s. depends on z. Thus, the ratio
(2.36) does not depend on the argument of the operator Tij .

We call the form factors (2.36) universal, because they are determined by the R-matrix
only. In other words, for a given R-matrix they do not depend on the monodromy matrix, and
hence, they are model independent. Indeed, all the dependence of the form factors on a specific
model is hidden in the functions r1 and r3. More specifically, since the dependance on r1(ui)
and r3(vi) can be removed using the Bethe equations (2.20), the real dependance in the model
is concentrated in the terms r1(z) and r3(z). Since the universal form factors do not depend on
z, they cannot depend on r1(z) and r3(z). Thus, as we have claimed above, they do not depend
on the monodromy matrix of the model.

Remark. Strictly speaking the universal form factors do not depend on the functions rk, if
ūC∩ ūB = ∅ and v̄C ∩ v̄B = ∅, that is when the Bethe parameters of both vectors are all different.
Otherwise, if, for instance, uC

j = uB

k , then the universal form factors depend on the logarithmic
derivative log′ r1(u

B

k ) of the function r1(u) [23]. Similarly, if vC

j = vB

k , then the universal form
factors depend on the logarithmic derivative log′ r3(v

B

k ) of the function r3(v).

Proposition 2.1. Form factors F (i,j) and F (j,i) are related by

F (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

= (−1)θijF (j,i)
(
z
∣∣∣ ūB ūC

v̄B v̄C

)a,a′
b,b′

, (2.41)

where
θij = 0, [i] + [j] = 0, mod (2),

θij = b, [i] = 0, [j] = 1,

θij = b+ 1, [i] = 1, [j] = 0.

(2.42)

Proof. Since a form factor F (i,j) is a c-number function, it is invariant under the action of
the antimorphism ψ:

ψ

(
F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

)
= F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

. (2.43)

On the other hand, acting with ψ on the r.h.s. of (2.34) we obtain

ψ
(
Ca′,b′(ū

C ; v̄C)Tij(z)Ba,b(ū
B; v̄B)

)

= (−1)([i]+[j])(b+b′)+b′bψ
(
Ba,b(ū

B ; v̄B)
)
ψ
(
Tij(z)

)
ψ
(
Ca′,b′(ū

C ; v̄C)
)

= (−1)θijCa,b(ū
B; v̄B)Tji(z)Ba′,b′(ū

C ; v̄C), (2.44)

where we used (2.6), (2.30), (2.31), and

θij = ([i] + [j])(b + b′) + b′b+ b′ + [i][j] + [i]. (2.45)

Thus, we have reduced the form factor F (i,j) to the form factor F (j,i). In order to simplify the
phase factor we can use (2.35)

b′ − b = δj3 − δi3 = [j] − [i]. (2.46)
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After elementary algebra we obtain

θij = ([j] + [i])b+ [i][j] + [i], mod (2), (2.47)

and it is straightforward to check that this expression is equivalent to (2.42). �

It follows from (2.41) that form factors of diagonal matrix elements F (i,i) are invariant under
the replacement ūC ↔ ūB and v̄C ↔ v̄B. This invariance yields the following transformation of
the corresponding universal form factors

F(i,i)
(

ūC ūB

v̄C v̄B

)a,a
b,b

= −F(i,i)
(

ūB ūC

v̄B v̄C

)a,a
b,b
. (2.48)

The minus sign appears due to the denominator in (2.36). For the universal form factors of the
off-diagonal matrix elements we obtain

F(3,1)
(

ūC ūB

v̄C v̄B

)a,a+1

b,b+1
= (−1)b+1F(1,3)

(
ūB ūC

v̄B v̄C

)a+1,a

b+1,b
, (2.49)

F(3,2)
(

ūC ūB

v̄C v̄B

)a,a
b,b+1

= (−1)b+1F(2,3)
(

ūB ūC

v̄B v̄C

)a,a
b+1,b

, (2.50)

and

F(2,1)
(

ūC ūB

v̄C v̄B

)a,a+1

b,b
= −F(1,2)

(
ūB ūC

v̄B v̄C

)a+1,a

b,b
. (2.51)

3 Determinant formulas for form factors

Considering form factors of the monodromy matrix entries one should distinguish between two
cases3: (1) {ūC , v̄C} = {ūB, v̄B}; (2) {ūC , v̄C} 6= {ūB, v̄B}. The first case occurs only for form
factors F (i,i) of diagonal matrix elements Tii(z). Indeed, the condition {ūC , v̄C} = {ūB, v̄B}
implies a′ = a and b′ = b (see (2.35)), which is possible for diagonal entries Tii(z) only. We first
present the results for this case.

3.1 Form factors between identical states

Let ūC = ūB = ū and v̄C = v̄B = v̄. The form factors F (i,i) have the following determinant
representations:

F (i,i)
(
z
∣∣∣ ū ū
v̄ v̄

)a,a
b,b

= (−c)a+b
b∏

j=1

a∏

k=1

f(vj, uk)

a∏

j,k=1
j 6=k

f(uj, uk)

b∏

j,k=1
j 6=k

g(vj , vk) det
a+b+1

N̂ (i,i). (3.1)

3Here and below for brevity we write {ūC
, v̄

C} = {ūB
, v̄

B}, although one should understand this condition as
ū

C = ū
B and v̄

C = v̄
B.
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In order to describe the (a + b + 1) × (a + b + 1) matrices N̂ (i,i) we combine the sets ū and v̄
into a set x̄ = {u1, . . . , ua, v1, . . . , vb}. Then

N̂
(i,i)
j,k =

∂Φj

∂xk
j, k = 1, . . . , a+ b,

N̂
(i,i)
a+b+1,k = (−1)[i]

∂τ(z|ū, v̄)

∂xk
, k = 1, . . . , a+ b,

N̂
(i,i)
j,a+b+1 = δi1 − δi2, j = 1, . . . , a,

N̂
(i,i)
j,a+b+1 = δi3 − δi2, j = a+ 1, . . . , a+ b,

N̂
(i,i)
a+b+1,a+b+1 = (−1)[i]

∂τκ(z|ū, v̄)

∂κi
.

(3.2)

Here Φj are given by (2.27), and the eigenvalues of the usual and twisted transfer matrices
τ(z|ū, v̄) and τκ(z|ū, v̄) are defined respectively in (2.22) and (2.25). The proof of the determi-
nant formula (3.1) will be given in section 4.

3.2 Form factors between different states

3.2.1 Notation

If {ūC , v̄C} 6= {ūB , v̄B}, then the universal form factors are well defined. We assume that the
sets of Bethe parameters ūC , v̄C , ūB, v̄B are fixed and their cardinalities are

#ūC = a′, #ūB = a, #v̄C = b′, #v̄B = b, (3.3)

where a′ and b′ are related to a and b by (2.35). Before giving explicit determinant presentations
for the universal form factors we introduce several new functions.

For a set of variables w̄ = {w1, . . . , wn} define

∆′(w̄) =

n∏

j<k

g(wj , wk), ∆(w̄) =

n∏

j>k

g(wj , wk). (3.4)

Then we introduce a function

H(ūC ; ūB; v̄C) = f(v̄C , ūB)h(ūB , ūB)∆′(ūC)∆(ūB)∆(v̄C)∆′(v̄C). (3.5)

The function H plays the role of a universal prefactor that appears in all determinant formulas
for form factors. One should remember, however, that in spite of this function has the universal
representation (3.5), the cardinalities of the sets ūC , ūB, and v̄C are different for the different
form factors.

We define also a (a′ + b′)-component vector Ω as

Ωj =
g(uC

j , ū
C

j )

g(uC

j , ū
B)
, j = 1, . . . , a′,

Ωa′+j =
g(vC

j , v̄
C

j )

g(vC

j , v̄
B)
, j = 1, . . . , b′.

(3.6)

Since we consider the case {ūC , v̄C} 6= {ūB, v̄B}, there exists at least one component Ωp such
that Ωp 6= 0.

10



Finally, for fixed sets of variables ūC, ūB, v̄C , and v̄B we introduce two rectangular matrices
L and M. The matrix L has the size a′ × (a+ b′) and its entries are

Lj,k = t(uC

j , xk)
(−1)a

′−1r1(xk)h(ū
C , xk)

f(v̄C , xk)h(xk, ūB)
+ t(xk, u

C

j )
h(xk, ū

C)

h(xk, ūB)
,

j = 1, . . . , a′,
k = 1, . . . , a+ b′.

(3.7)

The matrix M has the size b′ × (a+ b′) and its entries are

Mj,k = −t(vC

j , xk)
g(v̄B , xk)

g(v̄C , xk)

(
1−

r3(xk)

f(xk, ūB)

)
,

j = 1, . . . , b′,
k = 1, . . . , a+ b′.

(3.8)

Here the set x̄ is the union of two sets: x̄ = {ūB, v̄C}. Actually, both matrices L and M consist
of two blocks depending on whether xk ∈ ūB or xk ∈ v̄C . The structures of these blocks are
very different, and we give now a more detailed description of them.

First of all, we note that 1/f(v̄C , xk) = 0 if xk ∈ v̄C , and 1/f(xk, ū
B) = 0 if xk ∈ ūB.

Therefore we obtain

Lj,k+a = t(vC

k , u
C

j )
h(vC

k , ū
C)

h(vC

k , ū
B)
, k = 1, . . . , b′, (3.9)

and

Mj,k = −t(vC

j , u
B

k )
g(v̄B , uB

k )

g(v̄C , uB

k )
, k = 1, . . . , a. (3.10)

The product 1/g(v̄C , xk) also vanishes, if xk ∈ v̄C . However, this zero can be compensated
by the pole of the function t(vC

j , xk), if xk = vC

j . Therefore, the block of the matrix M with
k > a has diagonal structure:

Mj,a+k = −δjk
g(v̄B , vC

k )

g(v̄C

k , v
C

k )

(
1−

f(vC

k , ū
C)

f(vC

k , ū
B)

)
, k = 1, . . . , b′. (3.11)

Here we replaced the function r3(v
C

k ) with the product f(vC

k , ū
C) due to the Bethe equations.

One should remember, however, that this replacement is possible only if v̄C∩ v̄B = ∅. Otherwise,
if some parameters vC

j1
, . . . , vC

jℓ
from the set v̄C coincide with the parameters vB

j1
, . . . , vB

jℓ
from

the set v̄B, then one should first take the limits vC

js → vB

js in (3.8) and only after this we can
impose Bethe equations for the functions r3(v

C

k ).
Similarly, if ūC ∩ ūB = ∅, then the matrix elements Lj,k with j = 1, . . . , a′ and k = 1, . . . , a

take the form

Lj,k = (−1)a
′+at(uC

j , u
B

k )
f(v̄B, uB

k )h(ū
C , uB

k )

f(v̄C , uB

k )h(ū
B , uB

k )
+ t(uB

k , u
C

j )
h(uB

k , ū
C)

h(uB

k , ū
B)
. (3.12)

3.2.2 Determinant formulas

Now we give the list of determinant representations for the universal form factors of the matrix
elements Tij(z). Certainly, it should be enough to give explicit formulas for F(i,j) with i ≤ j
only, because making replacements ūC ↔ ūB and v̄C ↔ v̄B one can recast the remaining form
factors (see (2.49)–(2.51)). However, the matrices Lj,k and Mj,k, as well as the prefactor H
are not symmetric over these replacements. Therefore, changing ūC ↔ ūB and v̄C ↔ v̄B in the
determinant formulas given below we obtain more representations for the universal form factors.
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• We start with the diagonal form factors F(i,i). In this case a′ = a and b′ = b.

Let p be an integer from the set {1, . . . , a+ b}, such that Ωp 6= 0. Then the universal form
factors F(i,i) have the following determinant representations [27]:

F(i,i)
(

ūC ūB

v̄C v̄B

)a,a
b,b

=
H

Ωp
det
a+b

N (i,i). (3.13)

The matrix elements N
(i,i)
p,k in the p-th row have the form

N
(1,1)
p,k = 1 +

g(v̄B , xk)

g(v̄C , xk)
−
f(v̄B, xk)

f(v̄C, xk)
−
f(xk, ū

C)

f(xk, ūB)
,

N
(2,2)
p,k = −1,

N
(3,3)
p,k = N

(1,1)
p,k +N

(2,2)
p,k ,

k = 1, . . . , a+ b. (3.14)

where x̄ = {uB

1 , . . . , u
B
a , v

C

1 , . . . , v
C

b }. In the other rows the entries N
(i,i)
j,k do not depend on

i and have the following form:

N
(i,i)
j,k = Lj,k, j = 1, . . . , a, j 6= p,

N
(i,i)
j+a,k = Mj,k, j = 1, . . . , b, j + a 6= p,

(3.15)

and k = 1, . . . , a+ b.

This determinant representation was obtained in [27]. Note that the form factors are sym-
metric with respect to any of the four sets of Bethe parameters. This symmetry follows from
the symmetry of the Bethe vectors. Therefore, without any loss of generality one can assume
in (3.13) that p = a or p = a+ b.

• For the universal form factor F(1,2), we have a′ = a + 1 and b′ = b. Let Ωa+1 6= 0. Then
F(1,2) has the form

F(1,2)
(

ūC ūB

v̄C v̄B

)a+1,a

b,b
=

H

Ωa+1
det
a+b

N (1,2), (3.16)

where
N

(1,2)
j,k = Lj,k, j = 1, . . . , a,

N
(1,2)
j+a,k = Mj,k, j = 1, . . . , b,

(3.17)

and k = 1, . . . , a+ b. The set x̄ = {uB

1 , . . . , u
B
a , v

C

1 , . . . , v
C

b }.

• For the universal form factor F(2,3), we notice that a′ = a and b′ = b+1. Let Ωa+b+1 6= 0.
Then F(2,3) has the form

F(2,3)
(

ūC ūB

v̄C v̄B

)a,a
b+1,b

= (−1)b+1 H

Ωa+b+1
det

a+b+1
N (2,3), (3.18)

where
N

(2,3)
j,k = Lj,k, j = 1, . . . , a,

N
(2,3)
j+a,k = Mj,k, j = 1, . . . , b,

N
(2,3)
a+b+1,k = 1,

(3.19)

and k = 1, . . . , a+ b+ 1. The set x̄ = {uB

1 , . . . , u
B
a , v

C

1 , . . . , v
C

b+1}.
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• For the universal form factor F(1,3), one sees that a′ = a+1 and b′ = b+1. Let Ωa+1 6= 0.
Then F(1,3) has the form

F(1,3)
(

ūC ūB

v̄C v̄B

)a+1,a

b+1,b
= (−1)b+1 H

Ωa+1
det

a+b+1
N (1,3), (3.20)

where
N

(1,3)
j,k = Lj,k, j = 1, . . . , a,

N
(1,3)
j+a,k = Mj,k, j = 1, . . . , b+ 1,

(3.21)

and k = 1, . . . , a+ b+ 1. The set x̄ = {uB

1 , . . . , u
B
a , v

C

1 , . . . , v
C

b+1}.

• For the universal form factor F(2,1), one has a′ = a− 1 and b′ = b. It has the form

F(2,1)
(

ūC ūB

v̄C v̄B

)a−1,a

b,b
= H det

a+b
N (2,1), (3.22)

where
N

(2,1)
j,k = Lj,k, j = 1, . . . , a− 1,

N
(2,1)
a,k = −1,

N
(2,1)
j+a,k = Mj,k, j = 1, . . . , b,

(3.23)

and k = 1, . . . , a+ b. The set x̄ = {uB

1 , . . . , u
B
a , v

C

1 , . . . , v
C

b }.

• For the universal form factor F(3,2) with a′ = a and b′ = b− 1. It has the form

F(3,2)
(

ūC ūB

v̄C v̄B

)a,a
b−1,b

= (−1)b−1H det
a+b−1

N (3,2), (3.24)

where
N

(3,2)
j,k = Lj,k, j = 1, . . . , a,

N
(3,2)
j+a,k = Mj,k, j = 1, . . . , b− 1,

(3.25)

and k = 1, . . . , a+ b− 1. The set x̄ = {uB

1 , . . . , u
B
a , v

C

1 , . . . , v
C

b−1}.

• For the universal form factor F(3,1) and a′ = a− 1 and b′ = b− 1. It has the form

F(3,1)
(

ūC ūB

v̄C v̄B

)a−1,a

b−1,b
= (−1)b−1H det

a+b−1
N (3,1), (3.26)

where
N

(3,1)
j,k = Lj,k, j = 1, . . . , a− 1,

N
(3,1)
j+a,k = Mj,k, j = 1, . . . , b− 1,

N
(3,1)
a,k =

(−1)a−1r1(xk)h(ū
C , xk)

f(v̄C, xk)h(xk, ūB)
−
h(xk, ū

C)

h(xk, ūB)
,

(3.27)

and k = 1, . . . , a+ b− 1. The set x̄ = {uB

1 , . . . , u
B
a , v

C

1 , . . . , v
C

b−1}.

The proofs of the determinant representations for the universal form factors of off-diagonal
matrix elements will be given in section 6.
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4 Proof of determinant formula (3.1)

Form factors of the operators Tii(z) with respect to identical states were calculated in [27].
There it was shown that F (i,i) are proportional to the κi-derivative of the twisted transfer
matrix eigenvalue:

F (i,i)
(
z
∣∣∣ ū ū
v̄ v̄

)a,a
b,b

= (−1)[i]
dτκ(z|ū

C , v̄C)

dκi

∣∣∣
κ̄=1

Ca,b(ū; v̄)Ba,b(ū; v̄). (4.1)

A peculiarity of this representation is that we have a full derivative of τκ(z|ū
C , v̄C) over κi. In

other words, one should consider the Bethe parameters ūC and v̄C as implicit functions of κi,
whose dependence on the twist parameters is determined by the twisted Bethe equations (2.24).
In this section we show that representation (4.1) and (3.1) are equivalent.

Consider a solution {ūC(κ), v̄C(κ)} of the twisted Bethe equations such that {ūC(κ), v̄C(κ)} →
{ū, v̄} as κ̄→ 1. Then, similarly to (2.27), we introduce an (a+ b)-component vector ΦC as

ΦC

j = log

(
r1(u

C

j )

f(v̄C , uC

j )

f(ūC

j , u
C

j )

f(uC

j , ū
C

j )

)
, j = 1, . . . , a,

ΦC

a+j = log

(
r3(v

C

j )

f(vC

j , ū
C)

)
, j = 1, . . . , b.

(4.2)

Comparing this vector with the vector Φ (2.27) we see that ΦC → Φ as4 κ̄→ 1.
Taking the logarithm of the twisted Bethe equations (2.24) we obtain

ΦC

j = log

(
κ2
κ1

)
, j = 1, . . . , a,

ΦC

a+j = log

(
κ2
κ3

)
, j = 1, . . . , b.

(4.3)

Differentiating these equations over κi at κ̄ = 1 we find

a∑

k=1

∂Φj

∂uk

duC

k

dκi

∣∣∣
κ̄=1

+

b∑

k=1

∂Φj

∂vk

dvC

k

dκi

∣∣∣
κ̄=1

= δ2i − δ1i, j = 1, . . . , a,

a∑

k=1

∂Φa+j

∂uk

duC

k

dκi

∣∣∣
κ̄=1

+
b∑

k=1

∂Φa+j

∂vk

dvC

k

dκi

∣∣∣
κ̄=1

= δ2i − δ3i, j = 1, . . . , b,

(4.4)

where we have taken into account that ΦC

j = Φj, u
C

j = uj, and v
C

j = vj at κ̄ = 1.
Let x̄ = {uC

1 , . . . , u
C
a , v

C

1 , . . . , v
C

b }. Then using (3.2) we recast (4.4) as follows:

a+b∑

k=1

N̂
(i,i)
j,k

dxk
dκi

∣∣∣
κ̄=1

= δ2i − δ1i, j = 1, . . . , a,

a+b∑

k=1

N̂
(i,i)
a+j,k

dxk
dκi

∣∣∣
κ̄=1

= δ2i − δ3i, j = 1, . . . , b.

(4.5)

4Here and below κ̄ = 1 stands for κ1 = κ2 = κ3 = 1. We also assume that the condition κ̄ = 1 automatically
yields ūC = ū and v̄

C = v̄.
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Hence, if we multiply the columns N̂
(i,i)
j,k with k = 1, . . . , a+b by the coefficients dxk/dκi and add

this linear combination to the last column of the matrix N̂ (i,i), then we obtain zeros everywhere
except the right-lower element. For this non-zero entry we obtain

N̂
(i,i)
a+b+1,a+b+1 +

a+b∑

k=1

N̂
(i,i)
a+b+1,k

dxk
dκi

∣∣∣
κ̄=1

= (−1)[i]
∂τκ(z|ū, v̄)

∂κi
+ (−1)[i]

a+b∑

k=1

∂τ(z|ūC , v̄C)

∂xk

dxk
dκi

∣∣∣
κ̄=1

= (−1)[i]
dτκ(z|ū

C , v̄C)

dκi

∣∣∣
κ̄=1

. (4.6)

Thus, we arrive at

F (i,i)
(
z
∣∣∣ ū ū
v̄ v̄

)a,a
b,b

= (−c)a+b
b∏

j=1

a∏

k=1

f(vj, uk)

a∏

j,k=1
j 6=k

f(uj, uk)

b∏

j,k=1
j 6=k

g(vj , vk)

× (−1)[i]
dτκ(z|ū

C , v̄C)

dκi

∣∣∣
κ̄=1

det
a+b

N̂ (i,i), (4.7)

where now the size of the matrix N̂ (i,i) is (a + b) × (a + b). Comparing this expression with
(2.26) we reproduce representation (4.1). �

5 Zero modes

We have shown in the paper [23] that in the models with gl(N)-invariant R-matrix all the
form factors can be obtained from one initial form factor and taking special limits of the Bethe
parameters. Our method was based on the use of zero modes of the monodromy matrix. This
approach can be applied to the models with gl(m|n) symmetry without significant changes. In
this section we give a brief description of this method and find simple relations between different
form factors.

The basis of the zero modes method is an expansion of the monodromy matrix T (u) into a
series over inverse spectral parameter u−1

Tij(u) = δij1+
∞∑

n=0

Tij[n]
(
c
u

)n+1
. (5.1)

This expansion is typical if the monodromy matrix of the model is obtained as specialization
to some highest weight representation of the Yangian Y (gl(2|1)) with highest weight vector Ω
[40, 41].

Note that the expansion (5.1) yields similar expansions for the functions λi(u) and rk(u)

λi(u) = 1 +

∞∑

n=0

λi[n]
(
c
u

)n+1
, i = 1, 2, 3

rk(u) = 1 +
∞∑

n=0

rk[n]
(
c
u

)n+1
, k = 1, 3.

(5.2)
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Assumption (5.1) implies that the Bethe vectors remain on-shell if one of their parameters
tends to infinity. This is because the structure of the Bethe equations (2.20) is preserved when
rk(u) → 1 at u→ ∞.

The operators Tij[0] are called the zero modes. They span a gl(2|1) superalgebra. Sending
in (2.3) one of the arguments to infinity we obtain commutation relations of the zero modes
and the operators Tkl(z)

[Tij [0], Tkl(z)} = (−1)[l]([i]+[j])+[i][j]
(
δilTkj(z)− δkjTil(z)

)
, (5.3)

showing that the monodromy entries form an adjoint representation of the gl(2|1) superalgebra
generated by the zero modes.

5.1 Action of the zero modes onto Bethe vectors

The explicit formulas for the action the operators Tij(z) onto Bethe vectors were derived in [42].
Taking the limit z → ∞ in those expressions we obtain the action of the zero modes Tij [0]. The
action of Tij[0] with i < j is given by

T13[0]Ba,b(ū; v̄) = − lim
w→∞

(
−w

c

)b+1
Ba+1,b+1({ū, w}; {v̄, w}), (5.4)

T23[0]Ba,b(ū; v̄) = − lim
w→∞

(
−w

c

)b+1
Ba,b+1(ū; {v̄, w}), (5.5)

T12[0]Ba,b(ū; v̄) = lim
w→∞

w
c Ba+1,b({ū, w}; v̄). (5.6)

Let us show how one can obtain these equations. For this we consider the simplest case
(5.4). The action of the operator T13(w) onto a Bethe vector Ba,b(ū; v̄) is (see [42])

T13(w)Ba,b(ū; v̄) = λ2(w)h(v̄, w) Ba+1,b+1({ū, w}; {v̄, w}). (5.7)

Multiplying both sides by w/c, taking the limit w → ∞, and using the asymptotic properties
of the functions h(v,w) (2.10) and λ2(w) (5.2) we immediately arrive at (5.4).

The parameters ū and v̄ in (5.4)–(5.6) are a priori generic complex numbers, but they may
satisfy the Bethe equations in specific cases. Then in the r.h.s. of (5.5) and (5.6) we obtain
on-shell Bethe vectors, because the infinite root w together with the sets ū and v̄ satisfy Bethe
equations due to the condition (5.2).

Applying the antimorphism ψ to the actions (5.4)–(5.6) we obtain

Ca,b(ū; v̄)T31[0] = lim
w→∞

(
w
c

)b+1
Ca+1,b+1({ū, w}; {v̄, w}), (5.8)

Ca,b(ū; v̄)T32[0] = lim
w→∞

(
w
c

)b+1
Ca+1,b(ū; {v̄, w}), (5.9)

Ca,b(ū; v̄)T21[0] = lim
w→∞

w
c Ca+1,b({ū, w}; v̄). (5.10)

As in the above case, if the parameters {ū, v̄} satisfy Bethe equations, then {ū, v̄, w} also satisfy
Bethe equations as w → ∞.

Similarly to the gl(N) case (see [43]) the on-shell vectors (resp. dual on-shell vectors)
depending on finite Bethe roots are singular weight vectors of the zero modes Tij[0] with i > j
(resp. Tij [0] with i < j):

Tij[0]Ba,b(ū; v̄) = 0, i > j,

Ca,b(ū; v̄)Tij [0] = 0, i < j.
(5.11)

These equations can be obtained from the explicit formulas of the actions of Tij onto Bethe
vectors [42].
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5.2 Relations between different form factors

The zero modes allow us to find simple relations between different form factors. As a starter,
we consider an example. Setting in (5.3) j = k = l = 2 and i = 1 we obtain

[T12[0], T22(z)] = −T12(z). (5.12)

Let Ca+1,b(ū
C ; v̄C) and Ba,b(ū

B; v̄B) be two on-shell vectors with all their Bethe parameters
finite. Then (5.12) yields

Ca+1,b(ū
C ; v̄C)T12(z)Ba,b(ū

B; v̄B) = −Ca+1,b(ū
C ; v̄C)T12[0]T22(z)Ba,b(ū

B; v̄B)

+ Ca+1,b(ū
C ; v̄C)T22(z)T12[0]Ba,b(ū

B; v̄B). (5.13)

The first term in the r.h.s. vanishes as T12[0] acts on the dual on-shell Bethe vector. The action
of T12[0] on the on-shell vector Ba,b(ū

B; v̄B) is given by (5.6), hence,

Ca+1,b(ū
C ; v̄C)T12(z)Ba,b(ū

B; v̄B) = Ca+1,b(ū
C ; v̄C)T22(z) lim

w→∞

w
c Ba+1,b({ū

B, w}; v̄B). (5.14)

Since the original vector Ba,b(ū
B; v̄B) was on-shell, the new vector Ba+1,b({ū

B, w}; v̄B) with
w → ∞ also is on-shell. Therefore, in the r.h.s. of (5.14) we have the form factor of T22(z), and
we arrive at

F (1,2)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a+1,a

b,b
= lim

w→∞

w

c
F (2,2)

(
z
∣∣∣ ūC {ūB ,w}

v̄C v̄B

)a+1,a+1

b,b
. (5.15)

Thus, the form factor F (1,2) can be obtained from F (2,2) by sending one of the Bethe parameters
to infinity.

The relation (5.15) can be easily reformulated for the universal form factors. Indeed, looking
at the explicit expression (2.22) for the eigenvalue τ(z|ū, v̄) we see that

lim
uj→∞

τ(z|ū, v̄) = τ(z|ūj , v̄), lim
vk→∞

τ(z|ū, v̄) = τ(z|ū, v̄k). (5.16)

Thus, if one of the Bethe parameters goes to infinity, then the transfer matrix eigenvalue τ(z|ū, v̄)
turns into the eigenvalue depending on the remaining Bethe parameters. Hence, we arrive at

F(1,2)
(

ūC ūB

v̄C v̄B

)a+1,a

b,b
= lim

w→∞

w

c
F(2,2)

(
ūC {ūB,w}

v̄C v̄B

)a+1,a+1

b,b
. (5.17)

Similarly, starting with the universal form factor F(2,2) and using commutation relations
(5.3) we can obtain all the universal form factors F(i,j) with |i− j| = 1:

F(2,3)
(

ūC ūB

v̄C v̄B

)a,a
b+1,b

= lim
w→∞

(
−w

c

)b+1

F(2,2)
(

ūC ūB

v̄C {v̄B ,w}

)a,a
b+1,b+1

, (5.18)

F(2,1)
(

ūC ūB

v̄C v̄B

)a−1,a

b,b
= lim

w→∞

w

c
F(2,2)

(
{ūC ,w} ūB

v̄C v̄B

)a,a
b,b
, (5.19)

F(3,2)
(

ūC ūB

v̄C v̄B

)a,a
b−1,b

= − lim
w→∞

(w
c

)b
F(2,2)

(
ūC ūB

{v̄C ,w} v̄B

)a,a
b,b
. (5.20)

The universal form factors F(i,j) with |i − j| = 2 can be obtained as the limits of F(i,j) with
|i− j| = 1, for example,

F(1,3)
(

ūC ūB

v̄C v̄B

)a+1,a

b+1,b
= lim

w→∞

(
−w

c

)b+1

F(1,2)
(

ūC ūB

v̄C {v̄B ,w}

)a+1,a

b+1,b+1
, (5.21)
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F(3,1)
(

ūC ūB

v̄C v̄B

)a−1,a

b−1,b
= lim

w→∞

w

c
F(3,2)

(
{ūC ,w} ūB

v̄C v̄B

)a,a
b−1,b

. (5.22)

Thus, starting with F(2,2) and taking different limits of the Bethe parameters we obtain all the
universal form factors of the off-diagonal matrix elements of the monodromy matrix. Formally,
F(1,1) and F(3,3) can be also included in this scheme, for example,

F(1,1)
(

ūC ūB

v̄C v̄B

)a,a
b,b

− F(2,2)
(

ūC ūB

v̄C v̄B

)a,a
b,b

= lim
w→∞

w

c
F(1,2)

(
{ūC ,w} ūB

v̄C v̄B

)a+1,a

b,b
. (5.23)

However, in our case this relation is not needed, because we have already determinant repre-
sentations for all diagonal universal form factors [27].

It should be noted that the possibility of considering the limit of an infinite Bethe parameter
is based on the use of the generalized model. On the one hand, in this model, the Bethe
parameters are arbitrary complex numbers. Hence, one of them can be sent to infinity. On the
other hand, the existence of an infinite root in the Bethe equations agrees with the expansion
(5.2). At the same time, since the final expression for form factors depends on r1 and r3 only
through the eigenvalue τ(z|ū, v̄), the condition (5.2) is not a restriction on the form factors. It
can be checked for instance in Bose gas models [24], where the relations between for factors and
the zero modes method both apply, although the condition (5.2) is not fulfilled.

6 Form factors of off-diagonal elements.

In this section we deduce from the zero modes method determinant representations for the
universal form factors of the operators Tij(z) with i 6= j. We restrict ourselves with two typical
examples of F(1,2) and F(3,2). All other determinant representations for the universal form factors
can be obtained in a similar manner.

6.1 Form factor F(1,2)

Due to (5.17) the form factor F(1,2) is a limiting case of the form factor F(2,2). The determinant
representation for the latter is given by (3.13)–(3.15), where without any loss of generality we
can set p = a+1. In these expressions we also should replace a with a+1 and ūB with {ūB, w}
Then we have

F(1,2)
(

ūC ūB

v̄C v̄B

)a+1,a

b,b
= lim

w→∞

wH

cΩa+1
det

a+b+1
N (2,2). (6.1)

For taking the limit it is convenient to multiply the first a rows of the matrix N (2,2) by the
factors −w/c. Then we obtain

F(1,2)
(

ūC ūB

v̄C v̄B

)a+1,a

b,b
= lim

w→∞

(
−c

w

)a wH

cΩa+1
det

a+b+1

◦
N

(2,2)
j,k . (6.2)

where
◦
N

(2,2)
j,k = −

w

c
N

(2,2)
j,k , j = 1, . . . , a,

◦
N

(2,2)
j,k = N

(2,2)
j,k , j = a+ 1, . . . , a+ b+ 1.

(6.3)

Now let us give explicit expressions for the prefactor and the matrix elements in (6.2). The
factor H is

H(ūC ; {ūB, w}; v̄C) = f(v̄C , ūB)h(ūB , ūB)∆′(ūC)∆(ūB)∆(v̄C)∆′(v̄C)

× f(v̄C , w)h(w, ūB)h(ūB, w)g(w, ūB) = f(v̄C, w)f(w, ūB)h(ūB , w)H(ūC ; ūB; v̄C), (6.4)
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where H(ūC ; ūB; v̄C) is given by (3.5). Hence, due to (2.10) we find

lim
w→∞

(
−c

w

)a

H(ūC ; {ūB, w}; v̄C) = H(ūC ; ūB ; v̄C). (6.5)

The coefficient Ωa+1 is equal to

Ωa+1(ū
C ; {ūB , w}) =

1

g(uC

a+1, w)

g(uC

a+1, ū
C

a+1)

g(uC

a+1, ū
B)

=
Ωa+1(ū

C ; ūB)

g(uC

a+1, w)
, (6.6)

and therefore
lim
w→∞

c

w
Ωa+1(ū

C ; {ūB, w}) = −Ωa+1(ū
C ; ūB), (6.7)

where Ωa+1(ū
C ; ūB) is given by (3.6). Thus, the prefactor coincides with the one in (3.16) up

to the sign.

Consider now the matrix elements
◦
N

(2,2)
j,k . First of all

◦
N

(2,2)
a+1,k = −1 for all k = 1, . . . , a+b+1.

If j, k 6= a+ 1, then

◦
N

(2,2)
j,k (ūC ; {ūB, w}; v̄C)

= −
w

c

(
(−1)ar1(xk)t(u

C

j , xk)h(ū
C , xk)

f(v̄C , xk)h(xk, ūB)h(xk, w)
+
t(xk, u

C

j )h(xk, ū
C)

h(xk, ūB)h(xk, w)

)
,

j = 1, . . . , a,
k = 1, . . . , a+ b+ 1,
k 6= a+ 1,

(6.8)

◦
N

(2,2)
a+1+j,k({ū

B, w}; v̄C ; v̄B)

= −t(vC

j , xk)
g(v̄B , xk)

g(v̄C , xk)

(
1−

r3(xk)

f(xk, ūB)f(xk, w)

)
,

j = 1, . . . , b,
k = 1, . . . , a+ b+ 1,
k 6= a+ 1.

(6.9)

Here {x1, . . . , xa} = {uB

1 , . . . , u
B
a } and {xa+2, . . . , xa+b+1} = {vC

1 , . . . , v
C

b }. Taking the limit
w → ∞ we obtain

lim
w→∞

◦
N

(2,2)
j,k (ūC ; {ūB, w}; v̄C)

=
(−1)ar1(xk)t(u

C

j , xk)h(ū
C , xk)

f(v̄C, xk)h(xk, ūB)
+
t(xk, u

C

j )h(xk, ū
C)

h(xk, ūB)
,

j = 1, . . . , a,
k = 1, . . . , a+ b+ 1,
k 6= a+ 1,

(6.10)

lim
w→∞

◦
N

(2,2)
a+1+j,k({ū

B, w}; v̄C ; v̄B)

= −t(vC

j , xk)
g(v̄B , xk)

g(v̄C , xk)

(
1−

r3(xk)

f(xk, ūB)

)
,

j = 1, . . . , b,
k = 1, . . . , a+ b+ 1,
k 6= a+ 1.

(6.11)

Finally, for the elements
◦
N

(2,2)
j,a+1 with j 6= a+ 1 we have

◦
N

(2,2)
j,a+1(ū

C ; {ūB , w}; v̄C) =
−w

c

(
t(uC

j , w)
(−1)ar1(w)h(ū

C , w)

f(v̄C, w)h(w, ūB)
+
t(w, uC

j )h(w, ū
C)

h(w, ūB)

)
, j < a+1,

(6.12)
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◦
N

(2,2)
j,a+1({ū

B , w}; v̄C ; v̄B) = −t(vC

j , w)
g(v̄B , w)

g(v̄C , w)
, j > a+ 1, (6.13)

and sending there w to infinity we obtain

lim
w→∞

◦
N

(2,2)
j,a+1(ū

C ; {ūB , w}; v̄C) = lim
w→∞

◦
N

(2,2)
j,a+1({ū

B , w}; v̄C ; v̄B) = 0. (6.14)

We see that the (a + 1)-th column of the matrix
◦
N

(2,2)
j,k contains only one non-zero element

◦
N

(2,2)
a+1,a+1 = −1. Thus, the determinant in (6.2) reduces to the determinant of the (a+b)×(a+b)

matrix with the matrix elements (6.10) and (6.11). Obviously, this representation coincides with
the expressions (3.16) and (3.17).

6.2 Form factor F(3,2)

The form factor F(3,2) also can be obtained as a limit of the form factor F(2,2) via (5.20). We
use again representation (3.13)–(3.15), but now it is convenient to set p = a+ b. We also should
replace v̄C with {v̄C , w}. Then

F(3,2)
(

ūC ūB

v̄C v̄B

)a,a
b−1,b

= − lim
w→∞

(w
c

)b H

Ωa+b
det
a+b

N (2,2). (6.15)

For taking the limit we multiply the rows with j = a+ 1, . . . , a+ b− 1 of the matrix N (2,2) by
the factors c/w. Then we obtain

F(3,2)
(

ūC ūB

v̄C v̄B

)a,a
b−1,b

= − lim
w→∞

w

c

(w
c

)2b−2 H

Ωa+b
det
a+b

◦
N

(2,2)
j,k . (6.16)

where
◦
N

(2,2)
j,k = N

(2,2)
j,k , j = 1, . . . , a,

◦
N

(2,2)
j,k =

c

w
N

(2,2)
j,k , j = a+ 1, . . . , a+ b− 1,

◦
N

(2,2)
a+b,k = N

(2,2)
a+b,k = −1.

(6.17)

Now let us give explicit expressions for the prefactor and the matrix elements in (6.16). The
factor H is

H(ūC ; ūB; {v̄C , w}) = f(v̄C , ūB)h(ūB , ūB)∆′(ūC)∆(ūB)∆(v̄C)∆′(v̄C)

× f(w, ūB)g(w, v̄C)g(v̄C , w) = f(w, ūB)g(w, v̄C)g(v̄C , w)H(ūC ; ūB; v̄C), (6.18)

where H(ūC ; ūB; v̄C) is given by (3.5). Hence, due to (2.10) we find

lim
w→∞

(w
c

)2b−2
H(ūC ; ūB; {v̄C , w}) = (−1)b−1H(ūC ; ūB; v̄C). (6.19)

The coefficient Ωa+b is equal to

Ωa+b({v̄
C , w}; ūB) =

g(w, v̄C)

g(w, v̄B)
, (6.20)

and therefore
lim
w→∞

c

w
Ωa+b({v̄

C , w}; ūB) = 1. (6.21)
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Consider now the matrix elements
◦
N

(2,2)
j,k . If k 6= a+ b, then

◦
N

(2,2)
j,k (ūC ; ūB; {v̄C , w})

=
(−1)a−1r1(xk)t(u

C

j , xk)h(ū
C , xk)

f(v̄C, xk)f(w, xk)h(xk, ūB)
+
t(xk, u

C

j )h(xk, ū
C)

h(xk, ūB)
,

j = 1, . . . , a,
k = 1, . . . , a+ b− 1,

(6.22)

◦
N

(2,2)
a+j,k(ū

B; {v̄C , w}; v̄B)

= −
c

w
t(vC

j , xk)
g(v̄B , xk)

g(v̄C , xk)g(w, xk)

(
1−

r3(xk)

f(xk, ūB)

)
,

j = 1, . . . , b− 1,
k = 1, . . . , a+ b− 1.

(6.23)

Here {x1, . . . , xa} = {uB

1 , . . . , u
B
a } and {xa+1, . . . , xa+b−1} = {vC

1 , . . . , v
C

b−1}. Taking the limit
w → ∞ we obtain

lim
w→∞

◦
N

(2,2)
j,k (ūC ; ūB; {v̄C , w})

=
(−1)a−1r1(xk)t(u

C

j , xk)h(ū
C , xk)

f(v̄C, xk)h(xk, ūB)
+
t(xk, u

C

j )h(xk, ū
C)

h(xk, ūB)
,

j = 1, . . . , a,
k = 1, . . . , a+ b− 1,

(6.24)

lim
w→∞

◦
N

(2,2)
a+j,k(ū

B ; {v̄C , w}; v̄B)

= −t(vC

j , xk)
g(v̄B , xk)

g(v̄C , xk)

(
1−

r3(xk)

f(xk, ūB)

)
,

j = 1, . . . , b,
k = 1, . . . , a+ b− 1.

(6.25)

Finally, for the elements
◦
N

(2,2)
j,a+b with j 6= a+ b we have

◦
N

(2,2)
j,a+b(ū

C ; ūB ; {v̄C , w}) =
t(w, uC

j )h(w, ū
C)

h(w, ūB)
, j = 1, . . . , a, (6.26)

◦
N

(2,2)
a+j,a+b(ū

B; {v̄C , w}; v̄B) = 0, j = 1, . . . , b− 1, (6.27)

and sending there w to infinity we obtain that
◦
N

(2,2)
j,a+b → 0 as w → ∞ for j < a+ b.

We see that the last column of the matrix
◦
N

(2,2)
j,k contains only one non-zero element

◦
N

(2,2)
a+b,a+b = −1. Thus, the determinant in (6.16) reduces to the determinant of the (a+ b−1)×

(a + b − 1) matrix with the matrix elements (6.24) and (6.25). Obviously, this representation
coincides with (3.24), (3.25).

Remark. In all considerations above we assumed that the Bethe parameters of on-shell
vectors Ca′,b′(ū

C ; v̄C) and Ba,b(ū
B; v̄B) were finite. However, if rk(z) → 1 at z → ∞, then Bethe

equations (2.20) admit infinite solutions as well. The peculiarity of such infinite roots is that
the corresponding Bethe vectors are no longer singular vectors of the zero modes Tij[0] with
i > j (respectively, the operators Tij [0] with i < j do not annihilate dual on-shell vectors with
infinite parameters). This property played an essential role in our derivations, therefore one
might have impression that the case of infinite Bethe roots requires a special study. However,
as it was shown in [23] for the models with gl(3)-invariant R-matrix, all relations between the
form factors remain valid even in the presence of infinite Bethe parameters. The method of the
work [23] can be used for the models described by the gl(2|1) superalgebra without any changes.
Therefore we do not give here a special consideration to this problem.
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7 Form factors in the models described by gl(1|2) superalgebra

We have mentioned already that the Yangians Y
(
gl(1|2)

)
and Y

(
gl(2|1)

)
are isomorphic [26].

This isomorphism allows us to apply our results to the models with gl(1|2) symmetry.
To distinguish between two superalgebras we use the symbol tilde for all the objects related

to the gl(1|2) superalgebra. In particular, we use the grading [̃1] = 0 and [̃2] = [̃3] = 1. The
monodromy matrix entries will be denoted by T̃ij , their vacuum eigenvalues by λ̃j , the Bethe

vectors by B̃a,b(ū, v̄), and so on.
The isomorphism ϕ : Y

(
gl(2|1)

)
→ Y

(
gl(1|2

)
is defined as follows.

Definition 7.1. Let ̄ = 4− j. Then

ϕ :





[j] → [̃j] = [̄] + 1,

Tij(u) → (−1)[j][i]+[j]+1 T̃̄,̄ı(u)

λj(u) → λ̃j(u) = −λ̄(u).

(7.1)

Hereby,

ϕ(AB) = ϕ(A)ϕ(B). (7.2)

Remark. There is a big freedom in the definition of ϕ. Namely, we can use the following
action Tij(u) → (−1)[j][i]+α[i]+β[j]+γ T̃̄,̄ı(u), where α, β, and γ are arbitrary constants. Indeed,

if the operators T̃ij(u) satisfy the commutation relations of Y
(
gl(1|2)

)
, then multiplication by

(−1)α[i]+β[j]+γ is equivalent to the multiplication of the monodromy matrix T̃ by diagonal twists
(from the left by diag((−1)α[i]) and from the right by diag((−1)β[j]+γ)). It is clear that after
this multiplication the commutation relations are preserved. We have used this possibility in
(7.1) in order to have

ϕ
(
str(T (u)

)
= str T̃ (u). (7.3)

However, even this additional restriction does not fix completely the action of ϕ. We could
choose, for instance, Tij(u) → (−1)[j][i]+[i]+1 T̃̄,̄ı(u).

7.1 Bethe vectors

Bethe vectors in Y
(
gl(1|2)

)
were constructed in [26]:

B̃a,b(ū; v̄) = (−1)a
∑ g(ūI, v̄I)f(v̄I, v̄II)g(ūII, ūI)h(v̄I, v̄I)

λ̃2(ūII)λ̃2(v̄)f(ū, v̄)
T̃13(v̄I)T̃23(v̄II)T̃12(ūII)Ω̃. (7.4)

The dual vectors have the following explicit form

C̃a,b(ū; v̄) = (−1)
a(a−1)

2

∑ g(ūI, v̄I)f(v̄I, v̄II)g(ūII, ūI)h(v̄I, v̄I)

λ̃2(ūII)λ̃2(v̄)f(ū, v̄)
Ω̃†

T̃21(ūII)T̃32(v̄II)T̃31(v̄I). (7.5)

Then, assuming that ϕ(Ω) = Ω̃ and ϕ(Ω†) = Ω̃† we find

ϕ
(
Ba,b(ū; v̄)

)
= B̃b,a(v̄; ū), ϕ

(
Ca,b(ū; v̄)

)
= C̃b,a(v̄; ū). (7.6)

Here we have (dual) Bethe vectors of Y
(
gl(2|1)

)
in the l.h.s., and (dual) Bethe vectors of

Y
(
gl(1|2)

)
in the r.h.s. One can also easily check that

ψ
(
B̃a,b(ū; v̄)

)
= (−1)aC̃a,b(ū; v̄), ψ

(
C̃a,b(ū; v̄)

)
= B̃a,b(ū; v̄). (7.7)
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7.2 Form factors

Form factors of the operators Tij(z) depend on the functions λk(z). Therefore they are not
invariant under the action of ϕ:

ϕ
(
F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

)
= F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

∣∣∣
λk(z)→−λk̄(z)

. (7.8)

On the other hand we have

ϕ

(
F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

)
= ϕ

(
Ca′,b′(ū

C ; v̄C)Tij(z)Ba,b(ū
B; v̄B)

)

= (−1)[j][i]+[j]+1
C̃b′,a′(v̄

C ; ūC)T̃̄,̄ı(z)B̃b,a(v̄
B; ūB) = (−1)[j][i]+[j]+1F̃ (̄,̄ı)

(
z
∣∣∣ v̄C v̄B

ūC ūB

)b′,b
a′,a

. (7.9)

Thus, we obtain

(−1)[j][i]+[j]+1F̃ (̄,̄ı)
(
z
∣∣∣ v̄C v̄B

ūC ūB

)b′,b
a′,a

= F (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

∣∣∣
λk(z)=−λ̃k̄(z)

. (7.10)

Changing here

ūC,B ↔ v̄C,B, a↔ b, a′ ↔ b′, ̄↔ i, ı̄↔ j, (7.11)

we find

F̃ (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

= (−1)[̄][̄ı]+[̄ı]+1F (̄,̄ı)
(
z
∣∣∣ v̄C v̄B

ūC ūB

)b′,b
a′,a

∣∣∣
λk(z)=−λ̃k̄(z)

. (7.12)

It remains to use [̃j] = [̄] + 1, and we finally arrive at

F̃ (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

= (−1)[̃j][̃i]+[̃j]+1F (̄,̄ı)
(
z
∣∣∣ v̄C v̄B

ūC ūB

)b′,b
a′,a

∣∣∣
λk(z)=−λ̃k̄(z)

. (7.13)

Thus, the form factors of the monodromy matrix entries in the models with gl(1|2) and gl(2|1)
symmetries are related to each other by the replacement of variables (7.11).

Conclusion

In this paper we obtained determinant representations for form factors of the monodromy matrix
entries in integrable models described by gl(2|1) and gl(1|2) superalgebras. The method is based
on the determinant formula for a particular case of Bethe vectors scalar product [27]. This
formula allows one to calculate form factors of the diagonal operators Tii. Further calculation
of form factors of the off-diagonal operators Tik is based on the zero modes method [23].

The obtained results can be used for the calculation of form factors and correlation functions
in the supersymmetric t-J model. For this model the solution of the quantum inverse scattering
problem is known [11, 28]. Therefore, form factors of local operators can be easily reduced to
the ones considered in the present paper.

The calculation of form factors in models with gl(m|n) symmetry remains to be done. Any
results in this field would be desirable in view of their possible application to Hubbard model
and supersymmetric gauge theories. It is clear that the zero modes method works in this case as
well. Therefore, it would be enough to obtain a determinant formula for only one form factor.
All other form factors would be achieved form the initial one as special limits of the Bethe
parameters. However, the problem of calculating the initial form factor meets serious technical
difficulties.
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