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Abstract

Recently, Kurtz (2007, 2014) obtained a general version of the Yamada–Watanabe

and Engelbert theorems relating existence and uniqueness of weak and strong solutions of

stochastic equations covering also the case of stochastic differential equations with jumps.

Following the original method of Yamada and Watanabe (1971), we give alternative proofs

for the following two statements: pathwise uniqueness implies uniqueness in the sense

of probability law, and weak existence together with pathwise uniqueness imply strong

existence for stochastic differential equations with jumps.

1 Introduction

In order to prove existence and pathwise uniqueness of a strong solution for stochastic differ-

ential equations, it is an important issue to clarify the connections between weak and strong

solutions. The first pioneering results are due to Yamada and Watanabe [28] for certain stochas-

tic differential equations driven by Wiener processes.

We investigate stochastic differential equations with jumps. Let U be a second-countable

locally compact Hausdorff space equipped with its Borel σ-algebra B(U). Let m be a

σ-finite Radon measure on (U,B(U)), meaning that the measure of compact sets is always
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finite. Let U0, U1 ∈ B(U) be disjoint subsets. Let d, r ∈ N. Let b : [0,∞) × R
d → R

d,

σ : [0,∞) × R
d → R

d×r, f : [0,∞) × R
d × U → R

d and g : [0,∞) × R
d × U → R

d be

Borel measurable functions, where [0,∞) × R
d × U is equipped with its Borel σ-algebra

B([0,∞) × R
d × U) = B([0,∞)) ⊗ B(Rd) ⊗ B(U) (see, e.g., Dudley [7, Proposition 4.1.7]).

Consider a stochastic differential equation (SDE)

(1.1)

X t = X0 +

∫ t

0

σ(s,Xs) dW s +

∫ t

0

∫

U0

f(s,Xs−, u) Ñ(ds, du)

+

∫ t

0

b(s,Xs) ds+

∫ t

0

∫

U1

g(s,Xs−, u)N(ds, du), t ∈ [0,∞),

where (W t)t>0 is an r-dimensional standard Brownian motion, N(ds, du) is a Poisson random

measure on (0,∞)×U with intensity measure dsm(du), Ñ(ds, du) := N(ds, du)−dsm(du),

and (X t)t>0 is a suitable process with values in R
d.

Yamada and Watanabe [28] proved that weak existence and pathwise uniqueness imply

uniqueness in the sense of probability law and strong existence for the SDE (1.1) with f = 0

and g = 0. Engelbert [8] and Cherny [3] extended this result to a somewhat more general class

of equations and gave a converse in which the roles of existence and uniqueness are reversed, that

is, joint uniqueness in the sense of probability law (see, Engelbert [8, Definition 5]) and strong

existence imply pathwise uniqueness. The original Yamada–Watanabe result arises naturally

in the procedure of proving existence of solutions of a SDE; for a detailed discussion, see Kurtz

[16, pages 1–2].

Jacod [11] generalized the above mentioned result of Yamada and Watanabe for a SDE

driven by a semimartingale, where the coefficient may depend on the paths both of the solution

and of the driving process. The Yamada–Watanabe result has been generalized by Ondreját [20]

and Röckner et al. [23] for stochastic evolution equations in infinite dimensions, and by Tappe

[25] for semilinear stochastic partial differential equations with path-dependent coefficients.

Recently, there has been a renewed interest in generalizations of the results of Yamada

and Watanabe [28]. Kurtz [15], [16] continued the direction of Engelbert [8] and Jacod [11].

He studied general stochastic models which relate stochastic inputs with stochastic outputs,

and obtained a general version of the Yamada–Watanabe and Engelbert theorems relating

existence and uniqueness of weak and strong solutions of stochastic models with the message

that the original results are not limited to SDEs driven by Wiener processes. In order to

derive the original Yamada–Watanabe results from this general theory, proofs of pathwise

uniqueness require appropriate adaptedness conditions, so two new notions, compatibility and

partial compatibility between inputs and outputs have been introduced. Due to Example 3.9 in

Kurtz [15] and Page 7 in Kurtz [16], the results are valid for SDEs driven by a Wiener process

and Poisson random measures.

Following the ideas of Yamada and Watanabe [28], we are going to give alternative proofs

for the following two statements:
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1.1 Theorem. Pathwise uniqueness for the SDE (1.1) implies uniqueness in the sense of prob-

ability law.

1.2 Theorem. Weak existence and pathwise uniqueness for the SDE (1.1) imply strong exis-

tence.

Note that Theorems 1.1 and 1.2 are generalizations of Proposition 1 and Corollary 1 in

Yamada and Watanabe [28] (we do not intend to deal with generalization of their Corollary

3). The definition of weak and strong solutions of the SDE (1.1), pathwise uniqueness for the

SDE (1.1) and uniqueness in the sense of probability law, and a detailed, precise formulation of

Theorem 1.2 will be given in the paper. In the course of the proofs we developed a sequence of

lemmas discussing several kinds of measurability, see Lemmas 5.1 and 5.3, and we also presented

a key observation on the preservation of the joint distribution of the parts of the SDE (1.1),

see Lemmas A.2 and A.4.

Our alternative proofs show the power of the original method of Yamada and Watanabe

[28], these proofs can be followed step by step and every technical detail is transparent in the

paper. This raises a question whether Kurtz’s result could be proved via the walked-out path

by Yamada and Watanabe.

Note that Situ [24, Theorem 137] also considered the SDE (1.1) with R
d \ {0} instead of

U and with g = 0, and proved Theorems 1.1 and 1.2 under the resctrictive assumption

(1.2)

∫

Rd\{0}

‖u‖2

1 + ‖u‖2
m(du) <∞.

This assumption was needed for introducing an auxiliary càdlàg process in Lemma 139 in Situ

[24]. In fact, one can get rid of condition (1.2) by using the space of point measures on R+×U

as the space of trajectories of Poisson point processes instead of the space of càdlàg functions,

see the proofs of Theorems 1.1 and 1.2. We call the attention that in the literature the result

of Situ [24, Theorem 137] has been usually referred to without checking condition (1.2), see,

e.g., Li and Mytnik [18, equation (3.1)], Dawson and Li [5, equation (2.9)], Döring and Barczy

[6, equation (3.23)] and Li and Pu [19, equations (4.6) and (5.1)], but Theorem 1.2 covers these

situations as well.

We remark that Zhao [29] already adapted the original method of Yamada and Watanabe

for the SDE (1.1) driven only by a compensated Poisson random measure, i.e., with σ = 0

and g = 0, but for processes with values in a separable Hilbert space instead of R
d-valued

processes. Comparing with the results of the present paper, note that we explicitly stated and

proved in Theorem 1.1 that pathwise uniqueness for the SDE (1.1) implies uniqueness in the

sense of probability law.
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2 Preliminaries

Let Z+, N, R, R+ and R++ denote the set of non-negative integers, positive integers, real

numbers, non-negative real numbers and positive real numbers, respectively. For x, y ∈ R, we

will use the notations x ∧ y := min{x, y}. By ‖x‖ and ‖A‖, we denote the Euclidean

norm of a vector x ∈ R
d and the induced matrix norm of a matrix A ∈ R

d×d, respectively.

Throughout this paper, we make the conventions
∫ b
a
:=
∫
(a,b]

and
∫∞

a
:=
∫
(a,∞)

for any

a, b ∈ R with a < b. By C(R+,R
ℓ) and D(R+,R

ℓ) we denote the set of continuous and

càdlàg R
ℓ-valued functions defined on R+, equipped with a metric inducing the local uniform

topology (see, e.g., Jacod and Shiryaev [12, Section VI.1a]) and a metric inducing the so-

called Skorokhod topology (see, e.g., Jacod and Shiryaev [12, Theorem VI.1.14]), respectively.

Moreover, C(R+,R
ℓ) and D(R+,R

ℓ) denote the corresponding Borel σ-algebras on them.

Recall that U is a second-countable locally compact Hausdorff space. Note that U is

homeomorphic to a separable complete metric space, see, e.g., Kechris [14, Theorem 5.3]. For

our later purposes, we recall the notion of the space of point measures on R+ × U , of the

space of simple point measures on R+ ×U , and of the vague convergence. We follow Resnick

[21, Chapter 3] and Ikeda and Watanabe [10, Chapter I, Sections 8 and 9].

A point measure on R+ × U is a measure π of the following form: let F ⊂ N and let

{(ti, ui) : i ∈ F} be a countable collection of (not necessarily distinct) points of R+ ×U , and

let

π :=
∑

i∈F

δ(ti,ui)

assuming also that π([0, t] × B) < ∞ for all t ∈ R+ and compact subsets B ∈ B(U)

(i.e., π is a Radon measure meaning that the measure of compact sets is always finite, and

consequently, it is locally finite), where δ(ti,ui) denotes the Dirac measure concentrated on the

point (ti, ui). Thus

π([0, t]×B) = #{i ∈ F : (ti, ui) ∈ [0, t]× B}, t ∈ R+, B ∈ B(U).

A point function (or point pattern) p on U is a mapping p : D(p) → U , where the

domain D(p) is a countable subset of R++ such that {s ∈ D(p) : s ∈ (0, t], p(s) ∈ B} is

finite for all t ∈ R+ and compact subsets B ∈ B(U). The counting measure Np on R++×U

corresponding to p is defined by

Np((0, t]×B) := #{s ∈ D(p) : s ∈ (0, t], p(s) ∈ B}, t ∈ R++, B ∈ B(U).

Note that there is a (natural) bijection between the set of point functions on U and the set of

point measures π on R+×U with π({t}×U) 6 1, t ∈ R++, and π({0}×U) = 0. Namely,

if p : D(p) → U is a point function, then the corresponding point measure is its counting

measure Np =
∑

t∈D(p) δ(t,p(t)). The set of all point measures on R+ × U will be denoted by

M(R+×U), and define a σ-algebra M(R+×U) on it to be the smallest σ-algebra containing

all sets of the form

{π ∈M(R+ × U) : π([0, t]× B) ∈ A} for t ∈ R+, B ∈ B(U), A ∈ B([0,∞]).
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Alternatively, M(R+ × U) is the smallest σ-algebra making all the mappings M(R+ × U) ∋

π 7→ π([0, t]×B) ∈ [0,∞], t ∈ R+, B ∈ B(U), measurable.

Note that there is a (natural) bijection between the set of point processes (randomized

point functions) p defined on a probability space (Ω,F ,P) with values in the space of point

functions on U (in the sense of Ikeda and Watanabe [10, Chapter I, Definition 9.1]) and the

set of F/M(R+ × U)-measurable mappings p : Ω → M(R+ × U) with p(ω)({t} × U) 6 1

for all ω ∈ Ω and t ∈ R++, and p(ω)({0} × U) = 0 for all ω ∈ Ω (which are (special)

point processes in the sense of Resnick [21, page 124]).

A point process p on U is called a Poisson point process if its counting measure Np is a

Poisson random measure on R+ × U (for the definition of Poisson random measure see, e.g.,

Ikeda and Watanabe [10, Chapter I, Definition 8.1]). A Poisson point process is stationary if

and only if its intensity measure is of the form ds ν(du) for some measure ν on (U,B(U)),

which is called its charateristic measure. If ν is a Radon measure, then Np((0, t] × B) is

Poisson distributed with parameter tν(B) ∈ R+, hence {s ∈ D(p) : s ∈ (0, t], p(s) ∈ B} is

finite with probability one for all t ∈ R+ and compact subsets B ∈ B(U). Consequently,

a stationary Poisson point process with a Radon charateristic measure is a stationary Poisson

point process in the sense of Ikeda and Watanabe [10, Chapter I, Definition 9.1].

Next we recall vague convergence. Let Cc(R+ ×U,R+) be the space of R+-valued contin-

uous functions defined on R+ × U with compact support. For π, πn ∈ M(R+ × U), n ∈ N,

we say that πn converges vaguely to π as n→ ∞ if

lim
n→∞

∫

R+×U

f dπn =

∫

R+×U

f dπ

for all f ∈ Cc(R+×U,R+). For a topology on M(R+×U) giving this notion of convergence,

see page 140 in Resnick [21]. Recall that M(R+ × U) coincides with the Borel σ-algebra

generated by the open sets with respect to the vague topology on M(R+ × U), see, e.g.,

Resnick [21, Exercises 3.4.2(b) and 3.4.5].

In what follows we equip the spaces C(R+,R
ℓ), D(R+,R

ℓ), ℓ ∈ N, and M(R+×U) with

some σ-algebras that will be used later on. For each ℓ ∈ N, let us equip C(R+,R
ℓ) and

D(R+,R
ℓ) with the σ-algebras

Ct(R+,R
ℓ) := ϕ−1

t (C(R+,R
ℓ)) and Dt(R+,R

ℓ) := ϕ−1
t (D(R+,R

ℓ)), t ∈ R+,

respectively, where ϕt : D(R+,R
ℓ) → D(R+,R

ℓ) is the mapping

(2.1) (ϕt(z))(s) := z(t ∧ s), z ∈ D(R+,R
ℓ), s ∈ R+,

which stops the function z at t. It is easy to check that for all t ∈ R+, Ct(R+,R
ℓ) coincides

with the smallest σ-algebra containing all the finite-dimensional cylinder sets of the form

{
w ∈ C(R+,R

ℓ) : (w(t1), . . . , w(tn)) ∈ A
}
, n ∈ N, A ∈ B(Rnℓ), t1, . . . , tn ∈ [0, t],
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and then

C(R+,R
ℓ) = σ

(
⋃

t∈R+

Ct(R+,R
ℓ)

)
,(2.2)

see, e.g., Problem 2.4.2 in Karatzas and Shreve [13]. Similarly, for all t ∈ R+, Dt(R+,R
ℓ)

coincides with the smallest σ-algebra containing all the finite-dimensional cylinder sets of the

form

{
y ∈ D(R+,R

ℓ) : (y(t1), . . . , y(tn)) ∈ A
}
, n ∈ N, A ∈ B(Rnℓ), t1, . . . , tn ∈ [0, t],

and then

D(R+,R
ℓ) = σ

(
⋃

t∈R+

Dt(R+,R
ℓ)

)
,

hence Dt(R+,R
ℓ) coincides with D0

t (R
ℓ) in Definition VI.1.1 in Jacod and Shiryaev [12].

Finally, let us equip M(R+ × U) with the σ-algebras Mt(R+ × U), t ∈ R+, being the

smallest σ-algebra containing all sets of the form

{π ∈M(R+ × U) : π([0, s]× B) ∈ A} with s ∈ [0, t], B ∈ B(U), A ∈ B([0,∞]).

Note that

M(R+ × U) = σ

(
⋃

t∈R+

Mt(R+ × U)

)
,(2.3)

since the union of the generator system of the σ-algebras Mt(R+ × U), t ∈ R+, forms a

generator system of M(R+ × U).

3 Notions of weak and strong solutions

If (Ω,F ,P) is a probability space, then, by P-null sets from a sub σ-algebra H ⊂ F , we

mean the elements of the set

{A ⊂ Ω : ∃B ∈ H such that A ⊂ B and P(B) = 0 }.

3.1 Definition. Let n be a probability measure on (Rd,B(Rd)). A weak solution of the SDE

(1.1) with initial distribution n is a tuple
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
, where

(D1) (Ω,F , (Ft)t∈R+ ,P) is a filtered probability space satisfying the usual hypotheses (i.e.,

(Ft)t∈R+ is right continuous and F0 contains all the P-null sets in F);

(D2) (W t)t∈R+ is an r-dimensional standard (Ft)t∈R+-Brownian motion;
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(D3) p is a stationary (Ft)t∈R+-Poisson point process on U with characteristic measure m;

(D4) (X t)t∈R+ is an R
d-valued (Ft)t∈R+-adapted càdlàg process such that

(a) the distribution of X0 is n,

(b) P

(∫ t
0

(
‖b(s,Xs)‖+ ‖σ(s,Xs)‖2

)
ds <∞

)
= 1, t ∈ R+,

(c) P

(∫ t
0

∫
U0

‖f(s,Xs, u)‖2 dsm(du) <∞
)
= 1, t ∈ R+,

(d) P

(∫ t
0

∫
U1

‖g(s,Xs−, u)‖N(ds, du) <∞
)

= 1, t ∈ R+, where N(ds, du) is the

counting measure of p on R++ × U ,

(e) equation (1.1) holds P-a.s., where Ñ(ds, du) := N(ds, du)− dsm(du).

For the definitions of an (Ft)t∈R+-Brownian motion and an (Ft)t∈R+-Poisson point process,

see, e.g., Ikeda and Watanabe [10, Chapter I, Definition 7.2 and Chapter II, Definition 3.2].

In the next remark we point out that the integrals in the SDE (1.1) are well-defined under

the conditions of Definition 3.1 and have càdlàg modifications as functions of t.

3.2 Remark. If conditions (D1), (D2) and (D4)(b) are satisfied, then
(∫ t

0
σ(s,Xs) dW s

)
t∈R+

is well-defined and has continuous sample paths almost surely, see, Ikeda and Watanabe [10,

Chapter II, Definition 1.9]. Indeed, (σ(t,X t))t∈R+ is (Ft)t∈R+-adapted (since X is (Ft)t∈R+-

adapted and σ is measurable), (σ(t,X t))t∈R+ is measurable (since X is measurable,

because it has right-continuous paths, see Karatzas and Shreve [13, Remark 1.1.14], and σ is

measurable), and P
(∫ t

0
‖σ(s,Xs)‖2 ds <∞

)
= 1, t ∈ R+.

Concerning conditions (D4)(c) and (d), note that the mappings R+ ×U0 ×Ω ∋ (s, u, ω) 7→

f(s,Xs−(ω), u) ∈ R
d and R+ × U1 × Ω ∋ (s, u, ω) 7→ g(s,Xs−(ω), u) ∈ R

d are (Ft)t∈R+-

predictable, see Lemma A.1.

Hence condition (D4)(c) is satisfied if and only if the mapping R+ × U0 × Ω ∋ (s, u, ω) 7→

f(s,Xs−(ω), u) ∈ R
d is in the (multidimensional version of the) class F 2,loc

p defined on page

62 in Ikeda and Watanabe [10], i.e., if it is (Ft)t∈R+-predictable and there exists a sequence

(τn)n∈N of (Ft)t∈R+-stopping times such that τn ↑ ∞ almost surely as n→ ∞ and

(3.1) E

(∫ t∧τn

0

∫

U0

‖f(s,Xs, u)‖
2 dsm(du)

)
<∞, t ∈ R+, n ∈ N.

Indeed, if (D4)(c) holds then (3.1) is satisfied for

τn := inf

{
t ∈ R+ :

∫ t

0

∫

U0

‖f(s,Xs, u)‖
2 dsm(du) > n

}
∧ n, n ∈ N,

where τn ↑ ∞ almost surely as n → ∞. On the other hand, (3.1) implies

P

(∫ t∧τn
0

∫
U0

‖f(s,Xs, u)‖2 dsm(du) <∞
)

= 1 for all t ∈ R+ and n ∈ N, and hence

(D4)(c), because τn ↑ ∞ almost surely as n→ ∞.
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Moreover, if conditions (D1), (D3) and (D4)(c) are satisfied, then the process

(∫ t

0

∫

U0

f(s,Xs−, u) Ñ(ds, du)

)

t∈R+

is well-defined and has càdlàg sample paths almost surely. Indeed, for each n ∈ N,
(∫ t∧τn

0

∫

U0

f(s,Xs−, u) Ñ(ds, du)

)

t∈R+

=

(∫ t

0

∫

U0

1[0,τn](s)f(s,Xs−, u) Ñ(ds, du)

)

t∈R+

,

see page 63 in Ikeda and Watanabe [10]. The integrand R+ × U0 × Ω ∋ (s, u, ω) 7→

1[0,τn](s)f(s,Xs−(ω), u) ∈ R
d belongs to the (multidimensional version of the) class F 2

p de-

fined on page 62 in Ikeda andWatanabe [10], hence the process on the right hand side is a square

integrable (Ft)t∈R+-martingale, see page 63 in Ikeda and Watanabe [10]. By Theorem 1.3.13

in Karatzas and Shreve [13], this process has a càdlàg modification. Here we point out that

for using this theorem, we need completeness and right continuity of the filtration (Ft)t∈R+ .

Further, we also obtain

∫ t∧τn

0

∫

U0

f(s,Xs−, u) Ñ(ds, du)
a.s.
−→

∫ t

0

∫

U0

f(s,Xs−, u) Ñ(ds, du) as n→ ∞

for all t ∈ R+, since τn ↑ ∞ almost surely as n→ ∞.

Recalling that the mapping R+ × U1 × Ω ∋ (s, u, ω) 7→ g(s,Xs−(ω), u) ∈ R
d is (Ft)t∈R+-

predictable, condition (D4)(d) is satisfied if and only if the mapping R+×U1×Ω ∋ (s, u, ω) 7→

g(s,Xs−(ω), u) ∈ R
d is in the (multidimensional version of the) class F p defined on page 61

in Ikeda and Watanabe [10].

Further, if conditions (D1), (D3) and (D4)(d) are satisfied, then, by definition, the process

(∫ t

0

∫

U1

g(s,Xs−, u)N(ds, du)

)

t∈R+

=


 ∑

s∈(0,t]∩D(p)

g(s,Xs−, p(s))1U1(p(s))



t∈R+

is well-defined and has càdlàg sample paths, where D(p) is the domain of p (being a countable

subset of R++). Indeed, for each ω ∈ Ω, by definition, the mappings

R+ ∋ t 7→
∑

s∈(0,t]∩D(p)(ω)

g(s,Xs−(ω), p(s)(ω))1U1(p(s)(ω)),

R+ ∋ t 7→
∑

s∈(0,t)∩D(p)(ω)

g(s,Xs−(ω), p(s)(ω))1U1(p(s)(ω))

are right and left continuous, respectively. ✷

3.3 Remark. If m(U1) < ∞, then condition (D4)(d) is satisfied automatically, since

then E(N((0, t] × U1) = tm(U1) < ∞ implies P(N((0, t] × U1) < ∞) = 1, and hence∫ t
0

∫
U1

‖g(s,Xs−, u)‖N(ds, du) =
∑

s∈(0,t]∩D(p) ‖g(s,Xs−, p(s))‖1U1(p(s)) is a finite sum with

probability one. ✷
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3.4 Remark. Note that if conditions (D1)–(D3) are satisfied, then W and p are automat-

ically independent according to Theorem 6.3 in Chapter II of Ikeda and Watanabe [10], since

the intensity measure dsm(du) of p is deterministic.

Moreover, if
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
is a weak solution of the SDE (1.1), then F0,

W and p are mutually independent, and hence X0, W and p are mutually independent

as well. Indeed, the conditional joint charateristic function of W and the counting measure of

p with respect to F0 equals to the product of the (unconditional) charateristic functions of

W and the counting measure of p, see equation (6.12) in Chapter II of Ikeda and Watanabe

[10] applied with X = W and s = 0, and then one can use Lemma 2.6.13 in Karatzas and

Shreve [13]. Since X0 is measurable with respect to F0 due to (D4), we have the mutual

independence of X0, W and p.

The thinnings p0 and p1 of p onto U0 and U1 are again stationary (Ft)t∈R+-Poisson point

processes on U0 and U1, respectively, and their characteristic measures are the restrictions

m|U0 and m|U1 of m onto U0 and U1, respectively (this can be checked calculating their

conditional Laplace transforms, see Ikeda and Watanabe [10, page 44]).

Remark that for any weak solution of the SDE (1.1), X0, the Brownian motion W and

the stationary Poisson point processes p0 and p1 are mutually independent according again

to Theorem 6.3 in Chapter II of Ikeda and Watanabe [10]. Indeed, one can argue as before

taking into account also that the intensity measures of p0 and p1 are deterministic, and

condition (6.11) of this theorem is satisfied, because p0 and p1 live on disjoint subsets of U .

✷

3.5 Definition. We say that pathwise uniqueness holds for the SDE (1.1) if whenever(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
and

(
Ω,F , (Ft)t∈R+ ,P,W , p, X̃

)
are weak solutions of the SDE

(1.1) such that P(X0 = X̃0) = 1, then P(X t = X̃ t for all t ∈ R+) = 1.

3.6 Remark. One may also consider the following more strict definition of pathwise unique-

ness. Namely, one could say that pathwise uniqueness holds for the SDE (1.1) if whenever(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
and

(
Ω,F , (F̃t)t∈R+ ,P,W , p, X̃

)
are weak solutions of the SDE

(1.1) such that P(X0 = X̃0) = 1, then P(X t = X̃ t for all t ∈ R+) = 1. Note that in this

definition we require that W is an (Ft)t∈R+-Brownian motion and an (F̃t)t∈R+-Brownian

motion as well, and since it is not necessarily true that W is an (σ(Ft ∪ F̃t))t∈R+-Brownian

motion, it is not clear whether this more strict definition of pathwise uniqueness and the one

given in 3.5 are equivalent. According to Ikeda and Watanabe [10, Chapter IV, Remark 1.3],

they are equivalent. We also point out that in our statements and proofs we use pathwise

uniqueness in the sense of Definition 3.5, and we do not use the above mentioned equivalence

of the two kinds of definitions. ✷

3.7 Definition. We say that uniqueness in the sense of probability law holds for the SDE (1.1)

if whenever
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
and

(
Ω̃, F̃ , (F̃t)t∈R+ , P̃, W̃ , p̃, X̃

)
are weak solutions

of the SDE (1.1) with the same initial distribution, i.e., P(X0 ∈ B) = P̃(X̃0 ∈ B) for all

B ∈ B(Rd), then P(X ∈ C) = P̃(X̃ ∈ C) for all C ∈ D(R+,R
d).
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Now we define strong solutions. Consider the following objects:

(E1) a probability space (Ω,F ,P);

(E2) an r-dimensional standard Brownian motion (W t)t∈R+ ;

(E3) a stationary Poisson point process p on U with characteristic measure m;

(E4) a random vector ξ with values in R
d, independent of W and p.

3.8 Remark. Note that if conditions (E1)–(E4) are satisfied, then ξ, W and p are

automatically mutually independent according to Remark 3.4. ✷

Provided that the objects (E1)–(E4) are given, let (Fξ,W, p
t )t∈R+ be the augmented filtration

generated by ξ, W and p, i.e., for each t ∈ R+, Fξ,W, p
t is the σ-field generated

by σ(ξ; W s, s ∈ [0, t]; p(s), s ∈ (0, t] ∩ D(p)) and by the P-null sets from σ(ξ; W s, s ∈

R+; p(s), s ∈ R++ ∩D(p)) (which is similar to the definition in Karatzas and Shreve [13, page

285]). One can check that

• (Fξ,W, p
t )t∈R+ satisfies the usual hypotheses;

• (W t)t∈R+ is a standard (Fξ,W, p
t )t∈R+-Brownian motion;

• p is a stationary (Fξ,W, p
t )t∈R+-Poisson point process on U with characteristic measure m.

Indeed, by Remark 3.8, W is a standard (σ(ξ; W s, s ∈ [0, t]; p(s), s ∈ (0, t] ∩ D(p)))t∈R+-

Brownian motion, and p is a stationary (σ(ξ; W s, s ∈ [0, t]; p(s), s ∈ (0, t] ∩ D(p)))t∈R+-

Poisson point process on U with characteristic measure m. Hence, by Theorems 6.4 and

6.5 in Chapter II in Ikeda and Watanabe [10], (W , p) has the strong Markov property with

respect to the filtration (σ(ξ; W s, s ∈ [0, t]; p(s), s ∈ (0, t] ∩ D(p)))t∈R+ . Then Proposition

2.7.7 in Karatzas and Shreve [13] yields that the augmented filtration (Fξ,W, p
t )t∈R+ satisfies

the usual hypotheses. Moreover, the augmentation of σ-fields does not disturb the definition

of a standard Wiener process and a stationary Poisson point process, hence (W t)t∈R+ is a

standard (Fξ,W, p
t )t∈R+-Brownian motion, and p is a stationary (Fξ,W, p

t )t∈R+-Poisson point

process on U with characteristic measure m. For the standard Wiener process, see, e.g.,

Karatzas and Shreve [13, Theorem 2.7.9]. The main point is to show that W t − W s is

independent of Fξ,W ,p
s for all s, t ∈ R+ with s < t, and p(t) − p(s) is independent of

Fξ,W ,p
s for all s, t ∈ D(p) with s < t, detailed as follows (in order to shed some light what

is going on behind). Let s, t ∈ R+ with s < t, and F ∈ Fξ,W, p
s . Then, by Problem 2.7.3 in

Karatzas and Shreve [13], there exists F̃ ∈ σ(ξ; W u, u ∈ [0, s]; p(u), u ∈ (0, s] ∩ D(p)) such

that F∆F̃ is a P-null set from σ(ξ; W u, u ∈ R+; p(u), u ∈ R++ ∩ D(p)), where F∆F̃

denotes the symmetric difference of F and F̃ . Using that

P(A) = P(B) + P(A ∩ (Ω \B))− P((Ω \ A) ∩ B), A, B ∈ F ,
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we get for all K ∈ B(Rr),

P({W t −W s ∈ K} ∩ F )

= P({W t −W s ∈ K} ∩ F̃ )

+ P({W t −W s ∈ K} ∩ F ∩ ({W t −W s 6∈ K} ∪ (Ω \ F̃ )))

− P(({W t −W s 6∈ K} ∪ (Ω \ F )) ∩ {W t −W s ∈ K} ∩ F̃ )

= P({W t −W s ∈ K} ∩ F̃ ) + P({W t −W s ∈ K} ∩ F ∩ (Ω \ F̃ ))

− P({W t −W s ∈ K} ∩ (Ω \ F ) ∩ F̃ )

= P({W t −W s ∈ K} ∩ F̃ ) = P(W t −W s ∈ K)P(F̃ ) = P(W t −W s ∈ K)P(F ),

where the last but one step follows from the independence of W t −W s and F̃ . A similar

argument shows the independence of p(t)− p(s) and F .

3.9 Definition. Suppose that the objects (E1)–(E4) are given. A strong solution of the SDE

(1.1) on (Ω,F ,P) and with respect to the standard Brownian motion W , the stationary

Poisson point process p and initial value ξ, is an R
d-valued (Fξ,W, p

t )t∈R+-adapted càdlàg

process (X t)t∈R+ with P(X0 = ξ) = 1 satisfying (D4)(b)–(d).

Clearly, if (X t)t∈R+ is a strong solution, then
(
Ω,F , (Fξ,W, p

t )t∈R+ ,P,W , p,X
)

is a weak

solution with initial distribution being the distribution of ξ.

4 Proof of Theorem 1.1

Our presentation as follows is a generalization of the one given in Section 5.3.D in Karatzas

and Shreve [13].

Let us consider a weak solution
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
of the SDE (1.1) with initial

distribution n on (Rd,B(Rd)). Then P(X0 ∈ B) = n(B), B ∈ B(Rd). We put Y t :=

X t −X0 for t ∈ R+, and we regard the solution X as consisting of four parts: X0, W ,

p and Y . Let us consider the product space

Θ := R
d × C(R+,R

r)×M(R+ × U)×D(R+,R
d)(4.1)

equipped with the Borel σ-algebra

B(Θ) = B(Rd)⊗ C(R+,R
r)⊗M(R+ × U)⊗D(R+,R

d),

see, e.g., Dudley [7, Proposition 4.1.7]. The quadruplet (X0,W , p,Y ) induce the probability

measure P on (Θ,B(Θ)) according to the prescription

P (A) := P[(X0,W , p,Y ) ∈ A], A ∈ B(Θ).(4.2)
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We denote by θ = (x, w, π, y) a generic element of Θ. The marginal of P on the x-coordinate

of θ is the probability measure n on (Rd,B(Rd)), the marginal on the w-coordinate is

an r-dimensional Wiener measure PW, r on (C(R+,R
r), C(R+,R

r)), the marginal on the π-

coordinate is the distribution PU,m on (M(R+×U),M(R+×U)) of a stationary Poisson point

process p on U with characteristic measure m. Moreover, the distribution of the triplet

(x, w, π) under P is the product measure n× PW, r × PU,m because X0 is F0-measurable

and W , p and F0 are independent, see Remark 3.4. Furthermore, P(Y 0 = 0) = 1.

The product space Θ defined in (4.1) is a complete, separable metric space, since R
d is a

complete, separable metric space with the usual Euclidean metric, C(R+,R
r) is a complete,

separable metric space with a metric inducing the local uniform topology (see, e.g., Jacod

and Shiryaev [12, Section VI.1a]), D(R+,R
d) is a complete, separable metric space with a

metric inducing the so-called Skorokhod topology (see, e.g., Jacod and Shiryaev [12, Theorem

VI.1.14]), and the vague topology on the space M(R+ ×U) of all point measures on R+ ×U

is metrizable as a complete, separable metric space (see, e.g., Resnick [21, Proposition 3.17,

page 147]). Hence there exists a regular conditional probability for B(Θ) given (x, w, π), by

an application of Karatzas and Shreve [13, Chapter 5, Theorem 3.19] with the random variable

Θ ∋ (x, w, π, y) 7→ (x, w, π). We shall be interested in conditional probabilities of sets in B(Θ)

only of the form R
d × C(R+,R

r)×M(R+ × U) × F , where F ∈ D(R+,R
d). Consequently,

with a slight abuse of notation, there exists a function

Q : Rd × C(R+,R
r)×M(R+ × U)×D(R+,R

d) → [0, 1](4.3)

enjoying the following properties:

(R1) for each x ∈ R
d, w ∈ C(R+,R

r) and π ∈M(R+ × U), the set function D(R+,R
d) ∋

F 7→ Q(x, w, π, F ) is a probability measure on (D(R+,R
d),D(R+,R

d));

(R2) for each F ∈ D(R+,R
d), the mapping R

d × C(R+,R
r) ×M(R+ × U) ∋ (x, w, π) 7→

Q(x, w, π, F ) is B(Rd)⊗ C(R+,R
r)⊗M(R+ × U)/B([0, 1])-measurable;

(R3) for each G ∈ B(Rd)⊗ C(R+,R
r)⊗M(R+ × U) and F ∈ D(R+,R

d), we have

P (G× F ) =

∫

G

Q(x, w, π, F )n(dx)PW, r(dw)PU,m(dπ).

We can call Q(x, w, π, ·) as the regular conditional probability for D(R+,R
d) given (x, w, π).

Let us now consider two weak solutions
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
, i ∈

{1, 2} of the SDE (1.1) with the same initial distribution n on (Rd,B(Rd)), thus

P
(1)[X

(1)
0 ∈ B] = P

(2)[X
(2)
0 ∈ B] = n(B), B ∈ B(Rd).

According to (4.2), let

Pi(A) := P
(i)[(X

(i)
0 ,W

(i), p(i),Y (i)) ∈ A], A ∈ B(Θ), i ∈ {1, 2},
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and, as explained before, there exist functions

Qi : R
d × C(R+,R

r)×M(R+ × U)×D(R+,R
d) → [0, 1], i ∈ {1, 2},(4.4)

enjoying the properties (R1)–(R3).

First, we bring the two triplets (X(i),W (i), p(i)), i ∈ {1, 2}, together on the same,

canonical space, while preserving the joint distribution of the coordinates within each triplet.

Let Ω := Θ × D(R+,R
d) equipped with the σ-algebra F , which is the completion of the

product σ-algebra B(Θ)⊗D(R+,R
d) by the collection N of null sets under the probability

measure

P1,2(A) :=

∫

Rd×C(R+,Rr)×M(R+×U)

(∫

D(R+,Rd)×D(R+,Rd)

1A(x, w, π, y
(1), y(2))

Q1(x, w, π, dy
(1))Q2(x, w, π, dy

(2))

)
n(dx)PW, r(dw)PU,m(dπ)

(4.5)

for A ∈ B(Θ)⊗D(R+,R
d), where we have denoted by (x, w, π, y(1), y(2)) a generic element of

Ω, and then we extend P1,2 to F . Especially, for all G ∈ B(Rd)⊗C(R+,R
r)⊗M(R+ ×U)

and F1, F2 ∈ D(R+,R
d),

P1,2(G× F1 × F2) =

∫

G

Q1(x, w, π, F1)Q2(x, w, π, F2)n(dx)PW, r(dw)PU,m(dπ).

In order to endow (Ω,F ,P1,2) with a filtration that satisfies the usual conditions, for each

t ∈ R+, we take Gt := σ(fs,B : s ∈ [0, t], B ∈ B(U)), where the mapping fs,B : Ω →

R
d × R

r × [0,∞]× R
d × R

d is defined by

fs,B(x, w, π, y
(1), y(2)) :=

(
x, ws, π([0, s]×B), y(1)s , y(2)s

)
, (x, w, π, y(1), y(2)) ∈ Ω,

and put

G̃t := σ(Gt ∪N ), Ft := G̃t+ :=
⋂

ε>0

G̃t+ε, t ∈ R+.

We note that for each t ∈ R+,

Gt = Ĝt = B(Rd)⊗ Ct(R+,R
r)⊗Mt(R+ × U)⊗Dt(R+,R

d)⊗Dt(R+,R
d),

where Ĝt := σ(f̂s,B : s ∈ [0, t], B ∈ B(U)), and the mapping f̂s,B : Ω → Ω is defined by

f̂s,B(x, w, π, y
(1), y(2)) :=

(
x, (wt∧s)t∈R+ , π|[0,s]×B, (y

(1)
t∧s)t∈R+ , (y

(2)
t∧s)t∈R+

)

for (x, w, π, y(1), y(2)) ∈ Ω. Indeed, for all t ∈ R+, by definition, the σ-algebra Gt coincides

with the σ-algebra generated by the sets

E1 × {w ∈ C(R+,R
r) : w(s) ∈ E2} × {π ∈M(R+ × U) : π([0, s]× B) ∈ E3}

× {y(1) ∈ D(R+,R
d) : y(1)(s) ∈ E4} × {y(2) ∈ D(R+,R

d) : y(2)(s) ∈ E5}
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for s ∈ [0, t], B ∈ B(U), E1 ∈ B(Rd), E2 ∈ B(Rr), E3 ∈ B([0,∞]) and E4, E5 ∈ B(Rd).

Moreover, as in Problem 2.4.2 in Karatzas and Shreve [13], the σ-algebra Ĝt coincides with

the σ-algebra generated by the sets

E1 × {w ∈ C(R+,R
r) : (w(t1,1 ∧ s), . . . , w(t1,n1 ∧ s)) ∈ E2}

× {π ∈ M(R+ × U) : (π([0, t2,1 ∧ s]×B1), . . . , π([0, t2,n2 ∧ s]× Bn2)) ∈ E3}

× {y(1) ∈ D(R+,R
d) : (y(1)(t3,1 ∧ s), . . . , y

(1)(t3,n3 ∧ s)) ∈ E4}

× {y(2) ∈ D(R+,R
d) : (y(2)(t4,1 ∧ s), . . . , y

(2)(t4,n4 ∧ s)) ∈ E5}

for s ∈ [0, t], ti,j ∈ R+, i ∈ {1, 2, 3, 4}, j ∈ {1, . . . , ni}, B1, . . . , Bn2 ∈ B(U), E1 ∈ B(Rd),

E2 ∈ B(Rrn1), E3 ∈ B([0,∞]n2), E4 ∈ B(Rdn3) and E5 ∈ B(Rdn4). Since for any stochastic

process (ξt)t∈R+ ,

σ(ξt : t ∈ [0, s]) = σ((ξt1 , . . . , ξtn) : ti ∈ [0, s], i ∈ {1, . . . , n}, n ∈ N), s ∈ R+,(4.6)

we get Ĝt = Gt, t ∈ R+.

The π-coordinate process on Ω induces a point process pπ on U with characteristic

measure m in a natural way, since, as it was recalled, there is a bijection between the set of

point functions on U and the set of point measures π on R+ × U with π({0} × U) = 0

and π({t} × U) 6 1, t ∈ R++, and

P1,2

({
(x, w, π, y(1), y(2)) ∈ Ω : π({0} × U) = 0, π({t} × U) 6 1, t ∈ R++

})
= 1,

which follows from (4.5) using that PU,m is the distribution on (M(R+ ×U),M(R+ ×U)) of

a stationary Poisson point process on U with characteristic measure m implying that

PU,m
({
π ∈M(R+ × U) : π({0} × U) = 0, π({t} × U) 6 1, t ∈ R++

})
= 1.

Next we check that
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+y

(i)
t )t∈R+

)
, i ∈ {1, 2}, are weak solutions

of the SDE (1.1) with the same initial distribution n. Using the definitions of Pi, i ∈ {1, 2},

P1,2, (R1) and (R3) we get

(4.7) P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : (x, w, π, y(i)) ∈ A] = P
(i)[(X

(i)
0 ,W

(i), p(i),Y (i)) ∈ A]

for all A ∈ B(Θ) and i ∈ {1, 2}. Indeed, with i = 1, G ∈ B(Rd)⊗C(R+,R
r)⊗M(R+ ×U)
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and F ∈ D(R+,R
d), by Fubini theorem,

P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : (x, w, π, y(1)) ∈ G× F ]

=

∫

{ω∈Ω:(x,w,π,y(1))∈G×F}

Q1(x, w, π, dy
(1))Q2(x, w, π, dy

(2))n(dx)PW ,r(dw)PU,m(dπ)

=

∫

G

Q1(x, w, π, F )Q2(x, w, π,D(R+,R
d))n(dx)PW ,r(dw)PU,m(dπ)

=

∫

G

Q1(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ) = P1(G× F )

= P
(1)[(X

(1)
0 ,W (1), p(1),Y (1)) ∈ G× F ].

So the distribution of (x+ y(i), w, pπ) under P1,2 is the same as the distribution of (X
(i)
0 +

Y (i),W (i), p(i)) = (X(i),W (i), p(i)) under P
(i). Due to the definition of a weak solution, under

P
(i), W (i) is an r-dimensional standard (F (i)

t )t∈R+-Brownian motion, and p(i) is a stationary

(F (i)
t )t∈R+-Poisson point process on U with characteristic measure m. Consequently, by

the definition of (Gt)t∈R+ (which is nothing else but the natural filtration corresponding to

the coordinate processes), under P1,2, the w-coordinate process is an r-dimensional standard

(Gt)t∈R+-Brownian motion, the process pπ is a stationary (Gt)t∈R+-Poisson point process on U

with characteristic measure m, and (x+ y
(i)
t )t∈R+ is (Gt)t∈R+-adapted, i ∈ {1, 2}. Further,

the same is true if we replace the filtration (Gt)t∈R+ by (Ft)t∈R+ , see, Lemma A.5. Note also

that the filtration (Ft)t∈R+ satisfies the usual conditions. All in all, for each i ∈ {1, 2}, the

tuple
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+ y

(i)
t )t∈R+

)
satisfies (D1)–(D3).

Hence it remains to check that, for each i ∈ {1, 2}, the tuple
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+

y
(i)
t )t∈R+

)
satisfies (D4). For each i ∈ {1, 2}, let us apply Lemma A.4 with the following choices

(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)

and (
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+ y

(i)
t )t∈R+

)
.

Since
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
is a weak solution of the SDE (1.1) with

initial distribution n, the tuple
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
satisfies (D1)–

(D4). Further, as it was explained before, the tuple
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+ y

(i)
t )t∈R+

)

satisfies (D1)–(D3), the process (x+ y
(i)
t )t∈R+ is adapted to the filtration (Ft)t∈R+ , and the

distribution of (X(i),W (i), p(i)) under P
(i) is the same as the distribution of (x+ y(i), w, pπ)

under P1,2. Then Lemma A.4 yields that the tuple
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+ y

(i)
t )t∈R+

)

satisfies (D4)(a)–(d) and the distribution of
(
X

(i)
t −X

(i)
0 −

∫ t

0

b(s,X(i)
s ) ds−

∫ t

0

σ(s,X(i)
s ) dW (i)

s

−

∫ t

0

∫

U0

f(s,X
(i)
s−, u) Ñ

(i)(ds, du)−

∫ t

0

∫

U1

g(s,X
(i)
s−, u)N

(i)(ds, du)

)

t∈R+
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on (D(R+,R
d),D(R+,R

d)) under P
(i) is the same as the distribution of

(
y
(i)
t − y

(i)
0 −

∫ t

0

b(s,x+ y(i)s ) ds−

∫ t

0

σ(s,x+ y(i)s ) dws

−

∫ t

0

∫

U0

f(s,x+ y
(i)
s−, u) Ñπ(ds, du)−

∫ t

0

∫

U1

g(s,x+ y
(i)
s−, u)Nπ(ds, du)

)

t∈R+

on (D(R+,R
d),D(R+,R

d)) under P1,2, where Nπ(ds, du) is the counting measure of pπ
on R+ × U , and Ñπ(ds, du) := Nπ(ds, du)− dsm(du). Using also that for each i ∈ {1, 2},

the first process and the identically 0 process are indistinguishable (since the SDE (1.1) holds

P
(i)-a.s. for (X

(i)
t )t∈R+), we obtain that the tuple

(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x + y

(i)
t )t∈R+

)

satisfies (D4), as desired. It is worth mentioning that this is the place where we use that the

filtration (Ft)t∈R+ satisfies the usual conditions in order to ensure that the second process

above has a càdlàg modification, see Remark 3.2. The filtrations (Gt)t∈R+ and (G̃t)t∈R+ do

not necessarily satisfy the usual conditions, this is the reason for introducing the filtration

(Ft)t∈R+ .

We have P1,2(x+y
(1)
0 = x+y

(2)
0 ) = 1, because, by (4.7), P1,2(y

(i)
0 = 0) = P

(i)(Y
(i)
0 = 0) = 1,

i ∈ {1, 2}. Since
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x + y

(i)
t )t∈R+

)
, i ∈ {1, 2}, are weak solutions

of the SDE (1.1) with the same initial distribution n, and P1,2(x + y
(1)
0 = x + y

(2)
0 ) = 1,

pathwise uniqueness implies P1,2(x+ y
(1)
t = x+ y

(2)
t for all t ∈ R+) = 1, or equivalently,

(4.8) P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : y(1) = y(2)] = 1,

hence, applying (4.7),

P
(1)[(X

(1)
0 ,W (1), p(1),Y (1)) ∈ A] = P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : (x, w, π, y(1)) ∈ A]

= P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : (x, w, π, y(2)) ∈ A]

= P
(2)[(X

(2)
0 ,W (2), p(2),Y (2)) ∈ A]

for all A ∈ B(Θ). Since X(i) = X
(i)
0 +Y (i), i ∈ {1, 2}, and the mapping R

d×D(R+,R
d) ∋

(x0,y) 7→ x0 + y ∈ D(R+,R
d) is continuous (see, e.g., Jacod and Shiryaev [12, Proposition

VI.1.23]), we have

P
(1)[X(1) ∈ Ã] = P

(2)[X(2) ∈ Ã], Ã ∈ D(R+,R
d),

and then we obtain uniqueness in the sense of probability law. ✷

5 Precise formulation and proof of Theorem 1.2

Our first result is a counterpart of Lemma 1.1 in Chapter IV in Ikeda and Watanabe [10] for

stochastic differential equations with jumps, compare also with Situ [24, page 106, Fact A].
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5.1 Lemma. If
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
is a weak solution of the SDE (1.1) with initial

distribution n on (Rd,B(Rd)), then for every fixed t ∈ R+ and F ∈ Dt(R+,R
d), the

mapping

R
d × C(R+,R

r)×M(R+ × U) ∋ (x, w, π) 7→ Q(x, w, π, F )

is B̂t/B([0, 1])-measurable, where B̂t denotes the completion of B(Rd)⊗Ct(R+,R
r)⊗Mt(R+×

U) by the null sets of n× PW ,r × PU,m from B(Rd)⊗ C(R+,R
r)⊗M(R+ × U).

Proof. Consider the regular conditional probability

Qt : R
d × C(R+,R

r)×M(R+ × U)×Dt(R+,R
d) → [0, 1]

for Dt(R+,R
d) given (x, ϕt(w), ψt(π)), where, for each t ∈ R+, the stopped mapping

ϕt : C(R+,R
r) → C(R+,R

r) is defined in (2.1), and ψt : M(R+ × U) → M(R+ × U),

ψt(π) := π
∣∣
[0,t]×U

, π ∈M(R+ × U), i.e., ψt(π) denotes the restriction of π onto [0, t]× U .

The mapping Qt enjoy properties analogous to (R1)–(R3). Namely,

(R̃1) for each x ∈ R
d, w ∈ C(R+,R

r) and π ∈M(R+ ×U), the set function Dt(R+,R
d) ∋

F 7→ Qt(x, w, π, F ) is a probability measure on (D(R+,R
d),Dt(R+,R

d));

(R̃2) for each F ∈ Dt(R+,R
d), the mapping R

d × C(R+,R
r) ×M(R+ × U) ∋ (x, w, π) 7→

Qt(x, w, π, F ) is B(Rd)⊗ Ct(R+,R
r)⊗Mt(R+ × U)/B([0, 1])-measurable;

(R̃3) for every G ∈ B(Rd)⊗ Ct(R+,R
r)⊗Mt(R+ × U) and F ∈ Dt(R+,R

d),

P (G× F ) =

∫

G

Qt(x, w, π, F )n(dx)PW, r(dw)PU,m(dπ),

where the probability measure P is defined in (4.2).

In order to prove the statement, it suffices to check that

(5.1) Q(x, w, π, F ) = Qt(x, w, π, F ) for n× PW, r × PU,m-a.e. (x, w, π).

Indeed, then (n× PW, r × PU,m)(N) = 0 for

N :=
{
(x, w, π) ∈ R

d × C(R+,R
r)×M(R+ × U) : Q(x, w, π, F ) 6= Qt(x, w, π, F )

}

∈ B(Rd)⊗ C(R+,R
r)⊗M(R+ × U),

and what is more, N ∈ B̂t, since

B̂t = σ
(
B(Rd)⊗ Ct(R+,R

r)⊗Mt(R+ × U) ∪ N
)
,

where

N :=
{
A ⊂ R

d × C(R+,R
r)×M(R+ × U) : ∃B ∈ B(Rd)⊗ C(R+,R

r)⊗M(R+ × U)

with A ⊂ B, (n× PW ,r × PU,m)(B) = 0
}
,

17



and N ∈ N . Hence for all E ∈ B([0, 1]),

{
(x, w, π) ∈ R

d × C(R+,R
r)×M(R+ × U) : Q(x, w, π, F ) ∈ E

}
= A1 ∪A2,

where

A1 :=
{
(x, w, π) ∈ R

d × C(R+,R
r)×M(R+ × U) : Q(x, w, π, F ) ∈ E,

Q(x, w, π, F ) = Qt(x, w, π, F )
}

=
{
(x, w, π) ∈ R

d × C(R+,R
r)×M(R+ × U) : Qt(x, w, π, F ) ∈ E

}

∩
{
(x, w, π) ∈ R

d × C(R+,R
r)×M(R+ × U) : Q(x, w, π, F ) = Qt(x, w, π, F )

}
,

and

A2 :=
{
(x, w, π) ∈ R

d × C(R+,R
r)×M(R+ × U) : Q(x, w, π, F ) ∈ E,

Q(x, w, π, F ) 6= Qt(x, w, π, F )
}
.

Here A1 ∈ B̂t, since, by (R̃2), the set

{
(x, w, π) ∈ R

d × C(R+,R
r)×M(R+ × U) : Qt(x, w, π, F ) ∈ E

}

is in B(Rd)⊗ Ct(R+,R
r)⊗Mt(R+ × U) ⊂ B̂t, and

{
(x, w, π) ∈ R

d × C(R+,R
r)×M(R+ × U) : Q(x, w, π, F ) = Qt(x, w, π, F )

}

= R
d × C(R+,R

r)×M(R+ × U) \N ∈ B̂t.

Further, A2 ⊂ N ∈ B(Rd)⊗ C(R+,R
r)⊗M(R+ × U) and (n× PW ,r × PU,m)(N) = 0 imply

A2 ∈ N ⊂ B̂t.

Unfortunately, (5.1) does not follow from the comparison of (R3) with (R̃3), since still we

do not know weather the function (x, w, π) 7→ Q(x, w, π, F ) is B(Rd)⊗Ct(R+,R
r)⊗Mt(R+×

U)/B([0, 1])-measurable. In order to show (5.1), it suffices to check that (R̃3) is valid for every

G ∈ B(Rd)⊗ C(R+,R
r)⊗M(R+ × U). Indeed, then, by (R3),

∫

G

Q(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ) =

∫

G

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

for all G ∈ B(Rd) ⊗ C(R+,R
r) ⊗ M(R+ × U) and F ∈ Dt(R+,R

d), and hence, using also

that the function (x, w, π) 7→ Qt(x, w, π, F ) is B(Rd) ⊗ C(R+,R
r) ⊗ M(R+ × U)/B([0, 1])-

measurable, by the uniqueness part of the Radon-Nikodým theorem, we have (5.1).

The class G of sets G satisfying (R̃3) is a Dynkin system, i.e.,
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• R
d × C(R+,R

r) ×M(R+ × U) ∈ G, since R
d × C(R+,R

r) ×M(R+ × U) ∈ B(Rd) ⊗

Ct(R+,R
r)⊗Mt(R+ × U) and one can apply (R̃3),

• if G1, G2 ∈ G and G1 ⊂ G2, then G2 \G1 ∈ G. Indeed,

P ((G2 \G1)× F ) = P (G2 × F )− P (G1 × F )

=

∫

G2

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

−

∫

G1

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

=

∫

G2\G1

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ).

• if (Gn)n∈N ⊂ G and G1 ⊂ G2 ⊂ · · · , then
⋃∞
n=1Gn ∈ G. Indeed, by the continuity of

probability and dominated convergence theorem,

P

((
∞⋃

n=1

Gn

)
× F

)
= lim

n→∞
P (Gn × F )

= lim
n→∞

∫

Gn

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

= lim
n→∞

∫

Rd×C(R+,Rr)×M(R+×U)

Qt(x, w, π, F )1Gn
(x, w, π)n(dx)PW ,r(dw)PU,m(dπ)

=

∫
⋃

∞

n=1Gn

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ).

Consider the collection of sets of the form

(5.2) G = G1 × (ϕ−1
t (G2) ∩ ϕ̃

−1
t (G3))× (ψ−1

t (G4) ∩ ψ̃
−1
t (G5))

for G1 ∈ B(Rd), G2, G3 ∈ C(R+,R
r), G4, G5 ∈ M(R+ × U), where, for each t ∈ R+, ϕt

and ψt are defined earlier, ϕ̃t : C(R+,R
r) → C(R+,R

r) denotes the increment mapping

(ϕ̃t(w))(s) := w(t+ s)−w(t), w ∈ C(R+,R
r), s ∈ R+, and ψ̃t :M(R+ × U) →M(R+ × U)

denotes the increment mapping given by ψ̃t(π)([0, s]× B) := π([0, t + s]× B)− π([0, t]× B),

s ∈ R+, B ∈ B(U). This collection of sets is closed under pairwise intersection and generates

the σ-algebra B(Rd) ⊗ C(R+,R
r) ⊗ M(R+ × U), since the collection of sets of the form

(ϕ−1
t (G2) ∩ ϕ̃−1

t (G3)) with G2 = {w ∈ C(R+,R
r) : (w(t1), . . . , w(tn)) ∈ A} for n ∈ N,

t ∈ R+, t1, . . . , tn ∈ [0, t], A ∈ B(Rrn), and G3 = C(R+,R
r) generates C(R+,R

r) by (2.2),

and the collection of sets of the form (ψ−1
t (G4) ∩ ψ̃

−1
t (G5)) with

G4 = {π ∈M(R+ × U) : π([0, t]×B) ∈ A}

for t ∈ R+, B ∈ B(U), A ∈ B([0,∞]), and G5 = M(R+ × U) generates M(R+ × U)

by (2.3). By the Dynkin system theorem (see, e.g., Karatzas and Shreve [13, Theorem 2.1.3]),
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B(Rd)⊗C(R+,R
r)⊗M(R+ ×U) ⊂ G provided that we prove (R̃3) for G of the form (5.2).

For such a G, by Fubini theorem, we have

∫

G

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

=

∫

ψ−1
t (G4)∩ψ̃

−1
t (G5)

(∫

ϕ−1
t (G2)∩ϕ̃

−1
t (G3)

(∫

G1

Qt(x, w, π, F )n(dx)

)
PW ,r(dw)

)
PU,m(dπ)

= EPW ,r×PU,m

[∫

G1

Qt(x, w, π, F )n(dx)1ϕ−1
t (G2)∩ϕ̃

−1
t (G3)

(w)1ψ−1
t (G4)∩ψ̃

−1
t (G5)

(π)

]

= EPW ,r×PU,m

[
EPW ,r×PU,m

[ ∫

G1

Qt(x, w, π, F )n(dx)

× 1ϕ−1
t (G2)

(w)1ϕ̃−1
t (G3)

(w)1ψ−1
t (G4)

(π)1ψ̃−1
t (G5)

(π)
∣∣∣ Ct(R+,R

r)⊗Mt(R+ × U)
]]

= EPW ,r×PU,m

[∫

G1

Qt(x, w, π, F )n(dx)1ϕ−1
t (G2)

(w)1ψ−1
t (G4)

(π)

(PW ,r × PU,m)
(
ϕ̃−1
t (G3)× ψ̃−1

t (G5)
∣∣∣ Ct(R+,R

r)⊗Mt(R+ × U)
)]

= EPW ,r×PU,m

[∫

G1

Qt(x, w, π, F )n(dx)1ϕ−1
t (G2)

(w)1ψ−1
t (G4)

(π)

× (PW ,r × PU,m)
(
ϕ̃−1
t (G3)× ψ̃−1

t (G5)
)]

=

∫

G1×ϕ
−1
t (G2)×ψ

−1
t (G4)

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

× (PW ,r × PU,m)
(
ϕ̃−1
t (G3)× ψ̃−1

t (G5)
)

= P [G1 × ϕ−1
t (G2)× ψ−1

t (G4)× F ] (PW ,r × PU,m)
(
ϕ̃−1
t (G3)× ψ̃−1

t (G5)
)
.

The fourth equality above follows from the Ct(R+,R
r)⊗Mt(R+ × U)/B([0, 1])-measurability

of the function

C(R+,R
r)×M(R+ × U) ∋ (w, π) 7→

∫

G1

Qt(x, w, π, F )n(dx),

which is a consequence of (R̃2) and Fubini theorem. The fifth equality above follows from

the independence of ϕ̃−1
t (G3)× ψ̃−1

t (G5) and Ct(R+,R
r)⊗Mt(R+ × U) under the measure

PW ,r × PU,m, see, e.g., Ikeda and Watanabe [10, Chapter 2, Theorems 6.4 and 6.5]. For the

last equality above we used (R̃3) and

G1 × ϕ−1
t (G2)× ψ−1

t (G4)× F ∈ B(Rd)⊗ Ct(R+,R
r)⊗Mt(R+ × U)⊗Dt(R+,R

d).
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By (4.2),

(PW ,r × PU,m)
(
ϕ̃−1
t (G3)× ψ̃−1

t (G5)
)
= P [(x, w, π, y) ∈ Θ : ϕ̃t(w) ∈ G3, ψ̃t(π) ∈ G5]

= P[ϕ̃t(W ) ∈ G3, ψ̃t(p) ∈ G5],

P [G1 × ϕ−1
t (G2)× ψ−1

t (G4)× F ] = P[X0 ∈ G1, ϕt(W ) ∈ G2, ψt(p) ∈ G4, Y ∈ F ].

Therefore, if G is of the form (5.2), then

∫

G

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

= P[X0 ∈ G1, ϕt(W ) ∈ G2, ψt(p) ∈ G4, Y ∈ F ] P[ϕ̃t(W ) ∈ G3, ψ̃t(p) ∈ G5]

= P[X0 ∈ G1, ϕt(W ) ∈ G2, ϕ̃t(W ) ∈ G3, ψt(p) ∈ G4, ψ̃t(p) ∈ G5, Y ∈ F ]

= P[(X0,W , p) ∈ G, Y ∈ F ]

= P [G× F ].

The second equality above follows from the independence of {X0 ∈ G1, ϕt(W ) ∈ G2, ψt(p) ∈

G4, Y ∈ F} and {ϕ̃t(W ) ∈ G3, ψ̃t(p) ∈ G5} under the probability measure P. This

independence holds because

{X0 ∈ G1, ϕt(W ) ∈ G2, ψt(p) ∈ G4, Y ∈ F}

= {X0 ∈ G1, ϕt(ϕt(W )) ∈ G2, ψt(ψt(p)) ∈ G4, Y ∈ F}

= {X0 ∈ G1, ϕt(W ) ∈ ϕ−1
t (G2), ψt(p) ∈ ψ−1

t (G4), Y ∈ F} ∈ Ft

(5.3)

and {ϕ̃t(W ) ∈ G3, ψ̃t(p) ∈ G5} is independent of Ft under the probability measure P, see,

e.g., Ikeda and Watanabe [10, Chapter II, Theorems 6.4 and 6.5]. The relationship (5.3) is valid

since ϕ−1
t (G2) ∈ Ct(R+,R

r), ψ−1
t (G4) ∈ Mt(R+ × U) and F ∈ Dt(R+,R

d), the mapping

Ω ∋ ω 7→ ϕt(W (ω)) is Ft/Ct(R+,R
r)-measurable, and the mapping Ω ∋ ω 7→ ψt(p(ω)) is

Ft/Mt(R+ × U)-measurable, because the processes W and p are (Ft)t∈R+-adapted. ✷

5.2 Remark. The filtration (B̂t)t∈R+ defined in Lemma 5.1 is the augmentated filtration

generated by the coordinate processes on the canonical probability space (Rd × C(R+,R
r) ×

M(R+ × U),B(Rd)⊗ C(R+,R
r) ⊗M(R+ × U), n × PW ,r × PU,m). This is the counterpart of

the augmentated filtration (Fξ,W ,p
t )t∈R+ . ✷

The next lemma is a generalization of Corollary 1 in Yamada and Watanabe [28] (see also

Problem 5.3.22 in Karatzas and Shreve [13]) for stochastic differential equations with jumps.

5.3 Lemma. Let us suppose that pathwise uniqueness holds for the SDE (1.1). If(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
, i ∈ {1, 2}, are two weak solutions of the SDE
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(1.1) with the same initial distribution n on (Rd,B(Rd)), then there exists a function

k : Rd × C(R+,R
r)×M(R+ × U) → D(R+,R

d) such that

(5.4) Qi(x, w, π, {k(x, w, π)}) = 1, i ∈ {1, 2}

holds for n×PW ,r×PU,m-almost every (x, w, π) ∈ R
d×C(R+,R

r)×M(R+ ×U), where Qi,

i ∈ {1, 2}, is given in (4.4). This function k is B(Rd)⊗C(R+,R
r)⊗M(R+×U)/D(R+,R

d)-

measurable, B̂t/Dt(R+,R
d)-measurable for every fixed t ∈ R+, and

P
(i)(k(X

(i)
0 ,W

(i), p(i)) = Y (i)) = 1, i ∈ {1, 2}.(5.5)

Proof. Fix (x, w, π) ∈ R
d × C(R+,R

r) × M(R+ × U) and define the measure

Q1,2(x, w, π, dy
(1), dy(2)) := Q1(x, w, π, dy

(1))Q2(x, w, π, dy
(2)) on the space S := D(R+,R

d)×

D(R+,R
d) equipped with the σ-algebra S := D(R+,R

d)⊗ D(R+,R
d). By (4.5) and Fubini

theorem,

(5.6) P1,2[G× B] =

∫

G

Q1,2(x, w, π, B)n(dx)PW ,r(dw)PU,m(dπ)

for all G ∈ B(Rd) ⊗ C(R+,R
r) ⊗ M(R+ × U) and B ∈ S. With the choice G = R

d ×

C(R+,R
r)×M(R+×U) and B = {(y(1), y(2)) ∈ S : y(1) = y(2)}, using that pathwise uniqueness

holds for the SDE (1.1), relation (4.8) yields P1,2[G × B] = 1. Since Q1,2(x, w, π, B) 6 1

for all (x, w, π) ∈ R
d × C(R+,R

r) ×M(R+ × U), (5.6) yields the existence of a set N ∈

B(Rd)⊗ C(R+,R
r)⊗M(R+ × U) with (n× PW ,r × PU,m)(N) = 0 such that

Q1,2

(
x, w, π, {(y(1), y(2)) ∈ S : y(1) = y(2)}

)
= 1, (x, w, π) /∈ N.

Again, by Fubini theorem,

1 = Q1,2(x, w, π, {(y
(1), y(2)) ∈ S : y(1) = y(2)})

=

∫

D(R+,Rd)

Q1(x, w, π, {y})Q2(x, w, π, dy), (x, w, π) /∈ N,
(5.7)

which can occur only if for some y0 ∈ D(R+,R
d), call it k̃(x, w, π), we have

Qi(x, w, π, {k̃(x, w, π)}) = 1, i ∈ {1, 2}, (x, w, π) /∈ N.(5.8)

Indeed, since for all (x, w, π, y) ∈ R
d×C(R+,R

r)×M(R+×U)×D(R+,R
d), Q1(x, w, π, {y}) ∈

[0, 1], we have

Q2(x, w, π, {y ∈ D(R+,R
d) : Q1(x, w, π, {y}) = 1}) = 1, (x, w, π) /∈ N.

Since for all (x, w, π) ∈ R
d×C(R+,R

r)×M(R+×U), by (R1), the set function D(R+,R
d) ∋

F 7→ Qi(x, w, π, F ) is a probability measure on (D(R+,R
d),D(R+,R

d)), i ∈ {1, 2}, we get

the unique existence of k̃(x, w, π) for all (x, w, π) /∈ N satisfying (5.8). Then we have (5.4)

for k̃.

22



For (x, w, π) /∈ N and any B ∈ D(R+,R
d), we have k̃(x, w, π) ∈ B if and only if

Qi(x, w, π, B) = 1, i ∈ {1, 2}.

The aim of the following discussion is to show the B̂t/Dt(R+,R
d)-measurability of k̃ for

all t ∈ R+. For all t ∈ R+ and B ∈ Dt(R+,R
d), we have

k̃−1(B) = {(x, w, π) ∈ R
d × C(R+,R

r)×M(R+ × U) : k̃(x, w, π) ∈ B} =: A1 ∪A2,

where

A1 := {(x, w, π) ∈ R
d × C(R+,R

r)×M(R+ × U) : k̃(x, w, π) ∈ B, (x, w, π) ∈ N}(5.9)

and

A2 := {(x, w, π) ∈ R
d × C(R+,R

r)×M(R+ × U) : k̃(x, w, π) ∈ B, (x, w, π) /∈ N}

= {(x, w, π) ∈ R
d × C(R+,R

r)×M(R+ × U) : (x, w, π) /∈ N} ∩Qi(·, ·, ·, B)−1({1})
(5.10)

for i ∈ {1, 2}. Lemma 5.1 implies Qi(·, ·, ·, B)−1({1}) ∈ B̂t, i ∈ {1, 2}. Moreover, N ∈ B̂t
(due to the definition of B̂t, for more details, see the proof of Lemma 5.1), hence A2 ∈ B̂t.

Using that A1 ⊂ N , (n×PW ,r×PU,m)(N) = 0 and the definition of the augmented σ-algebra

B̂t (see Lemma 5.1), we obtain A1 ∈ B̂t. Hence k̃−1(B) = A1 ∪A2 ∈ B̂t, as desired.

The aim of the following discussion is to show that k̃ is

B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

/D(R+,R
d)-measurable,

where B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

denotes the completion of B(Rd) ⊗

C(R+,R
r)⊗M(R+×U) with respect to the measure n×PW ,r×PU,m. For all B ∈ D(R+,R

d),

we have k̃−1(B) = A1 ∪ A2, where A1 and A2 are defined in (5.9) and (5.10). Property

(R2) implies Qi(·, ·, ·, B)−1({1}) ∈ B(Rd) ⊗ C(R+,R
r) ⊗M(R+ × U), i ∈ {1, 2}. Moreover,

by definition of completion (see, e.g., Definition 2.7.2 in Karatzas and Shreve [13]),

N ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

,

hence

A2 ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

.

Using that A1 ⊂ N , (n× PW ,r × PU,m)(N) = 0, by definition of completion, we obtain

A1 ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

.

Hence k̃−1(B) = A1 ∪A2 ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

, as desired.

Next we check (5.5) for k̃. For i ∈ {1, 2}, by (4.7), (4.5), (R1) and (5.8),

P
(i)(k̃(X

(i)
0 ,W

(i), p(i)) = Y (i)) = P1,2

(
ω = (x, w, π, y(1), y(2)) ∈ Ω : k̃(x, w, π) = y(i)

)

=

∫

Rd×C(R+,Rr)×M(R+×U)

Qi(x, w, π, {k̃(x, w, π)})n(dx)PW, r(dw)PU,m(dπ) = 1,

23



as desired.

It remains to check that one can choose a version of k̃ which is B(Rd) ⊗ C(R+,R
r) ⊗

M(R+ × U)/D(R+,R
d)-measurable, B̂t/Dt(R+,R

d)-measurable for every fixed t ∈ R+, and

(5.4) and (5.5) remain hold for k. Since k̃ is

B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

/D(R+,R
d)-measurable,

there exists a function k : Rd × C(R+,R
r) ×M(R+ × U) → D(R+,R

d) which is B(Rd) ⊗

C(R+,R
r)⊗M(R+ × U)/D(R+,R

d)-measurable and

(n× PW ,r × PU,m)
(
{(x, w, π) ∈ R

d × C(R+,R
r)×M(R+ × U) : k̃(x, w, π) 6= k(x, w, π)}

)
= 0

see, e.g., Cohn [4, Proposition 2.2.5]. First we check that k is B̂t/Dt(R+,R
d)-measurable for

every fixed t ∈ R+. For all t ∈ R+ and B ∈ Dt(R+,R
d), we have

k−1(B) = (k−1(B) ∩ {k̃ = k}) ∪ (k−1(B) ∩ {k̃ 6= k})

= (k̃−1(B) ∩ {k̃ = k}) ∪ (k−1(B) ∩ {k̃ 6= k}),

where k̃−1(B) ∈ B̂t (since k̃ is B̂t/Dt(R+,R
d)-measurable), {k̃ 6= k} ∈ B̂t (due to the

definition of completion, since (n × PW ,r × PU,m)(k̃ 6= k) = 0), {k̃ = k} ∈ B̂t (since B̂t
is a σ-algebra), and k−1(B) ∩ {k̃ 6= k} ∈ B̂t (due to the definition of completion, since

k−1(B) ∩ {k̃ 6= k} ⊂ {k̃ 6= k}). Hence k−1(B) ∈ B̂t.

Next we check (5.4) for k. Using that (5.4) holds for k̃ and (n×PW ,r×PU,m)(k̃ 6= k) = 0,

we have

(n× PW ,r × PU,m)(H1 ∪H2)

= (n× PW ,r × PU,m)
(
(H1 ∪H2) ∩ {k = k̃}

)
+ (n× PW ,r × PU,m)

(
(H1 ∪H2) ∩ {k 6= k̃}

)

6 (n× PW ,r × PU,m)(H̃1 ∪ H̃2) + (n× PW ,r × PU,m)(k 6= k̃) = 0 + 0 = 0,

where

H̃i := {(x, w, π) ∈ R
d × C(R+,R

r)×M(R+ × U) : Qi(x, w, π, {k̃(x, w, π)}) 6= 1},

Hi := {(x, w, π) ∈ R
d × C(R+,R

r)×M(R+ × U) : Qi(x, w, π, {k(x, w, π)}) 6= 1}

for i ∈ {1, 2}. This implies (5.4) for k.

Finally, we check (5.5) for k. First observe that P1,2(k̃ = k) = 1, since, by (5.6),

P1,2(k̃ = k) = 1− P1,2(k̃ 6= k)

= 1−

∫

{k̃ 6=k}

Q1,2(x, w, π,D(R+,R
d), D(R+,R

d))n(dx)PW, r(dw)PU,m(dπ)

= 1−

∫

{k̃ 6=k}

Q1(x, w, π,D(R+,R
d))Q2(x, w, π,D(R+,R

d))n(dx)PW, r(dw)PU,m(dπ)

= 1− (n× PW, r × PU,m)(k̃ 6= k) = 1− 0 = 1,
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where we used (R1) as well. Then, by (4.7) and (4.5), for i ∈ {1, 2}, we obtain

P
(i)(k(X

(i)
0 ,W

(i), p(i)) = Y (i)) = P1,2

(
ω = (x, w, π, y(1), y(2)) ∈ Ω : k(x, w, π) = y(i)

)

= P1,2

(
{ω = (x, w, π, y(1), y(2)) ∈ Ω : k(x, w, π) = y(i)} ∩ {k̃ = k}

)

= P1,2

(
{ω = (x, w, π, y(1), y(2)) ∈ Ω : k̃(x, w, π) = y(i)} ∩ {k̃ = k}

)

= P1,2

(
ω = (x, w, π, y(1), y(2)) ∈ Ω : k̃(x, w, π) = y(i)

)

= P
(i)(k̃(X

(i)
0 ,W

(i), p(i)) = Y (i)) = 1,

where, for the last equality, we applied that (5.5) holds for k̃. ✷

5.4 Remark. Note that the function k in Lemma 5.3 and the n× PW ,r × PU,m-null set on

which (5.4) does not hold depend on the two weak solutions in question. ✷

Applying Lemma 5.3 for weak solutions
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
=(

Ω,F , (Ft)t∈R+ ,P,W , p,X
)
, i ∈ {1, 2}, of the SDE (1.1) with the same initial distribution n

on (Rd,B(Rd)), we obtain the following corollary.

5.5 Corollary. If pathwise uniqueness holds for the SDE (1.1) and
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)

is a weak solution of the SDE (1.1) with initial distribution n on (Rd,B(Rd)), then there exists

a function k : Rd×C(R+,R
r)×M(R+×U) → D(R+,R

d) such that Q(x, w, π, {k(x, w, π)}) =

1 holds for n×PW ,r×PU,m-almost every (x, w, π) ∈ R
d×C(R+,R

r)×M(R+×U), where Q

is given in (4.3). This function k is B(Rd)⊗C(R+,R
r)⊗M(R+×U)/D(R+,R

d)-measurable,

B̂t/Dt(R+,R
d)-measurable for every fixed t ∈ R+, and P(k(X0,W , p) = Y ) = 1.

Next we give the precise formulation of Theorem 1.2.

5.6 Theorem. Let us suppose that pathwise uniqueness holds for the SDE (1.1) and there exists

a weak solution
(
Ω′,F ′, (F ′

t)t∈R+ ,P
′,W ′, p′,X ′

)
of the SDE (1.1) with initial distribution n′.

Then there exists a function h′ : R
d × C(R+,R

r) × M(R+ × U) → D(R+,R
d) which is

B(Rd)⊗C(R+,R
r)⊗M(R+ ×U)/D(R+,R

d)-measurable, B̂t/Dt(R+,R
d)-measurable for every

fixed t ∈ R+, and

(5.11) X ′ = h′(X ′
0,W

′, p′) P
′-almost surely.

Moreover, if objects (E1)–(E4) are given such that the distribution of ξ is n′, then the process

X := h′(ξ,W , p)

is a strong solution of the SDE (1.1) with initial value ξ.

Proof. Let h′(x, w, π) := x + k′(x, w, π) for x ∈ R
d, w ∈ C(R+,R

r), π ∈ M(R+ × U),

where k′ is as in Corollary 5.5. By Corollary 5.5, for the function h′, the desired measurability
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properties hold. Using Corollary 5.5 and X ′ = X ′
0 + Y ′, we have

P
′ (X ′ = h′(X ′

0,W
′, p′)) = P

′ (X ′
0 + Y ′ = X ′

0 + k′(X ′
0,W

′, p′))

= P
′ (Y ′ = k′(X ′

0,W
′, p′)) = 1,

implying (5.11).

Note that, for ξ, W and p as described in (E1)–(E4), the triplets (X ′
0,W

′, p′) and

(ξ,W , p) induce the same probability measure n′ × PW ,r × PU,m on the measurable space

(
R
d × C(R+,R

r)×M(R+ × U),B(Rd)⊗ C(R+,R
r)⊗M(R+ × U)

)

with respect to the probability measure P
′ and P, respectively, where P denotes the

probability measure appears in (E1), since X ′
0, W

′, p′ are P
′-independent and ξ, W , p are

P-independent, see Remarks 3.4 and 3.8.

Observe also that the mappings

Ω′ ∋ ω′ 7→ (X ′
0(ω

′), (W ′
t(ω

′))t∈R+ , Np′(ω′)) ∈ R
d × C(R+,R

r)×M(R+ × U)(5.12)

and

Ω ∋ ω 7→ (ξ(ω), (W t(ω))t∈R+, Np(ω)) ∈ R
d × C(R+,R

r)×M(R+ × U)(5.13)

are F ′/B(Rd)⊗ C(R+,R
r)⊗M(R+ × U)-measurable and

σ(ξ,W s, s ∈ R+, p(s), s ∈ R++ ∩D(p))/B(Rd)⊗ C(R+,R
r)⊗M(R+ × U)-measurable,

respectively. Further, they are F ′
t/B(R

d)⊗ Ct(R+,R
r)⊗Mt(R+ × U)-measurable and

σ(ξ,W s, s ∈ [0, t], p(s), s ∈ (0, t] ∩D(p))/B(Rd)⊗ Ct(R+,R
r)⊗Mt(R+ × U)-measurable

for all t ∈ R+, respectively. Indeed, since X ′
0 and ξ are F ′/B(Rd)-measurable and

σ(ξ)/B(Rd)-measurable, respectively, by (2.2) and (2.3), it is enough to check that for all

t ∈ R+, n ∈ N, A1 ∈ B(Rnr), t1, . . . , tn ∈ [0, t], s ∈ [0, t], B ∈ B(U), A2 ∈ B([0,∞]),

{
ω′ ∈ Ω′ : (W ′

t1(ω
′), . . . ,W ′

tn(ω
′)) ∈ A1

}
∈ F ′,

{
ω ∈ Ω : (W t1(ω), . . . ,W tn(ω)) ∈ A1

}
∈ σ(W s, s ∈ R+),

{
ω′ ∈ Ω′ : Np′(ω′)([0, s]× B) ∈ A2

}
∈ F ′,

{
ω ∈ Ω : Np(ω)([0, s]× B) ∈ A2

}
∈ σ(p(s), s ∈ R++ ∩D(p)).

These relations hold since W ′
ti
, i ∈ {1, . . . , n}, and W ti , i ∈ {1, . . . , n}, are F ′/B(Rr)-

measurable and σ(W s, s ∈ R+)/B(R
r)-measurable, and p′ and p are F ′/M(R+ × U)-

measurable and σ(p(s), s ∈ R++ ∩D(p))/M(R+ ×U)-measurable, respectively. Similarly, one
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can argue that the functions in question are F ′
t/B(R

d)⊗Ct(R+,R
r)⊗Mt(R+×U)-measurable

and σ(ξ,W s, s ∈ [0, t], p(s), s ∈ (0, t] ∩D(p))/B(Rd)⊗ Ct(R+,R
r)⊗Mt(R+ × U)-measurable

for all t ∈ R+, respectively.

Next, we check that the process X is adapted to the augmented filtration (Fξ,W ,p
t )t∈R+ .

First, note that the process X is adapted to (Fξ,W ,p
t )t∈R+ if and only if ϕt(X) is

Fξ,W ,p
t /Dt(R+,R

d)-measurable for all t ∈ R+, where ϕt is given in (2.1). Indeed,

(X t)t∈R+ is (Fξ,W ,p
t )t∈R+-adapted ⇐⇒ σ(X t) ⊂ Fξ,W ,p

t for all t ∈ R+

⇐⇒ σ(Xs : s ∈ [0, t]) ⊂ Fξ,W ,p
t for all t ∈ R+

⇐⇒ ϕt(X) is Fξ,W ,p
t /Dt(R+,R

d)-measurable for all t ∈ R+,

where the last equivalence can be checked as follows. Since Dt(R+,R
d) coincides with the

smallest σ-algebra containing the finite-dimensional cylinder sets of the form

{
y ∈ D(R+,R

d) : (y(t1), . . . , y(tn)) ∈ A
}
, n ∈ N, A ∈ B(Rnd), t1, . . . , tn ∈ [0, t],

it is enough to check that σ(Xs : s ∈ [0, t]) ⊂ Fξ,W ,p
t for all t ∈ R+ is equivalent with

{ω ∈ Ω :
(
(ϕt(X))t1(ω), · · · , (ϕt(X))tn(ω)

)
∈ A} ∈ Fξ,W ,p

t

for all n ∈ N, A ∈ B(Rnd), t1, . . . , tn ∈ [0, t], t ∈ R+, which readily follows from

{ω ∈ Ω :
(
(ϕt(X))t1(ω), · · · , (ϕt(X))tn(ω)

)
∈ A} = {ω ∈ Ω :

(
X t1(ω), · · · ,X tn(ω)

)
∈ A}.

Since ϕt(X) = ϕt ◦ h′ ◦ (ξ,W , p), t ∈ R+, the mapping ϕt is Dt(R+,R
d)/Dt(R+,R

d)-

measurable for all t ∈ R+, h′ is B̂t/Dt(R+,R
d)-measurable for all t ∈ R+, it remains to

check that the mapping (5.13) is Fξ,W ,p
t /B̂t-measurable for all t ∈ R+. Recall that

B̂t = σ
(
B(Rd)⊗ Ct(R+,R

r)⊗Mt(R+ × U) ∪N
)
, t ∈ R+,

Fξ,W ,p
t = σ

(
σ(ξ,W s, s ∈ [0, t], p(s), s ∈ (0, t] ∩D(p)) ∪N ξ,W ,p

)
, t ∈ R+,

where

N =
{
A ⊂ R

d × C(R+,R
r)×M(R+ × U) : ∃B ∈ B(Rd)⊗ C(R+,R

r)⊗M(R+ × U)

with A ⊂ B, (n′ × PW ,r × PU,m)(B) = 0
}
,

and

N ξ,W ,p :=
{
A ⊂ Ω : ∃B ∈ σ(ξ,W s, s ∈ R+, p(s), s ∈ R++ ∩D(p))

with A ⊂ B, P(B) = 0
}
.

27



Since a generator system of B(Rd)⊗Ct(R+,R
r)⊗Mt(R+×U) together with N is a generator

system of B̂t, and we have already checked that the mapping (5.13) is

σ(ξ,W s, s ∈ R+, p(s), s ∈ R++ ∩D(p))/B(Rd)⊗ C(R+,R
r)⊗M(R+ × U)-measurable,

it remains to verify that (ξ,W , p)−1(A) ∈ Fξ,W ,p
t for all A ∈ N and t ∈ R+. We show that

(ξ,W , p)−1(A) ∈ N ξ,W ,p for all A ∈ N , implying (ξ,W , p)−1(A) ∈ Fξ,W ,p
t for all t ∈ R+,

as desired. If A ∈ N , then there exists B ∈ B(Rd) ⊗ C(R+,R
r) ⊗ M(R+ × U) such that

A ⊂ B and (n′ × PW ,r × PU,m)(B) = 0. Hence

(ξ,W , p)−1(A) ⊆ (ξ,W , p)−1(B) ∈ σ(ξ,W s, s ∈ R+, p(s), s ∈ R++ ∩D(p))

and

P((ξ,W , p)−1(B)) = P((ξ,W , p) ∈ B) = (n′ × PW ,r × PU,m)(B) = 0,

where, for the last but one equality, we used that the distribution of (ξ,W , p) under P is

n′×PW ,r×PU,m (as it was explained at the beginning of the proof). By definition, this means

that (ξ,W , p)−1(A) ∈ N ξ,W ,p.

Next we check that (X t)t∈R+ satisfies the SDE (1.1) P-almost surely. Since h′ is

B(Rd) ⊗ C(R+,R
r) ⊗M(R+ × U)/D(R+,R

d)-measurable, and the triplets (X ′
0,W

′, p′) and

(ξ,W , p) induce the same probability measure n′ × PW ,r × PU,m on the measurable space

(
R
d × C(R+,R

r)×M(R+ × U),B(Rd)⊗ C(R+,R
r)⊗M(R+ × U)

)

with respect to the probability measure P
′ and P, respectively, the triplets (X ′,W ′, p′) and

(X,W , p) induce the same probability measure on the measurable space

(
D(R+,R

d)× C(R+,R
r)×M(R+ × U),D(R+,R

d)⊗ C(R+,R
r)⊗M(R+ × U)

)

with respect to the probability measure P
′ and P, respectively. Let us apply Lemma A.4

with the following choices

(
Ω(1),F (1), (F (1)

t )t∈R+ ,P
(1),W (1), p(1),X(1)

)
:=
(
Ω′,F ′, (F ′

t)t∈R+ ,P
′,W ′, p′,X ′

)

and

(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
:=
(
Ω,F , (Fξ,W ,p

t )t∈R+ ,P,W , p,X
)
.

Since
(
Ω′,F ′, (F ′

t)t∈R+ ,P
′,W ′, p′,X ′

)
is a weak solution of the SDE (1.1) with ini-

tial distribution n′, the tuple
(
Ω(1),F (1), (F (1)

t )t∈R+ ,P
(1),W (1), p(1),X(1)

)
satisfies (D1),

(D2), (D3) and (D4)(b)–(e). Further, as it was explained before Definition 3.9, the tuple(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
satisfies (D1), (D2) and (D3), and we have al-

ready checked that X is adapted to the augmented filtration (Fξ,W ,p
t )t∈R+ . Then Lemma
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A.4 yields that the tuple
(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
satisfies (D4)(b)–(d) and

the distribution of
(
X ′

t −X ′
0 −

∫ t

0

b(s,X ′
s) ds−

∫ t

0

σ(s,X ′
s) dW

′
s

−

∫ t

0

∫

U0

f(s,X ′
s−, u) Ñ

′(ds, du)−

∫ t

0

∫

U1

g(s,X ′
s−, u)N

′(ds, du)

)

t∈R+

on (D(R+,R
d),D(R+,R

d)) under P
′ is the same as the distribution of

(
X t −X0 −

∫ t

0

b(s,Xs) ds−

∫ t

0

σ(s,Xs) dW s

−

∫ t

0

∫

U0

f(s,Xs−, u) Ñ(ds, du)−

∫ t

0

∫

U1

g(s,Xs−, u)N(ds, du)

)

t∈R+

on (D(R+,R
d),D(R+,R

d)) under P, where N ′(ds, du) and N(ds, du) is the counting

measure of p′ and p on R+ × U , respectively, and Ñ ′(ds, du) := N ′(ds, du) − dsm(du)

and Ñ(ds, du) := N(ds, du) − dsm(du). Using that the first process and the identically 0

process are indistinguishable (since the SDE (1.1) holds P
′-a.s. for (X ′

t)t∈R+), we obtain that

the SDE (1.1) holds P-a.s. for (X t)t∈R+ as well, i.e., (D4)(e) holds.

Finally, we show that P(X0 = ξ) = 1. Since, as it was checked that the distribution of

X ′ and X coincide, especially, the distribution of X ′
0 and X0 coincide, and consequently,

the distribution of X0 and ξ coincide (both are equal to n′). Using Corollary 5.5 for(
Ω,F , (Fξ,W ,p

t )t∈R+ ,P,W , p,X
)

(which is especially a weak solution of the SDE (1.1) with

initial distribution n′) we get

P(X0 = ξ) = P(ξ + k′(ξ,W , p)0 = ξ) = P(k′(ξ,W , p)0 = 0) = P(k′(ξ,W , p)0 = Y 0) = 1,

as desired.

Summarizing, (X t)t∈R+ is a strong solution of the SDE (1.1) with initial value ξ. ✷

A Appendix

Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space. First we recall the notion of (Ft)t∈R+-

predictability, see, e.g., Ikeda and Watanabe [10, Chapter II, Definition 3.3]. The predictable

σ-algebra P on R+ × Ω× U is given by

P := σ(h : R+ × Ω× U → R |h(t, ·, ·) is Ft ⊗ B(U)/B(R)-measurable for all t ∈ R++,

h(·, ω, u) is left continuous for all (ω, u) ∈ Ω× U).

A function H : R+×Ω×U → R
d is called (Ft)t∈R+-predictable if it is P/B(Rd)-measurable.
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A.1 Lemma. Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space. Let (X t)t∈R+ be an

(Ft)t∈R+-adapted càdlàg process with values in R
d.

(i) If w : Rd → R is a continuous function, then for each T ∈ R+ and B ∈ B(U), the

function h(t, ω, u) := w(Xt−(ω))1[0,T ](t)1B(u), (t, ω, u) ∈ R+ × Ω × U , is (Ft)t∈R+-

predictable.

(ii) If T ∈ R+, A ∈ B(Rd) is an open set and B ∈ B(U), then

{(t, ω, u) ∈ R+ × Ω× U : t ∈ [0, T ], X t−(ω) ∈ A, u ∈ B} ∈ P.

(iii) If f : R+×R
d×U → R

d is B(R+)⊗B(Rd)⊗B(U)/B(Rd)-measurable, then the function

H(t, ω, u) := f(t,X t−(ω), u), (t, ω, u) ∈ R+ × Ω× U , is (Ft)t∈R+-predictable.

Proof. (i) The function h is (Ft)t∈R+-predictable, since it belongs to the generator system of

P. Indeed, for each t ∈ R+, the mapping Ω× U ∋ (ω, u) 7→ h(t, ω, u) is Ft ⊗ B(U)/B(R)-

measurable, because Xs is Fs/B(Rd)-measurable and Fs ⊂ Ft for all s < t, and hence

X t− := lims↑tXs is Ft/B(Rd)-measurable, and w is B(Rd)/B(R)-measurable. Moreover,

for each (ω, u) ∈ Ω × U , the function R+ ∋ t 7→ h(t, ω, u) is left continuous, because the

functions R+ ∋ t 7→ 1[0,T ](t) and R+ ∋ t 7→ X t−(ω) are left continuous and w is continuous.

(ii) Consider the function wA : Rd → R+ given by wA(x) := ̺(x,Rd \ A), x ∈ R
d,

where ̺ denotes the Euclidean distance of x and R
d \ A. Then wA is continuous and

A = w−1
A (R++). Put hA(t, ω, u) := wA(X t−(ω))1[0,T ](t)1B(u), (t, ω, u) ∈ R+ ×Ω×U . Then,

by (i), we obtain

{(t, ω, u) ∈ R+ × Ω× U : t ∈ [0, T ], X t−(ω) ∈ A, u ∈ B}

= {(t, ω, u) ∈ R+ × Ω× U : t ∈ [0, T ], wA(X t−(ω)) ∈ R++, u ∈ B}

= {(t, ω, u) ∈ R+ × Ω× U : hA(t, ω, u) ∈ R++} ∈ P.

(iii) We have H = f ◦ G, where G(t, ω, u) := (t,X t−(ω), u), (t, ω, u) ∈ R+ × Ω × U ,

thus it suffices to show that G is P/B(R+) ⊗ B(Rd) ⊗ B(U)-measurable. The σ-algebra

B(R+) ⊗ B(Rd) ⊗ B(U) is generated by the sets [0, T ] × A × B with T ∈ R+, open sets

A ∈ B(Rd) and B ∈ B(U), hence it suffices to show that

{(t, ω, u) ∈ R+ × Ω× U : t ∈ [0, T ], X t−(ω) ∈ A, u ∈ B} ∈ P.

This holds by (ii). ✷

Note that using Lemma A.1, one can relax Assumption 6.2.8 in Applebaum [1].

The next lemma plays a similar role as Lemma 139 in Situ [24].

A.2 Lemma. Let
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
, i ∈ {1, 2}, be tuples satisfying

(D1), (D2), (D3) and (D4)(b)–(d). Suppose that (W (1), p(1),X(1)) and (W (2), p(2),X(2))

30



have the same distribution on C(R+,R
r)×M(R+ × U)×D(R+,R

d). Then
(
X

(1)
t ,

∫ t

0

b(s,X(1)
s ) ds,

∫ t

0

σ(s,X(1)
s ) dW (1)

s ,

∫ t

0

∫

U0

f(s,X
(1)
s−, u) Ñ

(1)(ds, du),

∫ t

0

∫

U1

g(s,X
(1)
s−, u)N

(1)(ds, du)

)

t∈R+

(A.1)

and
(
X

(2)
t ,

∫ t

0

b(s,X(2)
s ) ds,

∫ t

0

σ(s,X(2)
s ) dW (2)

s ,

∫ t

0

∫

U0

f(s,X
(2)
s−, u) Ñ

(2)(ds, du),

∫ t

0

∫

U1

g(s,X
(2)
s−, u)N

(2)(ds, du)

)

t∈R+

(A.2)

have the same distribution on (D(R+,R
d))5, where, for each i ∈ {1, 2}, N (i)(ds, du) is the

counting measure of p(i) on R++ × U , and Ñ (i)(ds, du) := N (i)(ds, du)− dsm(du).

Proof. By Remark 3.2, the above processes have càdlàg modifications. According to Lemma

VI.3.19 in Jacod and Shiryaev [12], it suffices to show that the finite dimensional distributions

of the above processes coincide.

By Proposition I.4.44 in Jacod and Shiryaev [12], for each i ∈ {1, 2} and t ∈ R+,

I
(i)
1,n(t)

P
(i)

−→
∫ t
0
b(s,X (i)

s ) ds and I
(i)
2,n(t)

P
(i)

−→
∫ t
0
σ(s,X(i)

s ) dW (i)
s as n→ ∞, where

I
(i)
1,n(t) :=

1

n

⌊nt⌋∑

k=1

b

(
k − 1

n
,X

(i)
k−1
n

)
, I

(i)
2,n(t) :=

⌊nt⌋∑

k=1

σ

(
k − 1

n
,X

(i)
k−1
n

)(
W

(i)
k
n

−W
(i)
k−1
n

)
.

Let U1,j ∈ B(U), j ∈ N, be such that they are disjoint, m(U1,j) < ∞, j ∈ N, and

U1 =
⋃∞
j=1U1,j (such a sequence exists since m is σ-finite, see, e.g., Cohn [4, page 9]).

Then for each i ∈ {1, 2} and t ∈ R+, I
(i)
3,n(t) →

∫ t
0

∫
U1
g(s,X

(i)
s−, u)N

(i)(ds, du) as n → ∞

P
(i)-almost surely, where

I
(i)
3,n(t) :=

n∑

j=1

∫ t

0

∫

U1,j

g(s,X
(i)
s−, u)N

(i)(ds, du) =
n∑

j=1

∑

s∈(0,t]∩D(p
(i)
1,j)

g(s,X
(i)
s−, p

(i)
1,j(s)),

where p
(i)
1,j denotes the thinning of p(i) onto U1,j, see, e.g., Ikeda and Watanabe [10, page

62]. Since m(U1,j) < ∞, by Remark 3.3, the set (0, t] ∩D(p
(i)
1,j) is finite P

(i)-almost surely

for all t ∈ R+ and i ∈ {1, 2}, j ∈ N, and hence one can order the set D(p
(i)
1,j) according to

magnitude, say 0 < ζ
(i)
1,j,1 < ζ

(i)
1,j,2 < · · · , j ∈ N, i ∈ {1, 2}. Namely,

ζ
(i)
1,j,ℓ = inf{t ∈ R+ : N (i)((0, t]× U1,j) > ℓ}, ℓ ∈ N, j ∈ N, i ∈ {1, 2}(A.3)

on the event

Ω
(i)
1,j :=

∞⋂

k=1

{
ω ∈ Ω(i) : N

p
(i)
1,j(ω)

((0, k]× U1,j) <∞
}
, j ∈ N, i ∈ {1, 2},
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having P
(i)-probability 1, where we used that the point measure corresponding to the point

function p
(i)
1,j(ω) is its counting measure N

p
(i)
1,j(ω)

, see Section 2. Then we can write I
(i)
3,n(t)

in the form

I
(i)
3,n(t) =

n∑

j=1

∞∑

ℓ=1

g
(
ζ
(i)
1,j,ℓ,X

(i)

ζ
(i)
1,j,ℓ−

, p
(i)
1,j(ζ

(i)
1,j,ℓ)

)
1(0,t](ζ

(i)
1,j,ℓ), t ∈ R+, n ∈ N, i ∈ {1, 2},

where
∑∞

ℓ=1 g
(
ζ
(i)
1,j,ℓ,X

(i)

ζ
(i)
1,j,ℓ−

, p
(i)
1,j(ζ

(i)
1,j,ℓ)

)
1(0,t](ζ

(i)
1,j,ℓ) is a finite sum P

(i)-almost surely. Further-

more, by Remark 3.2, for i ∈ {1, 2} and t ∈ R+, I
(i)
4,n(t) →

∫ t
0

∫
U0
f(s,X

(i)
s−, u) Ñ

(i)(ds, du)

as n→ ∞ P
(i)-almost surely, where

I
(i)
4,n(t) :=

∫ t

0

∫

U0

1

[0,τ
(i)
n ]

(s)f(s,X
(i)
s−, u) Ñ

(i)(ds, du)

with

τ (i)n := inf

{
t ∈ R+ :

∫ t

0

∫

U0

‖f(s,X(i)
s , u)‖

2 dsm(du) > n

}
∧ n, n ∈ N, i ∈ {1, 2},

satisfying τ
(i)
n ↑ ∞ P

(i)-almost surely as n → ∞. Let U0,j ∈ B(U), j ∈ N, be such that

they are disjoint, m(U0,j) <∞, j ∈ N, and U0 =
⋃∞
j=1 U0,j (such a sequence exists since m

is σ-finite, see, e.g., Cohn [4, page 9]). Then, by pages 47 and 63 in Ikeda and Watanabe [10],

for all t ∈ R+, i ∈ {1, 2} and n ∈ N, I
(i)
4,n,j(t)

P
(i)

−→ I
(i)
4,n(t) as j → ∞, where

I
(i)
4,n,j(t) :=

∫ t

0

∫

U0

1(−j,j)

(
1

[0,τ
(i)
n ]

(s)f(s,X
(i)
s−, u)

)
1U0,j

(u)1
[0,τ

(i)
n ]

(s)f(s,X
(i)
s−, u) Ñ

(i)(ds, du)

=

∫ t

0

∫

U0,j

1(−j,j)

(
f(s,X

(i)
s−, u)

)
1

[0,τ
(i)
n ]

(s)f(s,X
(i)
s−, u) Ñ

(i)(ds, du).

By page 62 in Ikeda and Watanabe [10], for all t ∈ R+, i ∈ {1, 2}, n ∈ N, and j ∈ N,

I
(i)
4,n,j(t) = I

(i),a
4,n,j(t)− I

(i),b
4,n,j(t), where

I
(i),a
4,n,j(t) :=

∫ t

0

∫

U0,j

1(−j,j)

(
f(s,X

(i)
s−, u)

)
1

[0,τ
(i)
n ]

(s)f(s,X
(i)
s−, u)N

(i)(ds, du),

I
(i),b
4,n,j(t) :=

∫ t

0

(∫

U0,j

1(−j,j)

(
f(s,X

(i)
s−, u)

)
1

[0,τ
(i)
n ]

(s)f(s,X
(i)
s−, u)m(du)

)
ds.

Similarly as for the integrals
∫ t
0

∫
U1
g(s,X

(i)
s−, u)N

(i)(ds, du) and
∫ t
0
b(s,X(i)

s ) ds, there exist

sequences of random variables (I
(i),a
4,n,j,ℓ(t))ℓ∈N and (I

(i),b
4,n,j,ℓ(t))ℓ∈N such that I

(i),a
4,n,j,ℓ(t)

P
(i)

−→ I
(i),a
4,n,j(t)

and I
(i),b
4,n,j,ℓ(t)

P
(i)

−→ I
(i),b
4,n,j(t) as ℓ → ∞, respectively. Then, for all t ∈ R+ and i ∈ {1, 2},

I
(i),a
4,n,j,ℓ(t) − I

(i),b
4,n,j,ℓ(t)

P
(i)

−→
∫ t
0

∫
U0
f(s,X

(i)
s−, u) Ñ

(i)(ds, du) as ℓ → ∞, then j → ∞, and,
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finally, n → ∞. Using part (vi) of Theorem 2.7 in van der Vaart [26], we get for all K ∈ N,

t1, . . . , tK ∈ R+ and i ∈ {1, 2},

(
X

(i)
tk
, I

(i)
1,n(tk), I

(i)
2,n(tk), I

(i)
3,n(tk), I

(i),a
4,n,j,ℓ(tk)− I

(i),b
4,n,j,ℓ(tk)

)
k∈{1,...,K}

P
(i)

−→
(
X

(i)
tk
,

∫ tk

0

b(s,X(i)
s ) ds,

∫ tk

0

σ(s,X(i)
s ) dW (i)

s ,

∫ tk

0

∫

U1

g(s,X
(i)
s−, u)N

(i)(ds, du),

∫ tk

0

∫

U0

f(s,X
(i)
s−, u) Ñ

(i)(ds, du)
)
k∈{1,...,K}

as ℓ, j, n → ∞. Since (W (1), p(1),X(1)) and (W (2), p(2),X(2)) have the same distribution,

the random vectors
(
X

(1)
tk
, I

(1)
1,n(tk), I

(1)
2,n(tk), I

(1)
3,n(tk), I

(1),a
4,n,j,ℓ(tk)− I

(1),b
4,n,j,ℓ(tk)

)
k∈{1,...,K}

and (
X

(2)
tk
, I

(2)
1,n(tk), I

(2)
2,n(tk), I

(2)
3,n(tk), I

(2),a
4,n,j,ℓ(tk)− I

(2),b
4,n,j,ℓ(tk)

)
k∈{1,...,K}

have the same distribution for all ℓ, j, n ∈ N, as well. Indeed, the random vectors

above can be considered as some appropriate measurable function of (W (1), p(1),X(1)) and

(W (2), p(2),X(2)), respectively. For this, it is enough to verify that each coordinate of the above

random vectors can be considered as some appropriate measurable function of (W (1), p(1),X(1))

and (W (2), p(2),X(2)), respectively, hence we fix k ∈ {1, . . . , K}.

• First observe, that X
(i)
tk

is a D(R+,R
d)/B(Rd)-measurable function of X(i), namely,

X
(i)
tk

= Ψ0(X
(i)), where Ψ0 : D(R+,R

d) → R
d is given by Ψ0(y) := y(tk), y ∈

D(R+,R
d).

• Next, I
(i)
1,n(tk) is a D(R+,R

d)/B(Rd)-measurable function of X(i) as well, namely,

I
(i)
1,n(tk) = Ψ1(X

(i)), where Ψ1 : D(R+,R
d) → R

d is given by Ψ1(y) :=
1
n

∑⌊ntk⌋
k=1 b

(
k−1
n
, y
(
k−1
n

))
, y ∈ D(R+,R

d).

• In a similar way, I
(i)
2,n(tk) is a D(R+,R

d) × C(R+,R
r)/B(Rd)-measurable function of

(X(i),W (i)), namely, I
(i)
2,n(tk) = Ψ2(X

(i),W (i)), where Ψ2 : D(R+,R
d)×C(R+,R

r) →

R
d is given by Ψ2(y, w) :=

∑⌊ntk⌋
k=1 σ

(
k−1
n
, y
(
k−1
n

)) (
w
(
k
n

)
− w

(
k−1
n

))
, y ∈ D(R+,R

d),

w ∈ C(R+,R
r).

• Now we show that I
(i)
3,n(tk) is a D(R+,R

d) ⊗M(R+ × U)/B(Rd)-measurable function

of (X (i), p(i)). As a first step, we show that for each j, ℓ ∈ N there exist functions

Φj,ℓ : M(R+ × U) → R+ and Ξj,ℓ : M(R+ × U) → U such that Φj,ℓ is M(R+ ×

U)/B(R+)-measurable, Ξj,ℓ is M(R+ × U)/B(U)-measurable, and (ζ
(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) =

(Φj,ℓ(Np
(i)
1,j
),Ξj,ℓ(Np

(i)
1,j
)) holds P

(i)-almost surely. Then it will follow that I
(i)
3,n(tk) =
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Ψ3(X
(i), p(i)), where Ψ3 : D(R+,R

d)×M(R+ × U) → R
d given by

Ψ3(y, π) :=
n∑

j=1

∞∑

ℓ=1

g
(
Φj,ℓ(π), y(Φj,ℓ(π)−),Ξj,ℓ(π)

)
1(0,tk ](Φj,ℓ(π))

for (y, π) ∈ D(R+,R
d)×M(R+×U) is D(R+,R

d)⊗M(R+×U)/B(Rd)-measurable. To

prove the existence of Φj,ℓ and Ξj,ℓ, first we verify that (ζ
(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) is measurable

with respect to the σ-algebra σ
(
N
p
(i)
1,j

)
∩ Ω

(i)
1,j having the form

σ
({
ω ∈ Ω

(i)
1,j : Np

(i)
1,j(ω)

((0, t]× B) = k
} ∣∣∣ t ∈ R+, B ∈ B(U1,j), k ∈ N

)
.(A.4)

We have
{
ω ∈ Ω

(i)
1,j :

(
ζ
(i)
1,j,ℓ(ω), p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω))

)
∈ (0, t]×B

}

=
∞⋂

n=1

n⋃

k=1

{
ω ∈ Ω

(i)
1,j : Np

(i)
1,j(ω)

((0, (k − 1)t/n]× U1,j) 6 ℓ− 1,

N
p
(i)
1,j(ω)

(((k − 1)t/n, kt/n]×B) > 1,

N
p
(i)
1,j(ω)

((0, kt/n]× U1,j) > ℓ
}

(A.5)

for t ∈ R++, j, ℓ ∈ N, B ∈ B(U1,j), i ∈ {1, 2}. Indeed, on the one hand, if

ω ∈ Ω
(i)
1,j is such that ζ

(i)
1,j,ℓ(ω) ∈ (0, t] and p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω)) ∈ B, then for each

n ∈ N, there exists a unique k ∈ {1, . . . , n} with ζ
(i)
1,j,ℓ(ω) ∈ ((k − 1)t/n, kt/n], and

hence N
p
(i)
1,j(ω)

((0, (k − 1)t/n] × U1,j) 6 ℓ − 1, N
p
(i)
1,j(ω)

(((k − 1)t/n, kt/n] × B) > 1 and

N
p
(i)
1,j(ω)

((0, kt/n]× U1,j) > ℓ. On the other hand,

{ω ∈ Ω
(i)
1,j : ζ

(i)
1,j,ℓ(ω) /∈ (0, t]} = {ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

((0, t]× U1,j) 6 ℓ− 1}

⊂
∞⋃

n=1

n⋂

k=1

{
ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

((0, kt/n]× U1,j) 6 ℓ− 1
}
,

and
{
ω ∈ Ω

(i)
1,j : ζ

(i)
1,j,ℓ(ω) ∈ (0, t], p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω)) /∈ B

}

⊂
∞⋃

n=1

n⋂

k=1

({
ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

((0, (k − 1)t/n]× U1,j) > ℓ
}

∪
{
ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

(((k − 1)t/n, kt/n]× B) = 0
}

∪
{
ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

((0, kt/n]× U1,j) 6 ℓ− 1
})

.

For the second inclusion, for each ω ∈ Ω
(i)
1,j, let us choose n(ω) ∈ N such that

n(ω) > max

(
1

ζ
(i)
1,j,ℓ(ω)− ζ

(i)
1,j,ℓ−1(ω)

,
1

ζ
(i)
1,j,ℓ+1(ω)− ζ

(i)
1,j,ℓ(ω)

)
.
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If ω ∈ Ω
(i)
1,j is such that ζ

(i)
1,j,ℓ(ω) ∈ (0, t] and p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω)) /∈ B, then there

exists a unique k∗ ∈ {1, . . . , n} with ζ
(i)
1,j,ℓ(ω) ∈ ((k∗− 1)t/n, k∗t/n], and hence we have

N
p
(i)
1,j(ω)

((0, kt/n]×U1,j) 6 ℓ−1 for k ∈ {1, . . . , k∗−1}, N
p
(i)
1,j(ω)

(((k∗−1)t/n, k∗t/n]×B) =

0, and N
p
(i)
1,j(ω)

((0, (k − 1)t/n]× U1,j) > ℓ for k ∈ {k∗ + 1, . . . , n}.

Since the set on right hand side of (A.5) is in the σ-algebra given in (A.4) and {(0, t]×B :

t ∈ R+, B ∈ B(U1,j)} is a generator system of B(R+)⊗B(U1,j), we readily get that the

random variable (ζ
(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) is measurable with respect to the σ-algebra given in

(A.4). Let us apply Theorem 4.2.8 in Dudley [7] with the following choices:

◦ X := Ω
(i)
1,j , Y :=M(R+ × U),

◦ T : Ω
(i)
1,j →M(R+ × U), T (ω) := N

p
(i)
1,j(ω)

, ω ∈ Ω
(i)
1,j ,

◦ f : Ω
(i)
1,j → R+ × U , f(ω) := (ζ

(i)
1,j,ℓ(ω), p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω))), ω ∈ Ω

(i)
1,j .

Then there exist functions Φj,ℓ : M(R+ × U) → R+ and Ξj,ℓ : M(R+ × U) → U such

that Φj,ℓ is M(R+ × U)/B(R+)-measurable, Ξj,ℓ is M(R+ × U)/B(U)-measurable,

and (ζ
(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) = (Φj,ℓ(Np

(i)
1,j
),Ξj,ℓ(Np

(i)
1,j
)) holds on Ω

(i)
1,j . Since P

(i)(Ω
(i)
1,j) = 1, we

have (ζ
(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) = (Φj,ℓ(Np

(i)
1,j
),Ξj,ℓ(Np

(i)
1,j
)) P

(i)-almost surely, as desired.

In what follows we provide an alternative argument for verifying that ζ
(i)
1,j,ℓ is an M(R+×

U)/B(R)-measurable function of p(i) with the advantage that the measurable function

in question shows up explicitly. We have ζ
(i)
1,j,1 = inf{t ∈ R++ : |∆yi,j(t)| > 1/2}, where

yi,j(t) := N (i)((0, t]×U1,j) and ∆yi,j(t) := yi,j(t)−yi,j(t−) = N (i)({t}×U1,j) for t ∈ R++.

Further, ζ
(i)
1,j,ℓ+1 = inf{t ∈ (ζ

(i)
1,j,ℓ,∞) : |∆yi,j(t)| > 1/2} for all ℓ ∈ N. Consider the

mappings Ψ3,ℓ : D(R+,R) → R+, ℓ ∈ N, defined by Ψ3,1(y) := inf{t ∈ R++ : |∆y(t)| >

1/2} and Ψ3,ℓ+1(y) := inf{t ∈ (Ψ3,ℓ(y),∞) : |∆y(t)| > 1/2}, y ∈ D(R+,R), ℓ ∈ N. By

Proposition VI.2.7 in Jacod and Shiryaev [12], the mappings Ψ3,ℓ, ℓ ∈ N, are continuous

at each point y ∈ D(R+,R) such that |∆y(t)| 6= 1/2 for all t ∈ R+. Moreover, we

have ζ
(i)
1,j,ℓ = Ψ3,ℓ(Ψ4,j(p

(i))), where the mappings Ψ4,j : M(R+ × U) → D(R+,R),

j ∈ N, are given by Ψ4,j(π) := (π((0, t] × U1,j))t∈R+ , π ∈ M(R+ × U). Observe,

that for each π ∈ M(R+ × U), we have |∆Ψ4,j(π)(t)| 6= 1/2 for all t ∈ R+ (since

|∆Ψ4,j(π)(t)| ∈ Z+ for all t ∈ R+), hence, it remains to check that the mappings Ψ4,j ,

j ∈ N, are M(R+ × U)/D(R+,R)-measurable. This follows from {π ∈ M(R+ × U) :

(π((0, t] × U1,j))t∈{t1,...,tL} ∈ B} ∈ M(R+ × U) for all L ∈ N, t1, . . . , tL ∈ R+ and

B ∈ R
L, which is a consequence of the definition of M(R+ × U).

• Finally, we verify that I
(i),a
4,n,j,ℓ(tk) − I

(i),b
4,n,j,ℓ(tk) is a D(R+,R

d) ⊗ M(R+ × U)/B(Rd)-

measurable function of (X(i), p(i)). Based on the findings for I
(i)
1,n(tk) and I

(i)
3,n(tk), it

is enough to check that

σ
(
ζ
(i)
0,j,ℓ, p

(i)
0,j(ζ

(i)
0,jℓ), τ

(i)
n

)
∩ Ω

(i)
0,j ⊂ σ

(
X(i), p

(i)
0,j

)
∩ Ω

(i)
0,j ⊂ σ

(
X(i), p(i)

)
∩ Ω

(i)
0,j ,(A.6)
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where ζ
(i)
0,j,ℓ and Ω

(i)
0,j can be defined similarly as ζ

(i)
1,j,ℓ and Ω

(i)
0,j for all i ∈ {1, 2}

and j, ℓ ∈ N, respectively (replacing in the definitions U1,j and p
(i)
1,j by U0,j and p

(i)
0,j ,

respectively). Note that
{
ω ∈ Ω

(i)
0,j : ζ

(i)
0,j,ℓ(ω) ∈ (0, t], p

(i)
0,j(ω)(ζ

(i)
0,j,ℓ(ω)) ∈ B, τ (i)n (ω) ∈ [0, T ]

}

=

∞⋂

n=1

n⋃

k=1

{
ω ∈ Ω

(i)
0,j : Np

(i)
0,j(ω)

((0, (k − 1)t/n]× U0,j) 6 ℓ− 1,

{
ω ∈ Ω

(i)
0,j : N

p
(i)
0,j(ω)

(((k − 1)t/n, kt/n]×B) > 1,

{
ω ∈ Ω

(i)
0,j : N

p
(i)
0,j(ω)

((0, kt/n]× U0,j) > ℓ
}

⋂{
ω ∈ Ω

(i)
0,j :

∫ T

0

∫

U0

‖f(s,X(i)
s (ω), u)‖2 dsm(du) > n

}

for t ∈ R++, T ∈ R+, j, ℓ ∈ N, B ∈ B(U0,j), i ∈ {1, 2}. Similarly, as it was

explained in case of I
(i)
n,1(t), one can approximate

∫ T
0

∫
U0

‖f(s,X(i)
s , u)‖

2 dsm(du) by

D(R+,R
d)/B(R+)-measurable functions of X(i), which yields (A.6).

Hence we obtain the statement. ✷

A.3 Remark. In case of f = 0 and g = 0, the statement of Lemma A.2 basically follows

by Exercise (5.16) in Chapter IV in Revuz and Yor [22], see also Lemma 12.4.5 in Weizsäcker

and Winkler [27]. ✷

Next we formulate a corollary of Lemma A.2.

A.4 Lemma. Let
(
Ω(1),F (1), (F (1)

t )t∈R+ ,P
(1),W (1), p(1),X(1)

)
be a tuple satisfying (D1),

(D2), (D3) and (D4)(b)–(d) and let
(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
be another

tuple satisfying (D1), (D2), (D3) such that (X
(2)
t )t∈R+ is an R

d-valued (F (2)
t )t∈R+-adapted

càdlàg process. Suppose that (W (1), p(1),X(1)) and (W (2), p(2),X(2)) have the same dis-

tribution on C(R+,R
r) × M(R+ × U) × D(R+,R

d). Then (D4)(b)–(d) hold for the tuple(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
as well, and the processes (A.1) and (A.2) have

the same distribution on (D(R+,R
d))5.

Proof. First we check that P
(2)
(∫ t

0
‖b(s,X(2)

s )‖ ds <∞
)

= 1 for all t ∈ R+. Since b

is B(R+) ⊗ B(Rd) ⊗ B(U)/B(Rd)-measurable and X(1) and X(2) have the same law, the

processes (b(s,X(1)
s ))s∈R+ and (b(s,X(2)

s ))s∈R+ have the same law as well. Since the map-

ping D(R+,R
d) ∋ f 7→

( ∫ t
0
f(s) ds

)
t∈R+

∈ D(R+,R
d) is continuous (see, e.g., Ethier and

Kurtz [9, Chapter III, Section 11, Exercise 26], or Barczy et al. [2, Proof of Lemma B.3]),

and consequently D(R+,R
d)/D(R+,R

d)-measurable, the processes
( ∫ t

0
‖b(s,X(1)

s )‖ ds
)
t∈R+

and
( ∫ t

0
‖b(s,X(2)

s )‖ ds
)
t∈R+

have the same distribution with respect to P
(1) and P

(2),
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respectively. Since P
(1)
(∫ t

0
‖b(s,X(1)

s )‖ ds <∞
)

= 1 for all t ∈ R+, this yields

P
(2)
(∫ t

0
‖b(s,X(2)

s )‖ ds <∞
)
= 1 for all t ∈ R+, as desired.

Similarly, one can check that P
(2)
(∫ t

0
‖σ(s,X(2)

s )‖2 ds <∞
)
= 1 for all t ∈ R+, and

P
(2)

(∫ t

0

∫

U0

‖f(s,X(2)
s , u)‖2 dsm(du) <∞

)
= 1, t ∈ R+.

It remains to check that

(A.7) P
(2)

(∫ t

0

∫

U1

‖g(s,X(2)
s−, u)‖N

(2)(ds, du) <∞

)
= 1, t ∈ R+,

where N (2)(ds, du) is the counting measure of p(2) on R++×U . Recall that, in the proof of

Lemma A.2, U1,j ∈ B(U), j ∈ N, have been chosen such that they are disjoint, m(U1,j) <∞,

j ∈ N, and U1 =
⋃∞
j=1U1,j . Further, the set D(p

(i)
1,j) is ordered according to magnitude as

0 < ζ
(i)
1,j,1 < ζ

(i)
1,j,2 < · · · , j ∈ N, i ∈ {1, 2}, see (A.3). Then for each i ∈ {1, 2} and t ∈ R+,

K
(i)
n (t) →

∫ t
0

∫
U1

‖g(s,X(i)
s−, u)‖N

(i)(ds, du) as n→ ∞ P
(i)-almost surely, where

K(i)
n (t) :=

n∑

j=1

∫ t

0

∫

U1,j

‖g(s,X(i)
s−, u)‖N

(i)(ds, du) =

n∑

j=1

∑

s∈(0,t]∩D(p
(i)
1,j)

‖g(s,X(i)
s−, p

(i)
1,j(s))‖,

where p
(i)
1,j denotes the thinning of p(i) onto U1,j . Since (p(1),X(1)) and (p(2),X(2)) have

the same distribution with respect to P
(1) and P

(2), respectively, K
(1)
n (t) and K

(2)
n (t) have

the same distribution with respect to P
(1) and P

(2), respectively for all n ∈ N and t ∈ R+

(which can be checked in the same way as in the proof of Lemma A.2 by replacing g with

‖g‖). Consequently,
∫ t
0

∫
U1

‖g(s,X(1)
s−, u)‖N

(1)(ds, du) and
∫ t
0

∫
U1

‖g(s,X(2)
s−, u)‖N

(2)(ds, du)

have the same distribution with respect to P
(1) and P

(2), respectively for all t ∈ R+. Since

P
(1)

(∫ t

0

∫

U1

‖g(s,X(1)
s−, u)‖N

(1)(ds, du) <∞

)
= 1, t ∈ R+,

we have (A.7). All in all, the tuple
(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
satisfies

(D4)(b)–(d), and then Lemma A.2 yields that the processes (A.1) and (A.2) have the same

distribution on (D(R+,R
d))5. ✷

The next lemma corresponds to Fact B on page 107 in Situ [24].

A.5 Lemma. Let us consider the filtered probability space
(
Ω,F , (Ft)t∈R+ ,P1,2

)
given in the

proof of Theorem 1.1. The process Ω ∋ (x, w, π, y(1), y(2)) 7→ wt ∈ R
r, t ∈ R+, is an r-

dimensional standard (Ft)t∈R+-Brownian motion, and the process Ω ∋ (x, w, π, y(1), y(2)) 7→

Npπ |(0,t]×U ∈ M(R+ × U), t ∈ R+, is a stationary (Ft)t∈R+-Poisson point process on U with

characteristic measure m under the measure P1,2.
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Proof. Using that the w-coordinate process is an r-dimensional standard (Gt)t∈R+-Brownian

motion under P1,2, for the first statement, it is enough to prove the independence of wt −ws
and Fs for every s, t ∈ R+ with s < t. For this, it is sufficient to show

EP1,2(e
i〈y,wt−ws〉

1G) = e−(t−s)‖y‖2/2
P1,2(G), y ∈ R

r, G ∈ Gs, 0 6 s < t.(A.8)

Indeed, if A ∈ G̃s, then there exists some G ∈ Gs such that A∆G = (A \G)∪ (G \A) ∈ N ,

and consequently P1,2(A∆G) = 0. Then,

EP1,2
(ei〈y,wt−ws〉

1A) = EP1,2
(ei〈y,wt−ws〉

1A∩G) = EP1,2
(ei〈y,wt−ws〉

1G)

= e−(t−s)‖y‖2/2
P1,2(G) = e−(t−s)‖y‖2/2

P1,2(A), A ∈ G̃s, 0 6 s < t.

Moreover, if A ∈ Fs, then A ∈ G̃s+ε for all ε > 0, and hence

EP1,2
(ei〈y,wt−ws+ε〉

1A) = e−(t−s−ε)‖y‖2/2
P1,2(A), A ∈ Fs, 0 6 s < t, ε > 0.

By dominated convergence theorem, using that w has continuous sample paths P1,2-almost

surely, we get

EP1,2(e
i〈y,wt−ws〉

1A) = e−(t−s)‖y‖2/2
P1,2(A), A ∈ Fs, 0 6 s < t,

i.e.,

EP1,2

[
ei〈y,wt−ws〉 | Fs

]
= e−(t−s)‖y‖2/2, 0 6 s < t.

Thus, in the light of Lemma 2.6.13 of Karatzas and Shreve [13], we get the independence of

wt − ws and Fs for every s, t ∈ R+ with s < t.

Using that wt − ws is independent of Gs under P1,2, we obtain

EP1,2

[
ei〈y,wt−ws〉

1G

]
= EP1,2

[
EP1,2

[
ei〈y,wt−ws〉

1G

∣∣ Gs
]]

= EP1,2

[
1G EP1,2

[
ei〈y,wt−ws〉

∣∣ Gs
]]

= EP1,2

[
1G EP1,2

[
ei〈y,wt−ws〉

]]
= EP1,2

[
1Ge

−(t−s)‖y‖2/2
]
= e−(t−s)‖y‖2/2

P1,2(G)

for all y ∈ R
r and G ∈ Gs, hence we conclude (A.8) and then the first statement.

Using that the process pπ is a stationary (Gt)t∈R+-Poisson point process on U with

characteristic measure m, as it was explained in the proof of the first statement, for the

second statement, it is enough to show that for every s, t ∈ R+ with s < t, every n ∈ N,

every disjoint subsets B1, . . . , Bn ∈ B(U) and λ1, . . . , λn ∈ R+,

EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)

1G

]
= e(t−s)

∑n
j=1(e

−λj−1)m(Bj ) P1,2(G), G ∈ Gs.

Using that Npπ((s, t]×Bj), j ∈ {1, . . . , n}, are independent of each other and from Gs under

P1,2, we get

EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)

1G

]
= EP1,2

[
EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)

1G

∣∣∣ Gs
]]

= EP1,2

[
1G EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)

∣∣∣ Gs
]]

= EP1,2

[
1G EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)

]]

= EP1,2

[
1G e(t−s)

∑n
j=1(e

−λj−1)m(Bj )
]
= e(t−s)

∑n
j=1(e

−λj−1)m(Bj ) P1,2(G)
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for all G ∈ Gs. The last but one equality above is a consequence that Npπ((s, t] × Bj) is

a Poisson distributed random variable with parameter (t − s)m(Bj), j ∈ {1, . . . , n}, under

P1,2. Hence we conclude the second statement as well. ✷
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