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Abstract

Ensembles of forecasts are obtained from multiple runs of numerical weather fore-

casting models with different initial conditions and typically employed to account for

forecast uncertainties. However, biases and dispersion errors often occur in forecast

ensembles, they are usually under-dispersive and uncalibrated and require statistical

post-processing. We present an Ensemble Model Output Statistics (EMOS) method

for calibration of wind speed forecasts based on the log-normal (LN) distribution, and

we also show a regime-switching extension of the model which combines the previously

studied truncated normal (TN) distribution with the LN.

Both presented models are applied to wind speed forecasts of the eight-member

University of Washington mesoscale ensemble, of the fifty-member ECMWF ensemble

and of the eleven-member ALADIN-HUNEPS ensemble of the Hungarian Meteoro-

logical Service, and their predictive performances are compared to those of the TN

and general extreme value (GEV) distribution based EMOS methods and to the TN-

GEV mixture model. The results indicate improved calibration of probabilistic and

accuracy of point forecasts in comparison to the raw ensemble and to climatological

forecasts. Further, the TN-LN mixture model outperforms the traditional TN method

and its predictive performance is able to keep up with the models utilizing the GEV

distribution without assigning mass to negative values.

Key words: Continuous ranked probability score, ensemble calibration, ensemble model

output statistics, log-normal distribution.
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1 Introduction

Accurate and reliable forecasting of wind speed is of importance in various field of econ-

omy, e.g., agriculture, transportation, energy production. Forecasts are usually based on

current observational data and mathematical models describing the dynamical and physical

behaviour of the atmosphere. These models consist of sets of coupled hydro-thermodynamic

non-linear partial differential equations which have only numerical solutions and highly de-

pend on initial conditions. To reduce the uncertainties coming either from the lack of reliable

initial conditions or from the numerical weather prediction process itself, a possible solution is

to run the models with different initial conditions resulting in an ensemble of forecasts (Leith,

1974). Since its first operational implementation (Buizza et al., 1993; Toth and Kalnay, 1997)

the ensemble method has become a widely used technique all over the world. One of the

leading organizations issuing ensemble forecasts is the European Centre for Medium-Range

Weather Forecasts (ECMWF Directorate, 2012), but all major national meteorological ser-

vices have their own ensemble prediction systems (EPS), e.g., the COSMO-DE EPS of the

German Meteorological Service (DWD; Gebhardt et al., 2011; Bouallègue et al., 2013) or

the PEARP EPS of Méteo France (Descamps et al., 2009). Besides calculating the classical

point forecasts (e.g. ensemble mean or ensemble median) using a forecast ensemble one

can also estimate the distribution of a future weather variable which allows probabilistic

forecasting (Gneiting and Raftery, 2005). However, the forecast ensemble is usually under-

dispersive and as a consequence, uncalibrated. This phenomenon has been observed with

several operational ensemble prediction systems (see, e.g., Buizza et al., 2005). A possible

solution to account for this deficiency is statistical post-processing.

From the various modern post-processing techniques (for an overview see, e.g., Williams

et al. (2014); Gneiting (2014)) probably the most widely used methods are the Bayesian

model averaging (BMA) introduced by Raftery et al. (2005) and the ensemble model output

statistics (EMOS) or non-homogeneous regression technique, suggested by Gneiting et al.

(2005), as they are implemented in ensembleBMA (Fraley et al., 2009, 2011) and ensembleMOS

packages of R. Both approaches provide estimates of the densities of the predictable weather

quantities and once a predictive density is given, a point forecast can be easily determined

(e.g., mean or median value).

The BMA predictive probability density function (PDF) of a future weather quantity is

the weighted sum of individual PDFs corresponding to the ensemble members. An individual

PDF can be interpreted as the conditional PDF of the future weather quantity provided the

considered forecast is the best one and the weights are based on the relative performance of

the ensemble members during a given training period. In the case of wind speed Sloughter et

al. (2010) suggest the use of a gamma mixture while Baran (2014) considers BMA component

PDFs following a truncated normal (TN) rule.

The EMOS approach uses a single parametric distribution as a predictive PDF with

parameters depending on the ensemble members. The unknown parameters specifying this
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dependence are estimated using forecasts and validating observations from a rolling train-

ing period, which allows automatic adjustments of the statistical model to any changes of

the EPS system (for instance seasonal variations or EPS model updates). For wind speed

Thorarinsdottir and Gneiting (2010) suggest to use a TN distribution, while Lerch and Tho-

rarinsdottir (2013) consider a generalized extreme value (GEV) distributed predictive PDF.

To ensure a more accurate prediction of high wind speed values the authors also introduce

a TN-GEV regime-switching model where the use of the two distributions depend on the

value of the ensemble median: for large values a GEV, otherwise a TN based EMOS model

is applied.

In the present paper we develop an EMOS model where the predictive PDF follows a

log-normal (LN) distribution. Besides this, similar to Lerch and Thorarinsdottir (2013), we

propose a TN-LN regime-switching mixture model, where an LN distribution is applied to

high wind speed values and the choice again depends on the ensemble median. Compared

to the GEV distribution approach of Lerch and Thorarinsdottir (2013) the main advantage

of the LN model is its computational simplicity, which allows faster estimation of model

parameters. The predictive performance of the LN model and of the TN-LN mixture model

is tested on forecasts of maximal wind speed of the eight-member University of Washington

Mesoscale Ensemble (UWME, see e.g., Eckel and Mass, 2005) and of the ECMWF ensemble

(Leutbecher and Palmer, 2008), and on instantaneous wind speed forecasts produced by the

operational Limited Area Model Ensemble Prediction System of the Hungarian Meteoro-

logical Service (HMS) called ALADIN-HUNEPS (Hágel, 2010; Horányi et al., 2011). These

three ensemble prediction systems (EPS) differ both in the generation of ensemble forecasts

and in the predictable wind quantities. As benchmarks in all case studies we investigate the

goodness of fit of the TN model of Thorarinsdottir and Gneiting (2010) and of the GEV and

TN-GEV mixture models of Lerch and Thorarinsdottir (2013).

2 Data

2.1 University of Washington Mesoscale Ensemble

The eight members of the UWME are obtained from different runs of the fifth generation

Pennsylvania State University–National Center for Atmospheric Research mesoscale model

(PSU-NCAR MM5) with initial conditions from different sources (Grell et al., 1995). The

EPS covers the Pacific Northwest region of western North America providing forecasts on

a 12 km grid. Our data base (identical to the one used in Möller et al. (2013)) contains

ensembles of 48 h forecasts and corresponding validating observations of 10 m maximal wind

speed (maximum of the hourly instantaneous wind speeds over the previous twelve hours,

given in m/s, see e.g. Sloughter et al. (2010)) for 152 stations in the Automated Surface

Observing Network (National Weather Service, 1998) in the states of Washington, Oregon,

Idaho, California and Nevada in the United States. The forecasts are initialized at 0 UTC
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Figure 1: Verification rank histograms. a) UWME for the calendar year 2008. b) ECMWF

ensemble for the period May 1, 2010 – April 30, 2011; c) ALADIN-HUNEPS ensemble for

the period April 1, 2012 – March 31, 2013.

(5 pm local time when daylight saving time (DST) is in use and 4 pm otherwise) and the

generation of the ensemble ensures that its members are not exchangeable. In the present

study we investigate only forecasts for calendar year 2008 with additional data from the

last month of 2007 used for parameter estimation. Standard quality control procedures

were applied to the data set and after removing days and locations with missing data 101

stations remain where the number of days for which forecasts and validating observations

are available varies between 160 and 291.

Figure 1a shows the verification rank histogram of the raw ensemble, that is the his-

togram of ranks of validating observations with respect to the corresponding ensemble fore-

casts computed from the ranks at all locations and dates considered (see, e.g., Wilks, 2011,

Section 7.7.2). This histogram is strongly U-shaped as in many cases the ensemble mem-

bers either underepredict or overpredict the validating observations. The reliability index

∆ =
∑c

i=1

∣∣pi − 1
c

∣∣ , where c denotes the number of classes in the histogram, each of

which has expected relative frequency 1/c, and pi denotes the observed relative frequency

in class i, can be used to quantify the deviation of the rank distribution from uniformity

(Delle Monache et al., 2006). For the UWME ensemble, ∆ equals 0.6508, and the ensemble

range contains the observed maximal wind speed in only 45.24 % of the cases (the nominal

value of this coverage equals 7/9, i.e 77.78 %). Hence, the ensemble is under-dispersive, thus

uncalibrated, and would require statistical post-processing to yield an improved forecast

probability density function.

2.2 ECMWF ensemble

The global ensemble prediction system of the ECMWF consists of 50 exchangeable ensemble

members which are generated from random perturbations in initial conditions and stochastic
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physics parametrization (Molteni et al., 1996; Leutbecher and Palmer, 2008). Forecasts of

near-surface (10 meter) wind speed for lead times up to 10 days ahead are issued twice a day

at 00 UTC and 12 UTC, with a horizontal resolution of about 33 km. Following Lerch and

Thorarinsdottir (2013), we focus on the ECMWF ensemble run initialized at 00 UTC (2 am

local time when DST operates and 1 am otherwise) and one day ahead forecasts. Predictions

of daily maximum wind speed are obtained as the daily maximum of each ensemble member

at each grid point location.

The verification is performed over a set of 228 synoptic observation stations over Ger-

many. The validating observations are hourly observations of 10-minute average wind speed

measured over the 10 minutes before the hour. Daily maximum wind speed observations are

given by the maximum over the 24 hours corresponding to the time frame of the ensemble

forecast. Ensemble forecasts at individual station locations are obtained by bilinear inter-

polation of the gridded model output. Our results are based on a verification period from

May 1, 2010 to April 30, 2011, consisting of 83 220 individual forecast cases. Additional

data from February 1, 2010 to April 30, 2011 are used to allow for training periods of equal

lengths for all days in the verification period and for model selection purposes.

The verification rank histogram of the ECMWF ensemble displayed in Figure 1b is even

more U-shaped than that of the UWME resulting in a reliability index of 1.1063, while

the ensemble range contains the validating observation just in 43.40 % of all cases (here

the nominal value is 49/51, that is 96.08 %). Again, the ensemble is under-dispersive and

statistical calibration is required.

2.3 ALADIN-HUNEPS ensemble

The ALADIN-HUNEPS system of the HMS covers a large part of continental Europe with a

horizontal resolution of 12 km and is obtained with dynamical downscaling (by the ALADIN

limited area model) of the global ARPEGE based PEARP system of Météo France (Horányi

et al., 2006; Descamps et al., 2009). The ensemble consists of 11 members, 10 initialized

from perturbed initial conditions and one control member from the unperturbed analysis,

implying that the ensemble contains groups of exchangeable forecasts.

The data base contains 11 member ensembles of 42 hour forecasts for 10 meter instan-

taneous wind speed (given in m/s) for 10 major cities in Hungary (Miskolc, Szombathely,

Győr, Budapest, Debrecen, Nýıregyháza, Nagykanizsa, Pécs, Kecskemét, Szeged) produced

by the ALADIN-HUNEPS system of the HMS, together with the corresponding validat-

ing observations for the one-year period between April 1, 2012 and March 31, 2013. The

validating observations were scrutinized by basic quality control algorithms including, e.g.,

consistency checks. The forecasts are initialized at 18 UTC (8 pm local time when DST

operates and 7 pm otherwise). The data set is fairly complete since there are only six days

when no forecasts are available. These dates are excluded from the analysis.
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Similar to the previous two examples, the verification rank histogram of the raw ALADIN-

HUNEPS ensemble is far from the desired uniform distribution (see Figure 1c), however, it

shows a less under-dispersive character. The better fit of the ensemble can also be observed

on its reliability index of 0.3217 and coverage value of 61.21 %, where the latter should be

compared to the nominal coverage of 83.33 % (10/12).

3 Ensemble Model Output Statistics

As mentioned in the Introduction, the EMOS predictive PDF of a univariate weather quan-

tity is a single parametric density function, where the parameters depend on the ensemble

members. In case of temperature and pressure the normal distribution is a reasonable choice

(Gneiting et al., 2005), while for non-negative variables such as wind speed, a skewed dis-

tribution is required. A popular candidate is the Weibull distribution (see, e.g., Justus et

al., 1978), gamma or log-normal distributions are also in use (Garcia et al., 1988), while

Thorarinsdottir and Gneiting (2010) suggested an EMOS model based on truncated normal

distribution with a cut-off at zero.

Let f1, f2, . . . , fM denote the ensemble of distinguishable forecasts of wind speed for

a given location and time. This means that each ensemble member can be identified and

tracked, which holds for example for the UWME (see Section 2.1).

However, most of the currently used ensemble prediction systems incorporate ensembles

where at least some members are statistically indistinguishable. Such ensemble systems

are usually producing initial conditions based on algorithms, which are able to find the

fastest growing perturbations indicating the directions of the largest uncertainties. In most

cases these initial perturbations are further enriched by perturbations simulating model

uncertainties as well. Examples in the paper at hand are the ECMWF ensemble and the

ALADIN-HUNEPS ensemble described in Sections 2.2 and 2.3, respectively. In such cases

one usually has a control member (the one without any perturbation) and the remaining

ensemble members forming one or two exchangeable groups.

In what follows, if we have M ensemble members divided into m exchangeable groups,

where the kth group contains Mk ≥ 1 ensemble members (
∑m

k=1Mk = M), notation fk,`
is used for the `th member of the kth group.

3.1 Truncated normal model

Denote by N 0
(
µ, σ2

)
the TN distribution with location µ, scale σ > 0, and cut-off at

zero having PDF

g(x|µ, σ) :=
1
σ
ϕ
(
(x− µ)/σ

)
Φ
(
µ/σ

) , x ≥ 0, and g(x|µ, σ) := 0, otherwise,
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where ϕ and Φ are the PDF and the cumulative distribution function (CDF) of the

standard normal distribution, respectively. The EMOS predictive distribution of wind speed

X proposed by Thorarinsdottir and Gneiting (2010) is

N0

(
a0 + a1f1 + · · ·+ aMfM , b0 + b1S

2
)

with S2 :=
1

M − 1

M∑
k=1

(
fk − f

)2
, (3.1)

where f denotes the ensemble mean. Location parameters a0 ∈ R, a1, . . . , aM ≥ 0 and

scale parameters b0, b1 ≥ 0 of model (3.1) can be estimated from the training data consisting

of ensemble members and verifying observations from the preceding n days, by optimizing

an appropriate verification score (see Section 3.5).

If the ensemble can be divided into groups of exchangeable members, ensemble members

within a given group will get the same coefficient of the location parameter (Fraley et al.,

2010) resulting in a predictive distribution of the form

N0

(
a0 + a1

M1∑
`1=1

f1,`1 + · · ·+ am

Mm∑
`m=1

fm,`m , b0 + b1S
2

)
, (3.2)

where again, S2 denotes the ensemble variance. One might think of taking into account the

grouping also in modelling the variance of the predictive PDF and use, e.g., the variance of

the group means instead of the ensemble variance S2. However, practical tests show that

this (smaller) variance results in reduction of the predictive skill of the model.

3.2 Log-normal model

As an alternative to the TN model of Section 3.1 we propose an EMOS approach based on

an LN distribution. This distribution has a heavier upper tail, and in this way it is more

appropriate to model high wind speed values. The PDF of the LN distribution LN
(
µ, σ

)
with location µ and shape σ > 0 is

h(x|µ, σ) :=
1

xσ
ϕ
(
(log x− µ)/σ

)
, x ≥ 0, and h(x|µ, σ) := 0, otherwise, (3.3)

while the mean m and variance v of this distribution are

m = eµ+σ
2/2 and v = e2µ+σ

2(
eσ

2 − 1
)
, respectively.

Further, since

µ = log

(
m2

√
v +m2

)
and σ =

√
log
(

1 +
v

m2

)
, (3.4)

an LN distribution can also be parametrized by these quantities. In our EMOS approach m

and v are affine functions of the ensemble members and ensemble variance, respectively,

that is

m = α0 + α1f1 + · · ·+ αMfM and v = β0 + β1S
2. (3.5)



8

Similar to the TN model, to obtain the values of mean and variance parameters α0 ∈
R, α1, . . . , αM ≥ 0 and β0, β1 ≥ 0, respectively, one has to perform an optimum score

estimation based on some verification measure. Obviously, for the case of exchangeable

ensemble members instead of (3.5) we have

m = α0 + α1

M1∑
`1=1

f1,`1 + · · ·+ αm

Mm∑
`m=1

fm,`m and v = β0 + β1S
2. (3.6)

3.3 Combined model

To combine the advantageous properties of TN and LN approaches, following Lerch and

Thorarinsdottir (2013), we also investigate a regime-switching method. Depending on the

value of the ensemble median fmed we consider either a TN or an LN based EMOS model.

Given a threshold θ > 0, the EMOS predictive distribution is N 0
(
µTN , σ

2
TN

)
if fmed < θ

and LN
(
µLN , σLN

)
, otherwise. Model parameters µTN and σTN depend on the ensemble

forecast according to (3.1) or (3.2), while the expressions for µLN and σLN can be obtained

form (3.5) or (3.6) via transformation (3.4). For training the combined model we propose two

different methods. If the training data set is large enough, that is many forecast cases belong

to each day to be investigated, the LN model is trained using only ensemble forecasts where

fmed ≥ θ, while forecasts with ensemble median under the threshold are used to train the

TN model. This technique is applied for calibrating the UWME and the ECMWF ensemble

forecasts, see Sections 4.1 and 4.2, respectively. However, e.g., in case of the ALADIN-

HUNEPS ensemble one has only 10 observation stations, so there are not enough data for

separate training of the component models. In such situations one might utilize the same

training data set both for the TN and for the LN predictive distribution and then choose

between these two models according to the value of the ensemble median. This particular

idea is applied in Section 4.3 for the ALADIN-HUNEPS forecasts.

3.4 General Extreme Value model

In Section 4 the predictive performances of the LN and TN-LN mixture models are compared

to those of the GEV and TN-GEV mixture models of Lerch and Thorarinsdottir (2013). The

CDF of a GEV distribution GEV
(
µ, σ, ξ

)
with location µ, scale σ > 0 and shape ξ

equals

G(x|µ, σ, ξ) :=

exp
(
−
[
1 + ξ(x−µ

σ
)
]−1/ξ)

, ξ 6= 0;

exp
(
− exp

(
− x−µ

σ

))
, ξ = 0,

if 1 + ξ(x− µ)/σ > 0, and zero otherwise. This definition shows the main disadvantage of

using a GEV distribution for modelling wind speed, namely, there is a positive probability

for a GEV distributed random variable to be negative.
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For calibrating ECMWF ensemble forecasts of wind speed over Germany Lerch and

Thorarinsdottir (2013) suggest to model location and scale parameters by

µ = γ0 + γ1f1 + · · ·+ γKfK and σ = σ0 + σ1f, (3.7)

while the shape parameter ξ is considered to be independent of the ensemble. In general, one

can also incorporate the ensemble variance into the models of location and scale . However,

preliminary studies showed that model (3.7) is also a reasonable choice for the UWME and

the ALADIN-HUNEPS ensemble. Further, the components of the TN-GEV mixture model

for the various ensemble forecasts are trained as described in Section 3.2.

3.5 Parameter estimation

The aim of probabilistic forecasting is to obtain calibrated and sharp predictive distributions

of future weather quantities (Gneiting et al., 2007). This goal should also be addressed in

the choice of the scoring rule to be optimized in order to obtain the estimates of parameters

of different EMOS models. For evaluating density forecasts the most popular scoring rules

are the logarithmic score (Gneiting and Raftery, 2007), i.e. the negative logarithm of the

predictive PDF evaluated at the verifying observation, and the continuous ranked probability

score (CRPS; Gneiting and Raftery, 2007; Wilks, 2011). Given a predictive CDF F (y) and

an observation x, the CRPS is defined as

CRPS
(
F, x

)
:=

∫ ∞
−∞

(
F (y)− 1{y≥x}

)2
dy = E|X − x| − 1

2
E|X −X ′|, (3.8)

where 1H denotes the indicator of a set H, while X and X ′ are independent random

variables with CDF F and finite first moment. We remark that the CRPS can be expressed

in the same unit as the observation. Both the logarithmic score and the CRPS are proper

scoring rules which are negatively oriented, that is, the smaller the better. In this way the

optimization with respect to the logarithmic score gives back the maximum likelihood (ML)

estimates of the parameters.

Short calculation shows that the CRPS corresponding to the CDF G of a TN distribution

N 0
(
µ, σ2

)
can be given in a closed form (see, e.g., Thorarinsdottir and Gneiting, 2010),

namely

CRPS
(
G, x

)
= σ

[
Φ
(
µ/σ

)]−2 [x− µ
σ

Φ
(
µ/σ

)(
2Φ
(
(x− µ)/σ

)
+ Φ

(
µ/σ

)
− 2
)

+ 2ϕ
(
(y − µ)/σ

)
Φ
(
µ/σ

)
− 1√

π
Φ
(√

2µ/σ
)]
.

In case of the LN model one faces a similar situation, straightforward calculations verify

CRPS
(
H, x

)
=x
[
2Φ
(
(log x−µ)/σ

)
−1
]
−2eµ+σ

2/2
[
Φ
(
(log x−µ)/σ−σ

)
+Φ
(
σ/
√

2
)
−1
]
,
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where x ≥ 0 and H is the CDF corresponding to the PDF (3.3) of LN
(
µ, σ

)
. Obviously,

with the help of transformations (3.4), CRPS
(
H, x

)
can also be expressed as a function of

the mean m and variance v of the LN distribution LN
(
µ, σ

)
.

Now, following the ideas of Gneiting et al. (2005) and Thorarinsdottir and Gneiting

(2010), both for the TN and the LN model we estimate model parameters by minimizing the

mean CRPS of the predictive distributions and validating observations corresponding to the

forecast cases of the training period, while for the GEV model the ML method suggested by

Lerch and Thorarinsdottir (2013) is applied.

4 Results

As mentioned in the Introduction, the predictive performances of the LN model and of the

TN-LN combined model (see Sections 3.2 and 3.3, respectively) are tested on the eight-

member UWME, on the fifty-member ECMWF ensemble and on the ALADIN-HUNEPS

ensemble of the HMS. The obtained results are compared to the fits of the TN, GEV and

TN-GEV combined models investigated by Lerch and Thorarinsdottir (2013), and to the

verification scores of the raw ensemble. We also consider the scores corresponding to cli-

matological forecasts which can be defined as forecasts calculated from observations in the

training period used as an ensemble.

The goodness of fit of a calibrated forecast in terms of probability distributions is quan-

tified with the help of the mean CRPS defined in Section 3.4. For the raw ensemble and

climatology in (3.8) the empirical CDF replaces the EMOS predictive CDF. In order to

evaluate forecasts for high wind speeds we also consider the threshold-weighted continuous

ranked probability score (twCRPS)

twCRPS
(
F, x

)
:=

∫ ∞
−∞

(
F (y)− 1{y≥x}

)2
ω(y)dy

introduced by Gneiting and Ranjan (2011), where ω(y) ≥ 0 is a weight function. Obviously,

case ω(y) ≡ 1 corresponds to the traditional CRPS defined by (3.8), while to address wind

speeds above a given threshold r one may set ω(y) = 1{y≥r}. In our study we consider

threshold values approximately corresponding to the 90th, 95th and 99th percentiles of the

wind speed observations. Further, in order to quantify the improvement in twCRPS with

respect to a reference predictive CDF Fref we make use of the threshold-weighted continuous

ranked probability skill score (twCRPSS) defined as (see, e.g., Lerch and Thorarinsdottir,

2013)

twCRPSS
(
F, x

)
:= 1−

twCRPS
(
F, x

)
twCRPS

(
Fref , x

) .
This score is obviously positively oriented, and as a reference we always use the predictive

CDF corresponding to the TN model.
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Figure 2: Mean CRPS values of the (a) EMOS predictive distributions for various training

period lengths; (b) TN-LN mixture models corresponding to different training period lengths

as functions of the threshold; (c) TN-GEV mixture models corresponding to different training

period lengths as functions of the threshold for the UWME.

Finally, for each EMOS model we investigate the coverage and average width of the cen-

tral prediction interval corresponding to the nominal coverage of the raw ensemble (UWME:

77.78 %; ECMWF: 96.08 %; ALADIN-HUNEPS: 83.33 %), where the coverage of a (1 −
α)100 %, α ∈ (0, 1), central prediction interval is the proportion of validating observations

located between the lower and upper α/2 quantiles of the predictive distribution. For a

calibrated predictive PDF this value should be around (1 − α)100 % and the proposed

choices of α allow direct comparisons to the raw ensembles.

A continuous counterpart of the verification rank histogram (see Figure 1) of the raw

ensemble is the probability integral transform (PIT) histogram of the predictive distribution.

The PIT is the value of the predictive CDF evaluated at the verifying observation (Raftery et

al., 2005), and the PIT histogram provides a good measure about the possible improvements

of the under-dispersive character of the raw ensemble. The closer the histogram is to the

uniform distribution, the better is the calibration.

As point forecasts we consider EMOS and ensemble medians and means, which are eval-

uated with the use of mean absolute errors (MAEs) and root mean squared errors (RMSEs).

Note that MAE is optimal for the median, while RMSE is optimal for the mean forecasts

(Gneiting, 2011; Pinson and Hagedorn, 2012).

4.1 University of Washington Mesoscale Ensemble

As the eight members of the UWME are non-exchangeable, the dependencies of location

and scale parameters of the TN and GEV models on the ensemble members are specified

by (3.1), (3.7), respectively, while the mean and variance of the LN model are linked to the

ensemble according to (3.5).
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Figure 3: Verification rank histogram of the raw ensemble and PIT histograms of the EMOS

post-processed forecasts for the UWME.

As a first step we determine the optimal length of the rolling training period valid for all

models and the optimal threshold values for TN-LN and TN-GEV mixtures. Figure 2a shows

the mean CRPS values of all three models as functions of the training period length varying

from 15 to 40 days. The mean CRPS of the GEV model takes its minimum at day 30 and

this training period length seems reasonable for the other two models, too. This particular

length of the training period is also supported by Figure 2b showing the mean CRPS values

of the TN-LN mixture model as function of the threshold θ for various training period

lengths. For this mixture model the optimal threshold is 5.7 m/s, while for the TN-GEV

models similar arguments lead us to a threshold of 5.2 m/s, see Figure 2c. Using these

parameter values ensemble forecasts for the calendar year 2008 are calibrated. In case of the

two regime-switching models an LN distribution is used in around one third, while a GEV

distribution is applied in about 40 % of the 27 481 individual forecast cases.

Consider first the PIT histograms of the investigated EMOS models that are displayed in

Figure 3. A comparison to the verification rank histogram of the raw ensemble shows that

post-processing significantly improves the statistical calibration of the forecasts. However,

one should admit that, e.g., the Kolmogorov-Smirnov test rejects the uniformity of PIT

values in all cases, the highest p-value, corresponding to the GEV model, is 0.0049.
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Forecast CRPS twCRPS (m/s) MAE RMSE Cover. Av. w.

(m/s) r=9 r=10.5 r=14 (m/s) (m/s) (%) (m/s)

TN 1.114 0.150 0.074 0.010 1.550 2.048 78.65 4.67

LN 1.114 0.149 0.073 0.010 1.554 2.052 77.29 4.69

TN-LN, θ=5.7 1.105 0.149 0.073 0.010 1.550 2.050 77.73 4.64

GEV 1.100 0.145 0.072 0.010 1.554 2.047 77.20 4.69

TN-GEV, θ=5.2 1.105 0.145 0.072 0.010 1.555 2.055 77.20 4.60

Ensemble 1.353 0.175 0.085 0.011 1.655 2.169 45.24 2.53

Climatology 1.412 0.173 0.081 0.010 1.987 2.629 81.10 5.90

Table 1: Mean CRPS, mean twCRPS for various thresholds r, MAE of median and RMSE

of mean forecasts and coverage and average width of 77.78 % central prediction intervals for

the UWME.

In Table 1 scores for different probabilistic forecasts are given together with the average

width and coverage of 77.75 % central prediction intervals. Verification measures of proba-

bilistic forecasts and point forecasts calculated using TN, LN and GEV models and TN-LN

(θ = 5.7 m/s) and TN-GEV (θ = 5.2 m/s) mixture models are compared to the correspond-

ing measures calculated for the raw ensemble and climatological forecasts. By examining

these results, one can clearly observe the obvious advantage of post-processing with respect

to the raw ensemble or to the climatology. This is quantified in decrease of CRPS, MAE

and RMSE values and in a significant improvement in the coverage of the 77.78 % central

prediction intervals. On the other hand, the post-processed forecasts are less sharp than the
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Figure 4: twCRPSS values for the UWME with TN as reference model.
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Figure 5: Mean CRPS values of the (a) EMOS predictive distributions for various training

period lengths; (b) TN-LN mixture models corresponding to different training period lengths

as functions of the threshold; (c) TN-GEV mixture models corresponding to different training

period lengths as functions of the threshold for the ECMWF ensemble.

ones calculated from the raw ensemble, however, this fact is coming from the small dispersion

of the UWME, as also seen in the verification rank histogram of Figure 1a.

From the five competing models the GEV method produces the smallest CRPS and

RMSE values and the lowest twCRPS scores for all three thresholds reported, while the best

coverage and MAE value correspond to the TN-LN mixture model. However, the superiority

of the GEV model is not surprising after examining Figure 4 showing the twCRPSS values

of GEV, LN, TN-GEV and TN-LN EMOS methods with respect to the reference TN model

as functions of the threshold. As the GEV model outperforms the TN model (and the other

three, as well) at all investigated thresholds, combining the two methods does not result

in an increase in the predictive skill. Hence, one can conclude that in case of the UWME

data the GEV model has the best overall performance, but one should also remark that for

this model the mean (maximal) probability of forecasting a negative wind speed is around

0.05 % (4 %).

4.2 ECMWF ensemble

The ECMWF ensemble consists of one group of 50 exchangeable members. The parameters

of the TN and the LN model are thus linked to the ensemble according to (3.2) and (3.6)

with m = 1. Following Lerch and Thorarinsdottir (2013), the location and scale parameter

of the GEV model are given as specified in (3.7) with γ1, . . . , γK restricted to be equal.

To determine the optimal length of the training period for all models and the optimal

model thresholds for the combination models we proceed as for the UWME ensemble and

compute the average CRPS over a range of lengths of training periods and choices for the

model threshold θ, see Figure 5. Figure 5a suggests a training period of 20 days for all
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Figure 6: Verification rank histogram of the raw ensemble and PIT histograms of the EMOS

post-processed forecasts.

models, while Figures 5b and 5c suggest a model threshold of θ = 8.0 m/s and θ = 7.3 m/s

for the TN-LN model and the TN-GEV model, respectively. With these threshold values,

an LN distribution is used in around 14 % of the forecast cases in the verification set, and a

GEV distribution is used in around 19 % of the forecast cases.

Figure 6 showing the verification rank histogram of the raw ensemble and the PIT his-

tograms of the various predictive distributions illustrates that all post-processing methods

significantly increase the calibration of the ensemble. While the tails of the TN model appear

to be slightly too light, the PIT histogram of the GEV model is gradually over-dispersive with

minimally too heavy tails. The smallest deviations from uniformity are obtained for the LN

model. The PIT histograms for the combination models resemble the PIT histogram of the

TN model with small improvements at higher PIT values. Note that Kolmogorov-Smirnov

tests reject the uniformity of the PIT values for all five models.

Table 2 summarizes the values of various scoring rules and coverage and average width of

96.08 % central prediction intervals. The raw ensemble forecasts outperform the climatolog-

ical reference forecast and produce sharp prediction intervals, however, at the cost of being

uncalibrated. All five post-processing methods significantly improve the calibration and pre-

dictive skill of the ensemble in terms of all scoring rules. The LN and the GEV model show
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Forecast CRPS twCRPS (m/s) MAE RMSE Cover. Av.w.

(m/s) r=10 r=12 r=15 (m/s) (m/s) (%) (m/s)

TN 1.045 0.200 0.110 0.042 1.388 2.148 92.19 6.39

LN 1.037 0.198 0.109 0.042 1.386 2.138 93.16 6.91

TN-LN, θ=8.0 1.033 0.191 0.103 0.039 1.379 2.135 92.49 6.36

GEV 1.034 0.195 0.106 0.041 1.388 2.134 94.84 8.22

TN-GEV, θ=7.3 1.033 0.191 0.103 0.039 1.381 2.135 92.89 6.60

Ensemble 1.263 0.211 0.113 0.043 1.441 2.232 45.00 1.80

Climatology 1.550 0.251 0.128 0.045 2.144 2.986 95.84 11.91

Table 2: Mean CRPS, mean twCRPS for various thresholds r, MAE of median and RMSE

of mean forecasts and coverage and average width of 96.08 % central prediction intervals for

the ECMWF ensemble.

small improvements over the TN model in terms of the average CRPS, MAE and RMSE.

The best scores are obtained for the TN-LN and TN-GEV combination models. The TN-LN

combination model achieves a minimally lower MAE and results in slightly narrower central

prediction intervals. Further, the TN, LN and TN-LN models are strictly positive whereas

the GEV and TN-GEV models occasionally assign small non-zero probabilities to negative

wind speed observations. This effect is typically negligible as the average (maximum) proba-

bility mass assigned to negative wind speeds is smaller than 0.01 % (5 %) for the GEV model

and smaller than 10−7 % (0.001 %) for the TN-GEV model, respectively.

To assess the predictive ability for high wind speed observations we also compute the
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Figure 7: twCRPSS values for the ECMWF ensemble with TN as reference model.
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Figure 8: Mean CRPS values of the (a) EMOS predictive distributions for various training

period lengths; (b) TN-LN mixture models corresponding to different training period lengths

as functions of the threshold; (c) TN-GEV mixture models corresponding to different training

period lengths as functions of the threshold for the ALADIN-HUNEPS ensemble.

twCRPS scores at different threshold values, see Table 2. The best scores in the upper tail

are obtained by the TN-LN and TN-GEV combination models and the relative improvements

over the TN model are considerably higher compared to the improvements in the unweighted

CRPS. Figure 7 further shows the twCRPSS as a function of the threshold employed in the

indicator weight function with the TN model as reference forecast. The twCRPSS is strictly

positive for all models and threshold values, indicating improvements compared to the TN

model. Except for the LN model, the twCRPSS of the models generally increases for larger

threshold values and the greatest relative improvements over the TN model can be detected

at threshold values around 15 m/s. Despite the decreasing twCRPSS values of the LN model,

the TN-LN model achieves the largest improvements over the TN model, closely followed by

the TN-GEV model. Hence, one can conclude that the regime-switching models have the

best overall performance showing almost the same predictive skills.

4.3 ALADIN-HUNEPS ensemble

The way the ALADIN-HUNEPS ensemble is generated (see Section 2.3) induces a natural

grouping of ensemble members into two groups. The first group contains just the control

member, while in the second are the 10 statistically indistinguishable ensemble members

initialized from randomly perturbed initial conditions. One should remark here that in Baran

et al. (2013) a different grouping is also suggested (and later investigated in Baran (2014) and

Baran et al. (2014), too), where the odd and even numbered exchangeable ensemble members

form two separate groups. This idea is justified by the method their initial conditions are

generated, since only five perturbations are calculated and then they are added to (odd

numbered members) and subtracted from (even numbered members) the unperturbed initial

conditions. However, since in the present study the results corresponding to the two- and
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Figure 9: Verification rank histogram of the raw ensemble and PIT histograms of the EMOS

post-processed forecasts for the ALADIN-HUNEPS ensemble.

three-group models are rather similar, only the two-group case is reported.

A detailed earlier study of this particular data set (Baran et al., 2014) shows that in case

of the TN distribution based EMOS model the optimal length of the rolling training period

for ALADIN-HUNEPS wind speed forecasts is 43 days. Using this training period length one

has a verification period between May 5, 2012 and March 31, 2013 containing 313 calendar

days (3 130 forecast cases). In order to ensure the comparability of our results to the earlier

studies by having the same verification period we keep the 43 days as the maximum possible

training period length. However, based on Figure 8a showing the mean CRPS values of TN,

LN and GEV models, respectively, as functions of the length of the training period, this

maximal value of 43 days can also be accepted as optimal for all methods. Furthermore, this

particular length is also supported by Figures 8b and 8c plotting the mean CRPS values of

the TN-LN and TN-GEV mixture models as functions of the threshold θ for various training

period lengths. Based on these figures the optimal TN-LN and TN-GEV thresholds are 6.9

m/s and 5 m/s, while the corresponding percentages of usage of LN and GEV distributions

in the mixtures are 4 % and 15 %, respectively.

Similar to the previous two sections we first consider the PIT histograms of all considered

EMOS models, displayed in Figure 9. Compared to the verification rank histogram of the
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EMOS model TN LN TN-LN GEV TN-GEV

p-value 0.127 4.42×10−6 0.117 0.070 0.014

Table 3: p-values of Kolmogorov-Smirnov tests for uniformity of PIT values for the ALADIN-

HUNEPS ensemble.

raw ensemble all post-processing methods result in a significant improvement in the goodness

of fit to the uniform distribution, while from the competing calibration methods the TN and

the TN-LN mixture models have the best performance. This latter statement is justified by

the p-values of Kolmogorov-Smirnov tests for uniformity given in Table 3.

Similar to Sections 4.1 and 4.2 in Table 4 verification scores for probabilistic forecasts

and the average width and coverage of 83.33 % central prediction intervals are reported.

Compared to the raw ensemble and to climatology post-processed forecasts show the same

behaviour as before: improved predictive skills and better calibration. The lowest CRPS

and RMSE values belong to the TN-GEV mixture model, while the TN-LN regime-switching

method provides the best MAE score and coverage combined with a rather narrow central

prediction interval. Further, for 6 m/s and 7 m/s threshold values the GEV and TN-

GEV models result in slightly lower twCRPS scores than the TN-LN mixture, while for

r = 9 m/s this advantage practically disappears. This phenomenon can also be observed

in Figure 10 showing the twCRPSS values of the GEV, LN, TN-GEV and TN-LN methods

with respect to the reference TN model as functions of the threshold. Finally, the mean

(maximal) probabilities of predicting a negative wind speed by the GEV and TN-GEV

methods are 0.33 % (9.46 %) and 2.74 × 10−3 % (0.15 %), respectively. Taking also into

account the goodness of fit of PIT histograms (see Table 3) one can conclude that for

Forecast CRPS twCRPS (m/s) MAE RMSE Cover. Av.w.

(m/s) r=6 r=7 r=9 (m/s) (m/s) (%) (m/s)

TN 0.738 0.102 0.054 0.012 1.037 1.357 83.59 3.53

LN 0.741 0.102 0.054 0.011 1.038 1.362 80.44 3.57

TN-LN, θ=6.9 0.737 0.101 0.054 0.011 1.035 1.356 83.59 3.54

GEV 0.737 0.098 0.052 0.011 1.041 1.355 81.21 3.54

TN-GEV, θ=5.0 0.735 0.098 0.052 0.011 1.039 1.355 85.59 3.72

Ensemble 0.803 0.112 0.059 0.013 1.069 1.373 68.22 2.88

Climatology 1.046 0.127 0.064 0.012 1.481 1.922 82.54 3.43

Table 4: Mean CRPS, mean twCRPS for various thresholds r, MAE of median and RMSE

of mean forecasts and coverage and average width of 83.33 % central prediction intervals for

the ALADIN-HUNEPS ensemble.
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Figure 10: twCRPSS values for the ALADIN-HUNEPS ensemble with TN as reference

model.

ALADIN-HUNEPS wind speed forecasts the TN-LN mixture model has the best overall

performance.

5 Conclusions

We introduce a new EMOS model for calibrating ensemble forecasts of wind speed providing

a predictive PDF which follows a log-normal distribution. In order to have better forecasts

in the tails we also consider a regime-switching approach based on the ensemble median,

which considers a truncated normal EMOS model for low values and a log-normal EMOS for

the high ones. The two approaches are tested on wind speed forecasts of the eight-member

University of Washington mesoscale ensemble, of the fifty-member ECMWF ensemble and

of the eleven-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Ser-

vice. These ensemble prediction systems differ both in the wind speed quantities being

forecasted and in the generation of the ensemble members. Using appropriate verification

measures (CRPS of probabilistic, MAE of median and RMSE of mean forecasts, coverage

and average width of central prediction intervals corresponding to the nominal coverage,

twCRPS corresponding to 90th, 95th and 99th percentiles of the verifying observations) the

predictive performances of the LN and TN-LN mixture models are compared to those of the

TN based EMOS method (Thorarinsdottir and Gneiting, 2010), of the GEV and TN-GEV

mixture models (Lerch and Thorarinsdottir, 2013), of the raw ensemble, and of the clima-

tological forecasts as well. From the results of the presented case studies one can conclude

that compared to the raw ensemble and to climatology post-processing always improves the

calibration of probabilistic and accuracy of point forecasts. Further, the TN-LN mixture

model outperforms the traditional TN method (Thorarinsdottir and Gneiting, 2010) and
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it is at least able to keep up with the models utilizing the GEV distribution (Lerch and

Thorarinsdottir, 2013) without the problem of forecasting negative wind speed values.
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