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Abstract

Four different methods are applied here to study the precursors of flare activ-

ity in the Active Region NOAA 10486. Two approaches track the temporal be-

haviour of suitably chosen features (one, the weighted horizontal gradient WGM ,

is generalised form the horizontal gradient of the magnetic field, GM ; another

is the sum of the horizontal gradient of the magnetic field, GS, for all sunspot

pairs). WGM is a photospheric indicator that is a proxy measure of magnetic

non-potentiality of a specific area of the active region, i.e. it captures the tempo-

ral variation of the weighted horizontal gradient of magnetic flux summed up for

the region where opposite magnetic polarities are highly mixed. The third one,

referred to as the separateness parameter, Sl−f , considers the overall morphology.

Further, GS and Sl−f are photospheric newly defined quick-look indicators of the

polarity mix of the entire active region. The fourth method is tracking the tem-

poral variation of small x-ray flares, their times of succession and their energies

observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instru-

ment. All approaches yield specific pre-cursory signatures for the imminence of

flares.

Subject headings: flares, precursor, pre-flare, GOES, RHESSI, SDD
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1. Introduction

The main question of Space Weather is how to optimise the forecast of flares and

Coronal Mass Ejections (CMEs). Flares and CMEs are important ingredients of Space

Weather in order to protect mankind and technological systems that might also be at risk

from Space Weather effects. One needs to understand clearly the causes and dynamics of

Space Weather phenomena. After some significant developments in flare-forecast methods

in the past decade the reliable prediction of such eruptive events in solar active regions

remains an important and challenging central task. It is not yet known all the details of

the flare phenomenon, therefore, it is difficult to develop a well-functioning flare forecasting

method. One usually searches for global features, that is capable to predict these impulsive

events in appropriate time. Several flare models claim that photospheric shear motions

may be responsible for the energy build-up and flare eruption. Others examine parameters

derived from measurements of the magnetic field.

Let us here recall a few relevant studies to this paper. Ambastha (1993) investigated

the evolution of the degree of magnetic shear in flare-producing active regions. Mathew

and Ambastha (2000) suggested that ”flux motions, cancellation, and large magnetic field

gradient, may be the prerequisite criterion for the triggering of this flare”. Wang (2006)

examined the rapid gradient of the photospheric magnetic fields along the flaring neutral

lines in five different ARs. Some other examples of potential flare indicators are, e.g.,

the pre-defined K-parameter describing the strength of the gradient across the neutral

line (Schrijver 2007); flux-normalized measure of the field twist (Falconer et al. 2002);

maximum horizontal gradient and the length of the neutral line (Cui et al. 2006); and,

shear (Cui et al. 2007). Other groups focused on the spatial and temporal resolution of the

magnetic helicity injection in the magnetic field, e.g. Vemareddy (2012) and Zhang (2008).

Once a pre-flare parameter is introduced, it has to be put to test, i.e., how effectively



– 4 –

actually it works. Steward et. al. (2011) studied the length of the strong-gradient polarity

inversion lines (SPILs) and tested the predictiability of x-ray flares of class C, M and X

in a 24-h-interval exceeding 88 % of target accuracy. In a previous paper (Korsós et al.,

2014, hereafter Paper I) we presented a novel approach, where the temporal variation of

a pre-defined parameter, the so-called horizontal magnetic gradient (denoted as GM), was

traced. The method of Paper I yields additional advantages in comparison with the static

approaches. Here, this paper presents further new and reliable of the pre-flare dynamics

which are expected to be useful and practical diagnostic tools.

2. Observational Data

This paper investigates the Active Region NOAA 10486. The following datasets were

used for the examination. The SOHO/MDI-Debrecen Data (also known as SDD1) is the

most detailed and precise sunspot database between 1996 and 2011. This catalogue contains

information on the position, area and magnetic field of all observable sunspots and sunspot

groups on a 1.5-hourly basis (Győri et al. 2011). This comprehensive database allows to

follow the evolution of the magnetic configuration of the Active Region NOAA 10486 in

high spatial and temporal resolution.

The data of major solar flares were taken from the Geostationary Operational

Environmental Satellite (also known as GOES) x-ray flare database. The method described

in Paper I only allows to predict the data (e.g. time and intensity) of flares stronger

than M5 according to the X-flare classification scheme of GOES in the 1-8 Å wavelength

interval2. The present examination is also restricted to these cases.

1http://fenyi.solarobs.unideb.hu/SDD/SDD.html

2https://www.nsof.class.noaa.gov/release/data/available/goes/index.htm
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The third data source applied here is the Reuven Ramaty High Energy Solar

Spectroscopic Imager (also known as RHESSI) database. Since its launch, the RHESSI

(Lin et al. 2002) satellite has observed more than 95,000 microflare events3 in 9 different

energy channels. These events are displayed in a table consisting of the main parameters

of flares: time of explosion, durations, peak intensities, total counts during the outburst,

energy channel of the maximal energy at which the flare is still measurable, location on the

solar disc and quality flags.

3. Evolution of magnetic field of active regions

3.1. GM between nearby groups of spots of opposite magnetic polarities

In Paper I, a new physical parameter was introduced that may characterise the

evolution of the magnetic field in the flare-producing domain of an active region. The

horizontal gradient of the magnetic field (GM) between two spots of opposite magnetic

polarities is:

GM =

∣

∣

∣

∣

f(A1) ∗ A1 − f(A2) ∗ A2

d

∣

∣

∣

∣

, (1)

where A1 and A2 are the areas of two umbrae, f(A1) and f(A2) represent the mean flux

density of two spots expressed as a function of the umbral area. The product of the two

quantities, f(A)*A, is a good proxy for the flux amount in the umbra. The function f(A)

is determined by using the SDD data. This representation helps to avoid the problem of

decreasing precision of the magnetic field towards the solar limb. Initially, the d is distance

of the two spots.

3http://hesperia.gsfc.nasa.gov/rhessi3/data-access/rhessi-data/rhessi-data/index.html
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The present work proposes a generalised form of the above formula (Equation 1). The

weighted horizontal gradient WGM is now computed between two groups of nearby spots

having opposite polarities, the flux amounts (f(Ap)*Ap and f(An)*An) are summarized for

the two groups and the distance (d) is computed between their centers of weight.

WGM =

∣

∣

∣

∣

f(Ap) ∗ Ap − f(An) ∗ An

d

∣

∣

∣

∣

. (2)

Similar to Paper I, this quantity is considered to be a potential proxy of magnetic

non-potentiality at the photospheric level. Its variation is traced in the domain of the

highest magnetic gradient.

Figure 1 shows the Active Region NOAA 10486, its white-light appearance (left panel),

the view of the sunspot group reconstructed from the SDD data (middle panel) and the

corresponding magnetogram (right panel). This Active Region produced numerous flares,

however, only the events stronger than M5 are considered here. The cartoon of the active

region in Figure 1 (middle panel) visualises the highlighted area containing spots of opposite

polarities. The study area is where the most intense ares are in connection with the location

of the strongest magnetic gradient. The small black (negative polarity) and white (positive

polarity) circles are visualisations of sunspots. The larger bright/dark-shaded circles are

the corresponding penumbrae. For more details see Paper I.

Fig. 1.— Images: AR NOAA 10486 on 28 October 2003 at 01:35 UT: continuum image (left

panel), reconstruction from SDD (middle panel), magnetogram (right panel).



– 7 –

Figure 2 shows the temporal variation of the WGM (Figure 2A), distance (Figure 2B)

and flux amount, i.e. the sum of unsigned flux of all spots (Figure 2C) between 25 October

and 3 November with a cadence of 1.5 hours. It is clearly visible that a steep rise and a

high maximum value of the weighted horizontal gradient is followed by a less steep decrease

which ends up with an energetic X1.2 flare on 26 October and two medium flares with

strengths M5.0 and M6.7 on 27 October. Then, two further similar WGM variations can

be observed ending with an X17.2 event on 28 October and an X10 event on 29 October.

Deng et al. (2006) used high-resolution data and reported a decrease of magnetic field

gradients after the occurrence of an X10 flare, similar to Figure 2A. Finally, during the

period of investigation, a third flare event took place where the above-mentioned typical

behaviour of the WGM parameter ended up with an energetic X8.3 flare on 02 November.

Parallel to the increasing/decreasing trends of WGM decreasing/increasing trends of

the distance can also be observed. This type of pre-flare behaviour was already reported

in Paper I between spot pairs of opposite polarities chosen at the location of the highest

magnetic gradients. The present results, however, unveil that this behaviour is also exhibited

by sub-groups of opposite polarities in this region. This is a promising phenomenon for

flare forecast.

3.2. Measures of the deviation from the bipolar structure

Several attempts have been made in the past to classify the internal morphology

of sunspot groups, see e.g. the Zürich-McIntosh (McIntosh 1990) and Mount Wilson

classification4 schemes. These were only suitable to an approximate assessment of the level

of non-potentiality of solar active regions because they do not quantify information about

4http://www.spaceweather.com/glossary/magneticclasses.html
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Fig. 2.— Variations in Active Region NOAA 10486 within the highlighted area (see in the

Fig. 1 middle panel) between 25 October and 3 November, 2003. A: variations of WGM ;

B: distance of opposite polarity regions; C: flux amount, the total unsigned flux of all spots.

The gray stripes indicate those time intervals in which the pre-flares are examined, see also

Figures 4 and Figure 5.
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magnetism. The SDD and SDO/HMI - Debrecen Data (HMIDD5) catalogues provide the

possibility to measure the level of separateness/mix by a single parameter which is suitable

for scaling the deviation from the classic bipolar structure. Our aim is to introduce specific

parameters that indicate which actual individual sunspot group should be given a priority

to carry out a detailed real-time follow-up of GM using our method. The Debrecen sunspot

catalogues (SDD and HMIDD) allow us to define numerical measures of the mixed states of

sunspots with opposite polarities. We introduce and examine now two new parameters.

The first parameter is based on the method described in Paper I, following the measure

of the horizontal magnetic gradient of opposite polarity spots. Here, we generalise this

parameter by introducing the sum of GM for all spot-pairs of opposite polarities within the

group:

GS =

∣

∣

∣

∣

∣

∑

i,j

Bp,iAp,i − Bn,jAn,j

di,j

∣

∣

∣

∣

∣

. (3)

The sum of GM for all spot-pairs of opposite polarities (i.e. GS) within the group

exhibits a similar temporal variation to the GM : a steep rise and some decrease prior to

flares, see panel B of Figure 3. A high value of GS means that the group contains several

spot-pairs with high horizontal magnetic gradient. Thus, both the temporal variation and

the amplitude of this parameter are indicative for flare productivity, but this parameter is

primarily a dynamic indicator of the flare risk.

The other complexity parameter is the so-called separateness parameter that may well

characterise the mutual mixing of the opposite polarity subgroups, i.e.

5http://fenyi.solarobs.unideb.hu/ESA/HMIDD.html
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Fig. 3.— Variations in Active Region NOAA 10486 within the highlighted area (see in the

Fig. 1, middle panel) between 25 October and 3 November, 2003. A: pre-flare variation

of Sl−f ; B: pre-flare variation of GS. The lower axis shows the LCM (Length of Central

Meridian) of AR NOAA 10486
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Sl−f =
dlc−fc

2
√

∑

Ai/π
. (4)

The numerator is the distance of the centers of weight of the leading and following

subgroups, the denominator is the diameter of a circle having an area equal to the total

area of the umbrae. The smaller this ratio is the more mixed is the distribution of the spots

of opposite polarities. If it is about unity or lower, then, the polarities are highly mixed and

the active region shows flare risk, see panel A of Figure 3. If, however, its value is found to

be about four, then, the centers of the leading and following subgroups are separated (see

Korsós et al. 2015). In contrast to the GS parameter, this latter one is a static indicator

and does not contain signatures of the intensity and time of an imminent flare, just its

probability. It is advantageous that its determination can be more easily automated.

The two parameters defined above are attempts to replace the traditional (Zürich,

McIntosh, Mount Wilson) classification schemes by a more appropriate parameter based on

data of sunspots and their magnetic fields.

4. The x-ray pre-cursors of the X-class flares

4.1. Pre-flares

This section focuses on the pre-cursor of flares before the largest eruptions. Chifor et al.

(2007) suggested that the x-ray pre-flares may refer to a process called tether-cutting

mechanism leading to flare and filament eruption. Kim (2008) found that a series of

pre-flare events and a main flare are in causal connection being triggered by a sequential

tether-cutting process. Joshi et al. (2013) studied a series of events consisting of three

small flares followed by a major flare within two hours. They found that the pre-flares

were manifestation of localised magnetic reconnection at different evolutionary states of
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the filament, and they played a key role in destabilising the filament leading to a major

eruption. The series of pre-flares is a set of discrete, localised x-ray brightenings at intervals

between 2 and 50 min before the onset of the major flare. Recently, Balázs et al. (2014)

have shown that there is a statistical relationship between successive solar flares.

The precursors of the GOES X-class events in the Active Region NOAA 10486 have

been examined by using the data of the RHESSI satellite (Lin et al. 2002). This active

region has produced four significant X-class flares between the values of -55 and 55 degrees

central meridian distance. We used the RHESSI database as a complementary dataset,

which provides information about the precedents of X-flares. This satellite is also able to

observe smaller and therefore more flares than the GOES satellites. Typically the RHESSI

flares are mostly microflares A, B, or C of GOES class; the most frequent type of flare being

GOES class B.

4.2. Statistical study

The RHESSI data acquired here contains information only about three X-class flare

events (X17.2 on 28 October, X10 on 29 October and X8.3 on 2 November) because there

were no observations in the time interval of the X1.2 flare (25 October).

In the first statistics of all the investigations shown here, which contains the data for

the X17.2 flare, the events in the 24-hour interval prior to the X17.2 flare were considered.

This is a sample of 18 events mostly in the energy interval of 6-25 KeV, which typically

belong to the B and C GOES classes. The interval has been divided into six sub-intervals

of 4 hours. Figure 4 depicts the pre-flare activity of the largest eruption (X17.2) based on

RHESSI data. The dashed lines are fitted by the least-squares method in the first step,

then the points above one sigma have been omitted and, in the second step, new lines have
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Fig. 4.— Statistics of pre-cursor flares of the GOES X17.2 of NOAA 10486 based on RHESSI

x-ray events. The panels show the temporal variation of count number (A), flare duration

(B) and intensity (C) by 4-hour time bins.
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been fitted, because certain points were remarkably far from the recognizable trends. The

grey belts around the lines indicate the significance level of these secondary fits.

Panel A of Figure 4 shows the temporal variation of the overall RHESSI count number.

We summarized every flare event in each time bin of 4 hours. The diagram shows an

increasing trend before the GOES X17.2 event. Table 1 contains a series of the statistical

properties of the trend line fitting. Panel B of Figure 4 depicts the temporal variation of the

duration of the x-ray emission events, also in each time bin of 4 hours. The corresponding

parameters are given in Table 1. The duration of x-ray emission events decreases before the

X17.2 event.

The temporal variation of flare intensity is plotted in panel C of Figure 4 (right). The

measure of intensity is defined as the count number divided by the flare duration. The

diagram shows that the microflare intensity increases very rapidly before the X17.2 event.

The increase can be represented by an exponential model function, its statistical parameters

are given in Table 1.

Similar statistics has been applied to the study of X10 and X8.3 events (Figure 5,

left and right panels, Table 2). These two series of events contain 15 and 16 microflares,

respectively. The pre-flare time was also divided into 4-hour time bins before the X10 flare

Table 1: The parameters and other properties of the fitted trend lines. The parameter x is

related to one 4-hour time interval bin.

Panel A B C

Model parameters 0.4 ∗ x+ 4.6 −199 ∗ x+ 2544 0.11 ∗ x7 + 393

Goodness of fit (χ2) 0.0325 6.03 651

Standard error of 0.2239 50 256

the estimate (σ)
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Fig. 5.— Statistics of pre-cursor flares of the GOES X10 and X8.2 of NOAA10486 based on

the RHESSI x-ray events. The panels show the time variation of intensity.
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but the time interval before the X8.3 was as long as 72 hours, so this interval is divided

to six sub-intervals of 12 hours. Both sides of the panels in Figure 5 show exponential

increase of the microflare intensities. The lengths of the intervals were not arbitrary, before

the X17.2 event 24 hours were covered by observations, while before the X10 event about

24 hours passed since the previous flare, and, before the X8.3 event the development was

longer, thus an interval of 72 hours was considered.

5. Summary

The presented pre-defined quantities and series of phenomena allow to assess the risk

and imminence of flares from pre-flare situations and developments. The following features

were examined in Active Region NOAA 10486.

1. In Paper I, the GM and the distance were measured between spot pairs. The

parameter WGM defined here by Equation (2) was determined on a subset of spots at the

neutral line. Its variation exhibits a similar pattern to that of described in Paper I: increase

until a maximum value, then, decrease until the flare. However, an unexpected phenomenon

was found: During the period of approaching and then receding motion of the two opposite

polarity groups can be observed. The WGM and variation of the distance is repeated four

times in this very complicated active region. A further examination of the behavior of the

Table 2: The parameters and other properties of the fitted trend lines of the X10 and X8

flares.

precursors of X10 precursors of X8

Model function and parameters 5 ∗ x2.8 + 31 0.11 ∗ x7 + 393

Goodness of fit (χ2) 216 192

Standard error of the estimate (σ) 67 86
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distance and the WGM may be more promising with a larger statistical sample.

2. The series of microflares prior to the energetic flares also exhibited characteristic

temporal variations. The intensity count number increased, the length of the microflares

decreased nearly linearly, whereas their intensity (measured as counts/sec) increased as a

steep exponential function leading to the X17.2 flare. For the flares X10 and X8 only the

last type of diagram is plotted showing similar steep, accelerating rises.

3. The variation of GS is a quick look-type of tool providing information about an

entire active region. On the other hand WGM is a measure of magnetism of a subgroup

of sunspots of opposite polarities in the vicinity of the highest magnetic gradient in the

selective area. The similarities of the two variations mean that GS is also useful for a quick

survey and the automation of its determination is more straightforward, it does not need

any subjective step.

4. The static separateness parameter defined by Equation (4) has low values under

unity in the first, flare-active part of the observed time period, then it increases above

unity. After a less active interval an X8 flare occurs. This parameter may be used for a

quick assessment of flare probability, see e.g. Korsós et al. (2015).

The above points 1 and 2 present two faces of the pre-flare development. At

photospheric level the development of the WGM at the location of the imminent flare

is a signature of the process of the build-up of the free energy as was reported in Paper

I. Its comparison to pre-flare microflares is facilitated by the grey stripes in panel A

of Figure 2, Figures 4 and Figure 5 showing the pre-flare activities at the same time

intervals. The increasing gradient is accompanied by a growing microflare activity until the

major flare. This relationship is further supporting the usability of the WGM parameter.

Jakimiec & Kovács (1990) found that the x-ray microflares and the subsequent major flare

are co-located in a statistically significant number of cases. Zuccarello et al. (2009) carried
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out a thorough analysis of the events preceding the X17.2 flare and concluded that the

filament destabilisation two hours before the flare onset released a domino process leading

to the flare. Their study presents more details about the causal connections of the flare

than ours but the above described methods seem to be more suitable for forecast because

of the longer temporal range. The proposed parameters and presented processes seem to be

useful tools for flare predictive activities used simultaneously in a parallel way.
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Statistical relationship between the succeeding solar flares detected by the RHESSI

satellite, MNRAS, 441, 1157-1165.

Chifor, C.; Tripathi, D.; Mason, H. E.; Dennis, B. R.: 2007, A&A, X-ray precursors to

flares and filament eruptions, 472, 967-979.

Cui, Y.; Li, R.; Zhang, L.; He, Y.; Wang, H.: 2006, Correlation Between Solar Flare

Productivity and Photospheric Magnetic Field Properties. 1. Maximum Horizontal

Gradient, Length of Neutral Line, Number of Singular Points Sol. Phys., 237, 45-59.

Cui, Y.; Li, R.; Wang, H.; He, H.: 2007, Correlation between Solar Flare Productivity and

Photospheric Magnetic Field Properties II. Magnetic Gradient and Magnetic Shear,

Sol. Phys., 242, 1-8.

Deng, N.; Xu, Y.; Yang, G.; Cao, W.; Liu, C.; Rimmele, T. R.; Wang, H.; Denker, C.: 2006,

Multiwavelength study of flow fields in flaring super active region NOAA 10486,

ApJ, 644, 1278-1291.

Falconer, D. A.; Moore, R. L.; Gary, G. A.: 2002, Correlation of the Coronal Mass Ejection

Productivity of Solar Active Regions with Measures of Their Global Nonpotentiality

from Vector Magnetograms: Baseline Results, ApJ, 569, 1016-1025.
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