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ON THE SOLIDITY OF PACKINGS OF INCONGRUENT CIRCLES I .

A . HEPPES

Computer and Automation Institute 
Hungarian Academy of Science

1. Introduction.

A packing of conyex discs is said to be solid i f  no fin ite  
subset of the discs can be rearranged so as to obtain a 
packing not congruent to the original one III.

In thé oresent paoer we shall prove a general theorem that 
contains sufficient conditions for the solidity of circle 
packings in the Euclidean Diane.

2. Definitions.
Let Ä = ír ,r . . . . , r 3- be a set of oositive numbers. 

1 2  V:

Consider three disjoint open circles of a. radius p s  Л

(1=1,2,3). This triple as well as the triangle determined by 
the centers of the circles will be called normal i f none of 
the segments connecting two centers intersects the third 
c i r c l e .

We say that a set of normal triangles generates а расKing i f  
the triangles cover the plane without gaps and without 
overlapping and the circle sectors of the individual normal 
triangles f i t  together to from complete circles.

A positive weight w(r ) will also be assigned to all circles 

of radius r (i=l,2,...,k>.
L

Let О and p denote the centers and the radii of a normal
j j

triple, respectively, and a the angle of the trialgle at 

vertex О (j=l,2,3). The weighted density of the triple (in 

the triangle) is defined by
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u>( p > j

where A denotes the area of the tr i ancle ООО.1 z з

For the sake о-f simplicity the term density will be used 
instead of weiqthed density throughout this paper.

A normal triangle will be called tight {spanned) i f  the 
circles are mutually tangent ( if one circle is tangent to the 
other two and to the opposite side) (Fig. 1).

3. Preparations.

First we show the validity of the following

LEMMA 1. Let the radii r and weights wir ) <i = l,2,3> be\, l
given. We consider all normal triples consisting of circles
the radii o+' which belong to the set tR. = ír .. . . .  r } and we1 к
claim that each trip le  of maximal density is either tight or
spanned>

The proof of LEMMA 1 is based on the following result of Hárs 
l23 :
LEMMA 2. Let a, b, c, a, /?, у and A denote the sides, the 
opposite angles and the area of a triangle. For given positive 
weights u, V, a n d  w we consider the weighted angle-density

& = u. «  + V . f t  + w. у
À ~ ~

For fixed a, b, u. v  and w the function &(y) is
quasiconvex in (Ö, n) , i.e. for any given interval 0

< y < 7T &{y) attains its maximum only at one or both 2
the interval.

strictly

< r t < Г
ends of

Proof of LEMMA 1 .

As the density in a large triangle is small, when looking for 
the densest arrangement i t  is enough to consider normal 
triangles of restricted size. However, the set of normal 
triangles of sidelength not greater than К is compact, thus 
the existence of a triangle of maximal density follows easily. 
Therefore, i t  is sufficient to show that a normal triangle
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that is neither tight nor spanned 
densi ty.

not one of Greatest

We consider a normal triangle that is neither tight nor 
spanned and distinguish two cases.

tne
two

Case 1. No circle is tangent to the opposite side of 
triangle (consequently i t  is nor spamnned) and there are 
circles, say the firs t and the second that are not tangent 
(thus i t  is not tight either). Let us apply LEMMA 2 using the
weights

u 2= p . W У p 1 1
V 2 .= p . bJKp 2 2
w 2 ,= p . WKp 3 3

where p denotesJ denotes the actual values of the radii <j=l,2,3>. (By

this choice the weighted angle—density and 
density of the circles coincide). The role of y

the weighted 
and y in1 ' 2

Lemma 2 will be plaied by those values of angle y — the 
angle opposite to side c — for which the triangle stops being 
normal, or, with other words, where a further touchinq occurs
(Fig. 2). According to LEMMA
maximum for an angle y lying stric tly  between 

the triangle in question is nor extremal.

the density can not attain its
thusy and y 1 2

Case 2. One circle, say the third one, tangent to the
opposite side 0̂ 0̂  of the triangle (thus i t  is not tight),

however i t  does not touch both of the other circles, say the
firs t and the third are not tangent, (therefore i t  is not
spanned). Let us reflect the triangle in straiqht line О О1 2
and denote the mirror imaqe of О by O' (Fiq 3). Clearly, both3 3 - ■
isosceles triangles О О O’ and О О O' are normal, and, for1 3 3 2 3 3
the densities a , о , a of the trianales О О О , О О О * .0 1 2  - 1 2 3  1 3 3
ООО’ i t  holds2 3 3

А о1 1 А а = 2. А. о = (А + А ) . а , 2 2 О 1 2  0
where A denotes the area of О О O’ (i = 1,2). Consequent 1 v, O’L i 3 3 о
cannot be the maximum of о except for о = о = о . But, since1 2  0
neither triangle is spanned and - according to our assumption 
in Case 2 — О О O’ is not tiqht either i t  belongs to Case 1.13 3
Hence neither this trianqle nor О О О can be of maximal

12 3
densi ty.

This completes the proof of LEMMA 1.
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Remark. Applying the same reflection we used in the discussion 
of Case 2 i t  is easy to see that whenever the maximal density 
is attained by a spanned triangle there is at least one tight 
triangle of the same density. Consequently, to find the 
ma-; i mal density for a given set of radii p •s Ä and weights

Ufip ) i t  is enough to compare the densities for the

tight triangles.

4. The THEOREM.
The oroofs of the solidity of certain packings can be based on 
the following general

THEOREM. A packing of circles of radius r , r , . . . , r  is solid

1 f
(i > The sacking can be decomposed into tight triangles. 

The actual types of triangles used in this 
decomposition will be called í i le triangles.

(ii> Positive weiqhts w(r > can be assigned to the circles
L

of radius r (i= l,2 ,...,k> in such a way that all tile  i
triangles have equal weighted density while the density 
in any other tight triangle is smaller.

Ciii) The union U of an arbitrary fin ite  set of triangles of 
the decomposition can be filled  (without gaps and 
without overlapping) by tile  triangles generating a 
packing only in one way - according to the original
pattern.

To orepare the proof of the THEOREM we refrase a result of 
Fejes Tóth and Molnár ЕЗЗ:

LEMMA 3. Any saturated packinĝ  of circles of radius > p > 0
can be decomposed into normal triangles — even so that each 
segment connecting the centers tgf tangent circles is a side of 
a triangle of the decomposition"".

1
A  p a c k i n g  of c i r c l e s  of r a d i u s  p is c o l l e d saturated. if t h e r e

is n o  r o o m  left for a f u r ther circle of r a d i u s p  w i t hout
o v e r l a p p i n g .
n
T h i s  f o r m u l a t i o n of the result is rat h e r  a c o r o l l a r y of their

method than the exact citing of a statement tn the paper.
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Proof of the THEOREM. Let P be a packing -for which the
assumptions are valid, S an arbitrary fin ite  set of circles of 
P and S’ a rearrangement of these circles that t eget he»" with 
the rest P - S of the packing forms a new packing P* . We 
shall show that P and P* are congruent, i.e. the packing is 
solld.

Let U be the union of a fin ite  set of trianoles of the
decomposition that covers S and S’ as well. Now we define a
weighted packing problem *or U. We consider all sets of
circles of radius r , r , . . . ,r  that completely lie in U and,1 2 k
together with P - S, form a packing and maximize the density 
of these aackinqs within U, when all circles of radius r are

L
taken with weight w( r ) defined in assumption "(i i ).

Clearly, the or i ginal set S provi d es an ext rema1 solut i on 
since U can be decomposed into tile  triangles each maximizing 
the density. The contribution of S and S’ :s the same to the 
density in U , thus the extremali ty of the correspond:ng
packing implies that P’ is saturated. Then - by LEMMA 3 — P*
can be decomposed into normal triangles in such a way that the 
boundary of U (consisting of segments each connecting the 
centers of a pair of touching circles) is not '’crossed” by
tr i angles, e.q. U is the union of a fin ite  set of these
t r i anqles.

From the equality of the contributions mentioned above i t  also
follows that each triangle of this second decomposition of U
also maximize the density. By LEMMA 1 each of these triangles
is either tight or spanned. In fact none of them is spanned, 
because spanned triangles could occure in P’ only in
symmetrical pairs implying the existence of touching pairs of
circles the centers of which are not connected by a side of 
triangle. But, this would contradict the basic property of the 
second decomposition guaranteed by LEMMA 3.

Consequently, all triangles of the second decomposition must, 
be tile  t r iangles.These triangles f i l l  U and generate a 
packing, thus - according to assumption (ixi) — the second 
decomposition coincides with the f i rst one.

This completes the proof of the THEOREM.
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ON THE SOLIDITY OF PACKINGS OF INCONGRUENT
CIRCLES I.

/

A. Heppes

Summary

A packing of convex discs is said to be solid if no finite 
subset of the discs can be rearranged so as to obtain a 
packing not congruent to the original one cm.
In the paper a general theorem is proved that contains 
sufficient conditions for the solidity of circle packings 
in the Euclidean plane.
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INKONGRUENS KITÖLTÉSEK SZOLIDITÁSÁRÓL I. 

Heppes Aladár

Összefoglaló

A sik konvex lemezekkel való kitöltését szolidnak nevezzük, 
ha a lemezek bármely véges részhalmaza csak úgy rendezhető 
át, hogy az uj kitöltés az eredetivel egybevágó lesz Cl].
A cikkben a szerző a szoliditásnak egy elégséges feltételét 
adja meg.
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