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m n
Let A = {dt"]'}{q,d}, ,°(=(0(1, , Em ), be a matrix and a vector

(with real coefficients). By a (closed) polyhedral set

(PS) we mean the solution set of the syvstem of linear

inequalities

(1) AX 2 X

1. 8%

(2) PS ={xeR™:Ax 2«3}

If (1) has no solution then we get the "emptv pdyvhedral
set", i.e. the empty set is included into the family

of PS. Denote by 3% this family (when m and n are
fixed and a,- and ¢ run through the real numbers). Sc
the elements of £, are all PS of the for m (2) plus
the empty set.

One speaks of random polyhedral set (RPS), when aij

and o; are not real numbers but "real-valued" random
variables. We shall assume that they are defined on a
common probability-measure space (Il/filp ) Joroch s (Y=Y aij
and &; are real-valued measurable functions defined on A2

S
Based on the author's dissertation: "Systems of linear inequalities,
random polyhedral sets and quasi-concave functions",
Dissertation, Hungarian Academy of Sciences, Budapest, 1978 (in Hungarian).



=32 =

The first problem concerning RPS is how to define them?

The study of "random" geometrical objects.(points, lines,
hyperplanes, circular segments, e.t.c.) has a long history
(see M. Kendall-Moran [11, Moran [27],[3]).

On the other hand, in the last few decades the most general
random sets have been investigated (Matheron [4], D. Kendall [51
Santalé‘[6]).

As to RPS, sometimes they are defined as PS where the
constants a;, and o¢ are randomly generated real numbers
(Schmidt—Mattheiss)[?]). Another approach is to consider

RPS as an intersection of a finite number of random (closed)
halfspaces (Rényi-Sulanke [87, Schmidt, K [97). A "dual"
approach to this is when (a bounded) RPS ("random polytope")
is defined as the convex hull of a finite number of points

given randomly in Bl

A special case of Rényi-Sulanke approach is when the

(normal vectors oﬁ)halfspaces‘are deterministic and only
their translations are random, i.e. dv' are real numbers

and ; are random variables.

In all above concepts of RPS both m an n are arbitrary

(but fixed) integers. If we relax this condition, if

say, n is fixed but m is also a random integer (i.e. discrete
random variable), then we come to a much more complicated
concept of RPS. Examples of these are so called Poisson
polyhedra (see,e.g., [4] pp. 155-185).

Below we hall restrict ourselves to the study of two possible
types of RPS.
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The first type is an analogy of the random number: while
the latter is a real-valued measurable function on a
probability space, the RPS is a "PS-valued" measurable

function.

In the second approach a RPS is the collection of those

x €R” that solve the system (1) with a probability at

least p (where Ogpel is a fixed number). The first type

RPS stem for the general concept of a random set.

The second onewas initiated by the people working in stochastic
programming (more exactly "chance constrained" stochastic

programming, see Kall [107] for a detailed survey).

There is no similarity between these two types. To study
them, completely different techniques are needed and even
the questions arising in conection with them are completely
different.

We have concentrated to basic questions concerning these

two types: in the first type the question of measurability
of a "PS-valued" function and in the second one the question

of convexity of RPS.

1. RPS of the first type

Let ‘hJ,“(,*h‘MLfﬂﬂybe Borel-measurable real functions

on (L, P) - and denote A (W) ={4,~J-(w) ]’_:“ " 4 O(lu)l':(aqlw),-,ﬂ’,,,/o))lwe.fz.

=181
Further denote

(3) Xy (el A(w)XZcx(w)}/oe.Q {

2

After defining in .f; a special topology we endowe J,
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with a Borel 0 -algebra and' prove that X 1is a
measurable function w.r.t. this 6 -algebra.
This will mean that X is a RPS.

Denote_by-kfthe family of all polytopes from R" (the
emptfegs included inX ). We recall that a polytope is

a bounded PS, so X 1is a collection of all bounded PS,
where m is arbitrary. Denote by g the family of all open
PS (where m is arbitrary, empty set is included in g).
(An open PS is the set of the form {x c¢R': Ax >«} m is

again arbitrary.)

Denote

(4) PR RPA PAK=0F | KSHE
(5) Bt fpe “RNG 4P Y 658
Clearly P,,,‘p"?m and B G

Take the family

(6) Pt PR KKy U B 1 GeG}

and consider it as a subbase of a topology in 3%-
(For some basic facts on topology we refer to Kelley [11].)

Denote

r :
(1) Mi={(S; ¢ S;eP inh2r, Pt}

1=1

(this is the basis) and

(8) 2] UM ¢ M.eM yel, " arbtrary } .
gl g £y d
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The elements of % are called open sets in f),,, ;

We have a topology in ?m (This is the topology generatec
by ,or the "roughest" topology containing )

Now we have

Theorem 1.1. The function X :{—> $u definea by (3) is
measurable w.r.t. the Borel T -algebra defined in -@m
by the topology & s i

The truth of the theorem depends on the following lemma

N “'“‘
Lemma l1l.2. Let N=(n+l).m and let \f : RM— ?m
be the following map:

,,‘Z"‘ X Ay (=1,2-=m} R
) - ~f('j)f= {xeR j‘xfyff*r)(mr)rj Pl e e 1, - :

Then the  is continuous in the topology &, o

Proof. We have to prove that :f’(\f’) is open in RV for any
?e?'} where a,P.’(J”’)cR'v means the set such that ¢(¢'{(P))=@)({-be
"inverse domain" of ). The definition of % shows that

it is enough to prove that y'ff-ﬁx)and p (<) are open

for any K€X and any 6¢¢ . e g

Let 7@«{'{3’:)13.
(10) Ly) €5, and Py) NK =¢.

JYly) is a (élosed) PS and K is a compact PS. Hence
there is a hyperplane Lo:‘RN such that £ (v)- and K
are in two different open halfspaces determined by
the L. As K is compact, we can choose L such that it

is not parallel to any face of (y). Let H be the open
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halfspace containing g (y). Clearly there is a small
neighbourhood *(y) of y such that yr)¢f§, and w2 eH
for all ze't'(y)(here we use the ftact that .L is not

parallel to any face of y(y)). But this means that

pe)NK =@ FzeTy), that proves the openess of 70"(3"’,5) A

Let Y€ ¢ (Roi.e.
(11) p(y)e®, and PYING +P .

Denote by Ly the affine hull of »,rJ(y) (i.e. the translated
linear subspace of smallest dimension containingy(y)).

Denote by %;C(g) the relative interior of p(y) (w.r.t. L’) g

The (1ll) implies

(12) LUly) 16+,

consequently there is an open ball BcR" such that
(13) Beg BOLg < 70"(3)

]

This shows that there is a neighbourhood +(y) of
v such that Lf(Z)e?m and

(14) pe)NB+p ¥ 2eTy).

This proves the openess of sf—f(?mq) and by this

the lemma is proved. B

Proof of Theorem 1.1:

Denote
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(15) a=(all,a12,..,a1n,<x1)a21,a22,...,a2n'a2 ""’aml"'c%m%u

It is easy to see that the map
(16) a:f—= Y (N=(n+1)m)

Q
is Borel-measurable if all components of»ére Borel-measurable.
But

(17) Xw) =¢(acw)
where .f is the map in the Lemma 2.2.

¥ is measurable (being continuous) and the composition

of two measurable maps is measurable. B

2. RPS of the second type

The system of inequalities (1) where Ay and 2 A - BKe
random variables defined on (f,5,P) is called system
of random inequalities (SRI).

Let A(w), « (w) be as in the previous section and denote

(18) D(x):= {wedl: Aw) x 2 aw) ¥

We say that x solve SRI with the probability at least
p (Osp<l) if

(19) P(L2(x)) > p.

The set
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(20) Vip) = {xeR", Pcaw) 2p}

might be called random polyhedral set of the second
type (RPS of the second type).

If all random variables qg,qg are discrete, then
V(p) may be a PS (i.e. intersection of finite number
of closed halfspaces), see, 11071 D B3

In general we cannot expect that V(p) is a PS. A weaker
condition is the convexity of V(p). In fact V(p) is called
RPS (of second type) if i is a convex set. Below we shall
prove some interesting sufficient conditions for this in
the particular case when all c&;' are deterministic and

only o, are random variables.

Sa, let § be an m-dimensional random variable defined
on the probability space CQ,Z,P) and we are asking

the convexity of the set

(21) Vip):= {xeR": P (Ax35) = p}.

Let l§ be the distribution function of =2=nce
(22) V(p) = i;xeRn:FS (Ax) > p_}.

k
By definition a function (%), X ER s is called quasi-

concave if all its upper level sets

(23) {xeRk: £ (x) =2 i

are convex.
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It is clear that if the rang of A is n (let us assume th:s)
then the function %{Ax)(as a function of xeR") is
quasi-concave if and only if the function Fg(y) is

quasi concave on the n-dimensional subspace L:={yeRn5y=Ax,x€Rn}

of R™. So we can formulate the following simple

Assertion 2.1.:c If the distribution function Fg(y), yeRm,
of the m-dimensional random variable 3 is guasi-concave
B, e K2 Y, i.e.-1f the

sets -

on the subspace L:= {yeRnu 3%

(24) $ yeL: Fg(y)zp}

: et
are convex for all Os<p<¢l, then the sets V(p)“convex for
all O<ps<l 1i.e. the SRI Axz§give a RPS of the second

type. O

This assertion can be formulated using the probability

measure

{25) VAEY, s2 =8P - géE), E::Rm Borel—measurable,'so
that 3

26 F = W < s

In what follows we shall assume that %(E) absolute

. : m .
continuous w.r.t. the Lebesque-measure in R, i.e.

that x%(E) is generated bv a density function:
(27) ;@(E) = f dt, EcR™ Lebesque measurable
£

(S-dt means L-integral).

Now
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= e S
(28) By gl A Lok wh § gderae,  yew

t<y
In the rest of the paper we shall deal with the question:

what density functions {<(t) generate quasi-concave
7

distrabutions "F2 (y)?
)

Our results are a little more restrictive than needed,
because in fact we are looking for gét) such that F_(y)
is quasi-concave on the subspace L only. The whole method
below can be adapted to this case, yielding more general
results.

It is convenient to express the quasi-concavity in another
way.

: \ k 1 "
One can see easily that the function ;R - R_ 1is

quasi-concave if and only if

(29) P (A X +d-2) y) > min {f{x),t/?(g)}- %or all X,y eRk
ano( 0&254 .

For m=1l, any distribution function Fj(y) (define now
on Rl) is quasi-concave because it is monotone. For

higher dimensions the situation is much more complicated.

A first idea in investigating the quasi concavity of
Fs(y) (for mz2) can be formulated as follows: Is there
a quasi-concave density function f:Rma»Ri such that
its distribution function F is not quasi-concave? We
think the answer is yes, however to find such density

functions (even in the case m=2) seems to be not an
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easy task. Hence, the research went into the following
direction: Find some well defined subfamilies of quasi-
concave density functions f that generate quasi-concave

distributions . This direction proved to be fruitful already.

To show the first steps, write analytically the basic

question.

Does the condition

(30)  £(Ax+(l-A)y) > min { £(x), £(y)} , x,y €R™, 0¢A<€1

implies
S fwidt > min§ Jfwdx | ( fox)dx} wve R oeaer €
t € Aur -\ X<y Xietr

Let us try to derive (in spite of our doubts) (31) from
(30)yusinga; followingl ' trick s

The condition (30) implies

(32) L) 3 3 sk nigef £ix), £lvi}s  reRy,
AX%’(f‘A)y-_'t " %

hence

* y ;
£33) o . Kl o min {00, fip ¥ dt

*
where S is the upper Lebesque-integral, i.e.

j*y/f/df = :hF { [wtt) dt o/f}awf),teﬁ':' w L-m{eir'czéa <o
R™ R™
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The upper integral is needed here, because the right

hand side of (32) is in general not L-measurable.

If the right hand side of (33) were not less than that
of (31) then we were ready.
It is hopeless to prove this (in fact it is in general
not true), we try to take on § a more restrictive condition
than (30). For this define the following concept: Let a,bz0,
<00 < a< oo a0 0%A¢4and denote

/

0 75y qb=0
ot Syl o Ot M

S
@A aaIp™ ) o ab >0

("the extended « -means") .

For a,b fixed, Mz'{q;b) is a non-decreasing function of «

(see, e.g. Hardy-Littlewood-Pdélya, [12]). FOor «=-o2 a=too

or %=0 we define the means by taking limits to get
/\7’_3;(415) - men {g,6%
-2
rfoa,(qlé) = qu ]
(35) o -y a-b=0
/‘1(/”(4,5}:{ f 3
teo max 4,6y f ab>0.

k ) :
We call the function ‘.f: R - Rl e -concave -9 < é-nO/
if
j far k
(36) POAX +U-Ay) 2 Mo (pix, ey)) FxyeR, 0eaed,

The =~e¢e -concave functions are gquasi-concave, so the

monotony of /‘73 shows that any «-concave function
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is quasi-concave. (The O-concave function are sometimes
called logfaithmically concave, log-concave).

Now we have

Theorem 2.1. Let . o =-1/p.

The:distribution function of fan « -concave densitv

function 'h o Ri is - (l+m ey )‘-l -concave ,

consequently quasi-concave. a

This theorem is a simple consequence of the following

integral inequality

Theorem 2:2. Let f£gi: Rmﬁ.Ri be Lebesque-measurable

functions and denote

a

(37)  hg (t) := ess sup M (£(x/a),g((t=x) /(1-1))) ter™,
XeRM 3
1f % 2-!/m then
(38) h (t)at > M(g' (Sf(x)dx, ( gwrax),
i ~ R™ RM
where ‘3' =— .0

T 14 ma Ji

Proof of Theorem 2.1. Denote

(40) P (x) = kA (x)-£(x), apinlis XB(X) » £(x),

where A= oeR s tenl, B T EeR % siv)
and ,kA,):g are the C[lqracffns'{'lc f‘l”CﬁbﬂS.

We can write
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(41) ( £(t) ae - { forae
t € Aurd=A)U AA +4-118

(where AA + (1-3)B is the algebraic sum of the sets).

The % -concavity of £ implies
(Al . m
(42) f£(t) 2 sup M (70(X),'y( )) teR .
AX +(4—A/<1=+—

It is clear that the right hand side of (42) is zero
f t ¢}A+(1-2 > B, hence (after writing the right hand
side of (42) in the form (37))

(43) 5 f(oratz { ess sup M7 (p(x/a) ¢ (t-x) / (1= 2 ))at -
AM+-2)8 R™ LR

Applying the integral inequality (38) we get the result. L

For the proof of Theorem 2.2, its sharpenings extensions
applications and many other similar results together with

a whole history of the integral inequalities of this type,

we refer to the papers { 15}« <227

We only note here that for «>0 the inequality (38)(m=/) "almost"
coincides with =~ a classical resuft of Henstock-Macbeath

[13] that was extended to higher dimensions by Dinghas [141].
Their paper was almost forgotten and some spacial cases

of their inequalities were newly rediscovered nearly 20

years later.
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TWO TYPES OF RANDOM POLYHEDRAL SETS

B Dhrin
Summary
. m ;
An mxn-matrix A = {a;:} and a vector a = (o;)ER define a
L)
polyhedral set PS := {x€R™:Ax = a}. One speaks of random

polyhedral set (RPS) when aij and a, are not real number
but random variables. In the literature at least three dif-

ferent types of RPS are defined. The paper presents
two of them. The first is when RPS is simplv a "PS valued"

random variable. It is proved in the paper that a tomology in the
space of PS-s can be defined so that the "PS-valued" func-
tion is continuous, consequently measurable. The second type
of RPS discussed in the paper comes when only a is a random
(m-dimensicnal) variable. Here the problem is the convexity
of the set V(p) := {xsR":P(Ax=a) = p} for all 0 <p < 1,
when P 1is the measure related to the a. It is showed that
V(p) 1is convex for many measures P generated by density

functions having some well defined concavity-like properties.
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VELETLEN POLIHEDRIKUS HALMAZOK KET TIPUSAROL

Uhrin Béla

Osszefoglald

Egy A mXn-es matrix és egy a€R™ m-dimenziés vektor egy

PS := {x€R":Ax>a} prlilredrikus halmazt definidl. Véletlen
polihedrikus halmazr6l /RPS/ akkor beszéliink, amikor az A
és o elemei valdszinliségi valtozdk. Az irodalomban legalébb
harom kiilénbdzd tipusu RPS van. A cikk ezek k&ziil kettdt
tdrgyal. Az elsd tipus egyszeriien egy "PS-értékii" valdszi-
niiségi valtozdé. A cikkben be van bizonyitva, hogy a PS-ek
"terében" vett alkalmas topoldgidban egy "PS-értékii" leké-
pezés folytonos, tehat mérhetd, azaz egy valdsziniliségi val-
tozd. A masik tipus, amalyrdl a cikkben szd6 van, akkor for-

dul eld, amikor csak az o véletlen, de az A nem. Itt a f8&

{xeR™:P(Ax =) = pl halmaz konvexitasa,

4

probléma a Vipl <
0 <p £ 1l-re, ahol P az o-hoz tartozd mérték.
A szerz® megmutatja, hogy a V(p) konvex, ha a P-t egy bi-
zonyos konkavitas-szeri tulajdonsdggal rendelkezd siiriiség-
fliggvény generalja.
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