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Abstract: Geological heterogeneity impacts groundwater flow patterns, necessitating a detailed hy-
drogeological framework for conceptualization process of aquifer systems. This research developed a
new conceptual model of detailed geologic geometry by integrating 133 well-logs, 366 hydrodynamic
data and 118 water samples. As new results, systematic 3D log correlation detected four distinct
hydrostratigraphic units in the Southern Nyírség–Hajdúság Groundwater Body (East Hungary).
The primary aquifer was identified as an incised valley 10–13 km wide and a NE–SW strike. Lo-
gan’s approach estimated the average hydraulic conductivity of the Incised Valley Unit (IVU) at
11 m/d, higher than the other three aquifers (3.2 m/d to 4.6 m/d). The average specific capacity
of wells screening the IVU is 315.6 m3/d/m, in contrast with the remaining aquifers ranging from
31.6 m3/d/m to 92 m3/d/m. Pressure–depth profiles, dynamic pressure increment and hydraulic
head maps revealed recharge–discharge zones and hydraulic windows between hydrostratigraphic
units. The elongated pattern on the hydraulic head map at the depth of the IVU showed the existence
of a preferential path along its axis within the mapped borders of the IVU. Hydrochemical analysis
revealed Ca-Mg-HCO3 water type within the primary aquifer and Na-HCO3 water type in the
laterally connected aquifer. The saturation index values indicated a transition from undersaturated to
supersaturated state inside the main aquifer for calcite and dolomite minerals. The correlation matrix
and PCA results demonstrated that the carbonate weathering process is the main factor controlling
the groundwater chemistry. This integrated approach holds significance for future applications of the
regional conceptual model in water management planning, sustainable aquifer development and
contaminant transport modelling. It provides essential contributions to informed decision-making
and the formulation of effective strategies, ensuring the long-term availability and utilization of
groundwater resources.

Keywords: groundwater modeling; incised valley aquifer; conceptual model; geologic geometry

1. Introduction

Geological heterogeneity is recognized as a major factor influencing groundwater flow
patterns [1]. Its spatial distribution determines the presence of preferential flow paths and
governs the flow and transport mechanisms within subsurface flow systems [2,3]. Thus,
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considerable attention has been given recently to investigating the variations arising from
stratigraphically controlled properties and tectonic structures of the rock frameworks [4–6],
in particular, hydraulic conductivity, storage and porosity of aquifer systems [7].

The interest in geological geometry arises as the variations of the aforementioned
properties affect various aspects of numerical modeling, including model calibration [8],
recharge estimation [9] and contaminant plume dispersion [10], consequently affecting the
sustainability management plans [11] and hydraulic understanding of the aquifer system.
Therefore, the detailed characterization of the geological geometry of the hydrogeological
framework (Conceptual Physical Structure) has become a crucial problem to be solved to
develop accurate conceptual models [12].

The precise and detailed three-dimensional prediction of the geological geometries
relies on consistent interpretations of primary data and is supported by complementary
data [13,14]. A widely used strategy is established on two- and three-dimensional seismic
or electromagnetic surveys, supported by wireline log correlations, as shown in the research
of Babad et. al. in the Hula Valley [15], and Mas et. al. in the Paris Basin [16], which describe
the cases of deep aquifers. In the case of shallow aquifers, this methodology was presented
in the studies performed by Bayer et. al. in a fluvio-glacial aquifer [6], or by Enemark et. al.
in Egebjerg study site [17].

However, the problem emerges in cases related to regional-scale groundwater bodies
for porous media that extend to depths between 200 and 300 hundred meters. In this
situation, the implementation of two- and three-dimensional geophysical investigations is
not cost-effective, especially to the limited budgets of groundwater investigations. In such
cases, pursuing a detailed three-dimensional geological description based on wireline log
correlation [13], complemented by available hydrogeological information, has emerged as
a viable methodology.

The accurate modelling of geological geometries enables the construction of a more
precise and complete conceptual model that captures the complex interactions between
geological heterogeneity and groundwater flow [18–20]. To illustrate, the horizontal trends
of the apparent hydraulic conductivity are in correlation with the spatial distribution of
geological formations, as it is closely linked to the grain size and effective porosity of the
rocks [21]. Additionally, the specific capacity of the wells serves as an effective qualitative
indicator of the transmissivity of the investigated hydrostratigraphic units [22,23].

Another stage of hydrogeological conceptualization, wherein the geological geometry
may have a relevant effect on the results, is the characterization of the hydrologic system
(Conceptual Process Structure) [24,25]. The patterns of the flow and geochemical evolution
represent a direct response to the geological geometry. The patterns of the flow can be ana-
lyzed in pressure–depth profile, dynamic pressure increment and the spatial distribution of
the hydraulic head, revealing the vertical flow direction and the possible hydraulic connec-
tion between hydrostratigraphic units [26,27]. The geochemical evolution can be analyzed
by geochemical modelling [28–30] and multivariable statistical analysis [31], which unveils
the effects of water–rock interaction [32], ion exchange and effective infiltration processes
over the geochemical composition of groundwater accordingly it goes migrating along the
flow paths [33].

The Southern Nyírség–Hajdúság Groundwater Body is a complex aquifer system
exploited since 1830 due to its favorable specific yield capacity [34]. In spite of plenty of
wells, production and hydrogeochemical data of the study site, and in spite of the already
published hydrogeological studies [23,35,36], there is a lack of a comprehensive regional
conceptual model of necessary resolution that could address the precise definition of spatial
continuity of aquifer layers, which is crucial for effective and sustainable water protection
and management [37], according to the current increasing water demands.

This research aims to integrate an integration of geological, geochemical and hydrody-
namic data: (1) to describe a 3D geological model based on log-correlation, (2) to enhance
the reliability of the conceptual model by reducing the uncertainties of the hydrogeological
framework, (3) to generate a complete and comprehensive conceptual model that represents
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the current consensus on the behavior of the groundwater system, (4) to describe effectively
the correlation between the hydrologic system and the hydrogeological framework, (5) to
explain the mineral saturation state and evolution of water along the flow paths, and (6) to
apply principal component analysis and K-mean cluster analysis for determine the most
contributing parameters in the groundwater chemistry and characterizing the chemical
differences in the aquifers. The use of this integrated approach holds significance for future
applications of the regional conceptual model in water management planning, sustainable
development of the aquifers and contaminant transport modeling.

2. Materials and Methods
2.1. Site Description

The study site covers 1945 km2 of the northeast region of the Great Hungarian Plain
(Figure 1a), with 65.9% of the area belonging to the Southern Nyírség–Hajdúság Shallow
Groundwater Body and 34.1% to the Northern Hortobágy–Nagykunság–Bihar Shallow
Groundwater Body (Figure 1b). For simplicity, this paper will refer to the study site as
the Southern Nyírség–Hajdúság Groundwater Body (Southern-NHGWB). The maps and
observation points are referenced in the ‘EOV’ coordinate system, following the next corners
XEOV = from 824,500 m to 887,500 m (63 km) and YEOV = from 216,000 m to 273,500 m
(57.5 km).

The Southern-NHGWB is an undulating plain of a complex parallel drainage network.
Topographic relief ranges from 80 m a.s.l. in the lowlands (Hajdúszovát and Pocsaj) to
170 m a.s.l. in the highlands (Nyírlugos), sloping from northeast to southwest [38]. It is
bordered by the Berettyó and Hortobágy–Berettyó Rivers Basins to the north and west,
the Hungary–Romania border to the east, and the East Main Canal of Hungary to the
south [39] (Figure 1c). The study site has a temperate continental climate with mild winters
and hot summers [38]. The average annual temperature is 10–11 ◦C, with fluctuations of
around 23–24.5 ◦C. The prevailing wind direction is from NW to SE, the annual rainfall
averages between 500 mm/y and 575 mm/y, and the potential evapotranspiration ranges
from 600 mm/y to 700 mm/y [40].

Tectonically, Bouguer anomaly and seismic data [41] reveal a complex structure of
the Nyírség Region, dominated by a local sub-basin in the north, and touched by the
Derecske Trough southward, while an inner elevated range of NE–SW direction can also
be detected. Based on Quaternary isopach data, these structural elements have been
active since the start of the Quaternary period [41] determining the spatial distribution
of facies and unconformity surfaces in the Quaternary sedimentary succession. In the
Miocene, consumption of the subductible European lithosphere was still in progress and
the Pannonian basin was dominated by tectonic extension. During the Middle Miocene [42]
and especially in the Late Miocene, the Derecske Trough served as an important local
depositional center of the Pannonian Basin, where more than 4000 m thick sedimentary
succession accumulated in the Lake Pannon [43,44]. The shelf margin prograded in the
Tiszántúl from NE to SW [44,45]. In the Late Pliocene, the subduction at the eastern margin
of the Pannonian basin was completed, and the lithosphere underlying the Pannonian basin
became locked in a stable continental frame. This region is thus prevailed by lithosphere
folding due to horizontal compressional intraplate stress that is caused by the overall
Europe/Africa convergence [44].

Geologically, the investigated depth reaches the Late Miocene sediments of the Great
Hungarian Plain stratigraphic succession. The sequence begins with the Újfalu Sandstone
Unit, which consists of alternating delta front and delta plain deposits of sandstone, siltstone
and clay marl. Overlying is the Zagyva Unit, characterized by fluvial and lacustrine
sediments of medium to fine sand, silt, clay and clay marl. This unit contains coalified plant
remnants and frequent lignite strips. Within the Zagyva Unit, the Nagyalföld Variegated
Clay layer is observed, representing a typical sequence of variegated clay interbedded with
lignite and pebbly sand beds [46] (Figure 2).
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and direct laboratory data, there is not direct evidence, so the ages are derived from re-
gional log correlations [51]. 
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accompanied by local and intermediate aquifer systems [26]. The recharge rate is primar-
ily determined by the effective infiltration of precipitation, which ranges from 0 to 45 
mm/year based on the average infiltration map provided by the National Adaptation 
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vation of 155 m a.s.l. at Nyírlugos and Nyírbéltek, corresponding with the higher central 
surface of the Nyírség Region. Meanwhile, values of 80 m a.s.l. can be found in topo-
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At the top are the Quaternary fluvial fan deposits [47,48], which have been reworked
by Late Pleistocene and Holocene aeolian processes [49]. The fluvial fan is bordered by
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alluvial plains to the east, northeast and northwest, exhibiting sharp contacts due to lateral
erosion. To the west, it is connected to a relatively elevated loess plateau, while the southern
part is covered by young alluvial plains. Numerous investigations suggest that the thick
Quaternary fluvial succession (250–300 m) in the region primarily accumulated in response
to a drainage pattern influenced by the approximately northeast–southwest flow directions
of the Tisza–Szamos system, somewhat parallel to the pre-Quaternary progradation [50].
Concerning the geological age of the stratigraphic units, in the lack of cores and direct
laboratory data, there is not direct evidence, so the ages are derived from regional log
correlations [51].

Hydrogeologically, the area is characterized as a gravity-driven unconfined zone [27].
Regional groundwater flow in the area generally occurs from northeast to southwest,
accompanied by local and intermediate aquifer systems [26]. The recharge rate is primarily
determined by the effective infiltration of precipitation, which ranges from 0 to 45 mm/year
based on the average infiltration map provided by the National Adaptation Geoinformation
System (NATéR) Project [52]. The water table is expected to reach an elevation of 155 m
a.s.l. at Nyírlugos and Nyírbéltek, corresponding with the higher central surface of the
Nyírség Region. Meanwhile, values of 80 m a.s.l. can be found in topographic lowlands
along Hajdúszovát and Hajdúszoboszló [53].

2.2. Database

The research was based on a multi-source database collected by various institutions
between 1969 and 1975. A total of 507 production wells are documented. Among them,
133 wells from the National Geological and Geophysical Database of Wells (New Urbancsek
Database) provided resistivity (R), self-potential (SP), natural gamma (GR) and geological
log data for mapping the aquifer system in the subsurface. A total of 367 wells offered
datasets for calculating the hydraulic behavior of stratigraphic units, including variables
such as pumping rates (Q), drawdown (s) and screen section locations. The hydraulic sys-
tem was characterized using data from 365 wells. Furthermore, 118 wells from the National
Hydrogeochemical Database (NHD) were used to evaluate the chemical characteristics and
water type. Table 1 provides a summary of the database composition.

Table 1. Gathered multi-source data types of Southern-NHGWB.

Data Type Samples Source Institution

Geological and
geophysical

Geologic log 130 New Urbancsek
Data Base

SARA 1

Geophysical logs 133

Hydrodynamic

Hydraulic head 366 Hungarian
deep-drilled
wells index.

New Urbancsek
Data Base.

SARA 1

ME 2

Well diameter 466

Screen sections
and production

rate
369

Geochemical Water samples 118
National

Geochemical
Database

SARA 1

Note(s): 1 Supervisory Authority for Regulatory Affairs. 2 University of Miskolc, Environmental Management
Institute Library.

2.3. Methods

The employed workflow used for the comprehensive conceptualization of the ground-
water system of the Southern-NHGWB (Figure 3) consisted of three stages to characterize
the two main components of the conceptual model.
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Stage 1 involved defining the geometry of the rock framework using systematic log
correlation. The objective was to establish a clear understanding of the spatial arrangement
and configuration of the geological formations within the study area. This step provided a
fundamental basis for subsequent analyses.

In Stage 2, the available hydrogeologic datasets were analyzed. Various parameters
were examined, including hydraulic conductivity, specific capacity, flow patterns and the
geochemical model. The purpose was to gain insights into the hydraulic and geochemical
behavior of the groundwater system.

Stage 3 focused on the comparison between the analyzed hydrogeological variables
and the stratigraphic geometry. This step aimed to assess the relationships between the ge-
ological framework and the hydrogeological properties. The overall process is summarized
in Figure 3, and a detailed theoretical explanation of each step is provided below.

2.3.1. Systematic Well-Log Correlation

Systematic log correlation is used to identify the boundaries of stratigraphic units.
This is achieved by analyzing conventional geoelectric and radiometric logs to create log
correlation sections. The logs are plotted equidistantly using GeoPlot developed for Smart
Sketch, with the left track displaying spontaneous potential (SP) or gamma ray (GR), and
the right track displaying electric resistivity (R). The space between the logs is filled with
the lithology observed in cuttings during drilling.

The criteria used to analyze the curves include log values, log shape, stacking pat-
terns and vertical dimensions, along with lithologic descriptions [13]. Subsequently, the
stratigraphic surfaces were created by interpolation of the acquired well-tops using the
geometric convergence algorithm [54] to generate the stratigraphic surfaces. Finally, the
surfaces are assigned to a 3D finite-element mesh to represent the geologic geometry using
GMS 10.7 [55].

2.3.2. Hydraulic Conductivity and Specific Capacity

The estimation of hydraulic conductivity (kh) was conducted using the method
proposed by Logan [56], which required the pumping rate (Q), the drawdown (s) and
the aquifer thickness (m). Equation (1) was employed for unconfined aquifers, while
Equation (2) was applied for confined aquifers:

kh = 2.43
Q

s (2m− s)
(1)
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kh = 1.22
Q

s.m
, (2)

The specific capacity (SC) of wells was calculated by determining the head losses as a
function of pumping rates and time [57,58] using Equation (3):

SC =
Q
s

, (3)

where SC is the specific capacity in m3/d/m, Q is the pumping rate in m3/d and s is the
drawdown in the pumped well in meters. For the calculation, it was assumed that the
subsurface flow and the well system are connected, water leaving the groundwater system
is equal to water entering the well [59], and that any factor affecting the drawdown will
also affect the specific capacity value for a given pumping rate (Q) [57].

Box plots created in Excel were used to statistically present the datasets, and the
spatial distribution of the hydraulic conductivity was generated by Kriging Interpolation
Method [60] performed in Surfer 25.1.229.

2.3.3. Hydraulic Head and Pressure Conditions

Darcy demonstrated that groundwater always flows from areas of high potential
energy to areas of low potential energy [26]. Therefore, the hydraulic head (h) distribution
maps were generated by the Kriging Interpolation Method [60] performed in Surfer 25.1.229
to indicate the direction of groundwater flow in the subsurface environment [26,27].

The pore pressure (p) was calculated using Equation (4), which is derived from
Bernoulli’s Law [61].

p = ρgϕ (4)

where ρ is the water density in kg/m3, g is the gravity in m/s2 and ϕ is the pressure head
in meters calculated with Equation (5) [21,26]:

ϕ = h− z, (5)

where h is the hydraulic head and z is the elevation head at the given observation point P
in meters.

The nominal and dynamic pore pressure (pst and pdyn) was calculated [31] at each
point Pxz; based on that, the static pressure head (ϕst) is the depth below the water table,
while the dynamic pressure head (ϕ(xz)dyn) is the difference in elevation between the point
of measurement zxz, and the point of intersection of the water table with the passing
hydraulic head contour.

The dynamic pressure increment (∆p) was calculated as the difference between nom-
inal and dynamic pressure and used as an indicator of the vertical flow direction from
the water table. A positive increment (+∆p) suggests an upward flow, whereas a negative
increment (−∆p) suggests a downward flow [26,62].

2.3.4. Geochemical Modelling

The analytical accuracy of the measurements of cations and anions in the water
samples was obtained from the ionic balance error (IBE) within a limit of ±5% [63]. It was
computed in milliequivalents per liter (mEq/L) as follows in Equation (6):

IBE = [(TC–TA)/(TC + TA)]× 100, (6)

where TC is the sum of the total cations and TA is the sum of the total anions.
Hydrochemical facies were defined with a Piper plot [64]. The Total Dissolved Solids

(TDS) values were calculated to present the general chemical characteristics of the groundwater.
The ratio of major ions was investigated to approximate the water–rock interaction processes,
including mineral weathering and ion exchange. The Ca2++Mg2+/HCO3− +SO4

2− ratio was
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calculated in mEq/L. Values smaller than 1 refer to silicate weathering or ion exchange
(Equation (7); meanwhile, values greater than 1 indicate carbonate weathering or reverse
ion exchange (Equation (8) [65].

2Na+ + 2CaX2 → Ca2+ + 2NaX, (7)

Ca2+ + 2NaX→ 2Na+ + CaX2, (8)

The mineral saturation in the groundwater of the aquifer system was determined by
calculating the Saturation Index (SI) [66] for calcite, dolomite, aragonite, gypsum and halite
using PHREEQC [29] according to Equation (9):

SI = log
IAP
Ksp

, (9)

where IAP refers to the ion activity product, and Ksp is the solubility product at a given
temperature. If the value of the saturation index equals zero, the water is in a chemical
equilibrium state with the mineral. A positive value of SI indicated that the groundwater
is oversaturated, while a negative value refers to it being undersaturated concerning the
mineral species. The spatial distribution maps of the analyzed geochemical variables
were plotted by interpolation of the data using the Kriging Method [60] performed in
Surfer 25.1.229.

2.3.5. Multivariate Geostatistical Analysis

The two-dimensional relationships between the physicochemical parameters were
analyzed by Spearman’s correlation matrix [67]. Meanwhile, Principal Component Analysis
(PCA) was used as a preprocessing step before clustering performance to minimize infor-
mation loss, reduce the dimensionality and decrease the noise of the large datasets [31,68].
Only components with eigenvalues greater than 1 were selected for varimax rotation and
subsequent interpretation [69]. Then, the K-means clustering algorithm [70] was imple-
mented for the exploration of hydrogeochemical patterns based on geochemical similarities.
Mathematically, it is expressed by Equation (10):

J = ∑k
j=1 ∑n

i=i ||x
(j)
i − cj||2, (10)

where J represents the objective criterion; xi denotes the analyzed objects for I = 1, . . ., n;
and cj represents the cluster centroid indexed by j = 1, . . ., k, where k is the optimal number
of clusters. The optimum number of clusters (k) was determined by the Elbow curve
method [70]. The multivariate statistical analysis of the data was performed using Python.

3. Results and Discussion
3.1. The Geometry of the Groundwater Body and Its Hydrostratigraphic Units

The Southern-NHGWB stratigraphic model included the three-dimensional geological
description of an approximately 280 m deep section of Quaternary and Late Miocene sedi-
mentary deposits at the study site. A total of 18 cross-sections were created for stratigraphic
correlation, ensuring the interconnection between the 133 well-log data points. To illustrate,
three cross-sections are depicted in Figure 4.

This investigation identified evidence of four stratigraphic units based on changes in
the grain size, erosional basal contact, sedimentary structure and bedding thickness values.
The description of them was constructed from the available from wire-line log records.
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The Late Miocene Unit (LMU) is the lowermost hydrostratigraphic unit and basal
boundary of the flow domain, with a modeled thickness ranging from 10 m to 240 m as
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shown in Figure 4. The top surface is located within the Late Miocene sediments of the
Zagyva Unit; however, the total depth of the LMU is not represented by the interpreted
data. The coarse deposits fine upward from medium sand to silty sand with a thickness
of 15–26 m. The fine deposits have an aggradation character of mixed silty and clay
with a thickness greater than 50 m. According to the well logs, the hydrostratigraphic
unit comprised 42% coarse-grained (sand and silty sand) and 58% fine-grained (silty
clay) materials.

The Incised Valley Unit (IVU) is the major aquifer in the region with a thickness ranging
from 20 m to 85 m as shown in Figures 4–6. According to the regional correlations [51], its
age is Lower Pleistocene (∼2.5–1.9 Ma). Its isopach data revealed a coarse sand body of
10 km to 13 km wide, elongated shape striking NNE–SSW and deposited in stratigraphic
discontinuity over the Late Miocene sediments (Figure 5). The results of the stratigraphic
interpretation made clear that coarse sediments of this unit fill up an incised valley eroding
the LMU (Figures 5 and 6), characterized by channel deposits of vertically stacked shapes,
which are typical for channel complexes of anastomosing watercourses or translational
meander development [71]. According to well-logs, it is dominated by 98% of coarse-
grained sediments (coarse sand and gravel), and with almost complete absence of fine-
grained sediments (clay).
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Figure 5. (a) Contour lines representing the top surface of the Late Miocene Unit. (b) Contour lines
represent the top surface of the Incised Valley Unit, which is enclosed within the Late Miocene Unit.
The contact border between these two stratigraphic units is indicated by the black line.

The Alluvial Unit (AU) is a regional non-continuous extended semi-permeable aquifer
with a thickness of 15 m to 100 m as shown in Figures 4 and 6. According to the regional
correlations [51], its age is Lower Pleistocene (∼1.9–1.2 Ma). The boundary surface between
the AU and the IVU was consistently picked in the logs at the first occurrence of several-
meters-thick overbank deposits above the relatively flat top of the multiple channel complex
series as seen in Figure 4. The AU is characterized by a general occurrence of overbank
deposits that make up to 47% of the unit volume. The single channel complexes, wherein the
sand bodies exhibit fining upward porosity characteristic feature of meandering systems,
account for up to 53% of the sediments.

The Coarsening Upward Unit (CUU) is an extensive hydrostratigraphic unit of thick-
ness from 36 m up to 120 m and contains relatively highly permeable sand lenses as shown
in Figure 4. According to the regional correlations [51], its base corresponds to the Mid
Pleistocene Transition (∼1.2 Ma) and extends still today; however, perhaps with a few high
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frequency unconformities. The findings of this research showed that 50% of the sediments
are reported as coarse-grained (sand and fine sand) and 50% are described as fine-grained
sediments (silt and clay). The CUU is the unconfined semi-permeable top aquifer layer of
the system.
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The above findings indicated that the Southern-NHGWB is a regional cross-formational
porous aquifer system, extending from the Late Miocene to the quaternary land surface
sediments (Figure 6). The lithologic and stratigraphic considerations suggested that the
LMU, AU and CUU differ from the IVU due to the general occurrence of fine-grained
sediments (Figure 4). The vertically stacked character of the logs along the multiples chan-
nel complexes in the IVU presented in Figure 4 implies low anisotropy and high rate of
facies continuity.

Conversely, the overlying and underlying hydrostratigraphic units (Figure 5b) are
characterized by higher anisotropy and limited continuity of thinner coarse-sediment
bodies, the fining upward stacked occurrence, which is caused by inclined heterolytic
complexes consisting of couplets of clay intercalations and fine sand layers [72].

These results surpassed previous geological and hydrogeological interpretation re-
ports, revealing a significant geological heterogeneity of particular interest when models
are expanded from regional to local scales. It is worth noting that the stratigraphic disconti-
nuity between the IVU and LMU can be mistaken for other types of linear mathematical
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unconformities, as demonstrated by Szany [36]. In line with the same study, the vertical
compartmentalization of the Quaternary aquifer system was confirmed, occurring not
only at the local scale, but also at the regional scale, diverging from the representation
of the Quaternary aquifer as a single hydrostratigraphic unit in the region, as was pro-
posed by Marton [35]. Naturally, this study has minor limitations, including the horizontal
uncertainty associated with the well-log correlation technique. However, it is important
to emphasize that the evidence presented here relies on the correlation of the observed
geometry with the patterns of hydrogeological variables analyzed below.

3.2. Hydraulic Parameters

The estimation of hydraulic conductivity and specific capacity was performed using
data from 300 wells, classified based on the location of their screens. Specifically, there were
70 wells screened in the CUU, 45 in the AU, 105 in the IVU and 80 in the LMU.

The range of the estimated apparent horizontal hydraulic conductivity (kh) values for
the coarse-grained lithologies in the study domain ranged from 0.1 to 43 m/d, as shown
in Figure 7a. Wells that screen the IVU had an average value of 11 m/d, and exhibited
a nearly normal distribution of the data. On the other hand, the LMU, AU and CUU
exhibited average values of 4.6 m/d, 4.1 m/d and 3.2 m/d, respectively. The data for all
three semi-permeable aquifers had a unimodal right-skewed distribution.
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Figure 7. Range and distribution of (a) horizontal hydraulic conductivity (kh) (b) and specific capacity
(SC) for each stratigraphic unit in the study area. The box plot presents the minimum, maximum,
median, mean and quartile ranges for each hydrostratigraphic unit.

The specific capacity values across the region range from 1.34 to 790 m3/d/m, as
depicted in Figure 7b. The wells screening the IVU exhibit an average specific capacity
of 315.6 m3/d/m. In contrast, the average specific capacity of wells in the LMU, AU and
CUU was 92 m3/d/m, 53.8 m3/d/m and 31.6 m3/d/m, respectively. The distributions of
all datasets are unimodal and right-skewed.

The estimation of the apparent horizontal hydraulic conductivity (kh) reveals that the
IVU is one order higher flux conductive than the surrounding hydrostratigraphic units,
and the normal distribution of the dataset aligned with the previous observation related
to sediment homogeneity, porosity, and grain size in the IVU. Furthermore, the specific
capacity of wells screened in the IVU is 3.5 to 10 times higher than those in the other
semi-permeable aquifers, suggesting superior transmissivity, and, consequently, higher
Darcy’s velocity.
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Examining the spatial distribution pattern of the apparent hydraulic conductivity and
specific capacity (Figure 8) at the main aquifer depth, it corresponds with the geometry of
the main aquifer. Additionally, the proposed geometry aligns with the research conducted
by Marton and Szany [23] in Eastern Hungary regarding aquifer transmissivity at this depth.
These findings provide strong evidence that the defined IVU functions as the main aquifer
in the system, characterized by higher hydraulic parameters compared to the remaining
semi-permeable aquifers.
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3.3. Hydrodynamic Conditions

The dynamic pressure (pdy) was calculated using hydraulic head data from 366 wells.
The samples were categorized based on the location of their screens, with 115 wells screened
in the CUU, 50 in the AU, 111 in the IVU and 90 in the LMU. The distribution and skewness
of the data was presented in the box plot of Figure 9a. The pressure–depth profile (p(d)),
illustrated in Figure 9b for all samples, assessed the vertical flow component within the
aquifer system. The hydrostatic pressure, represented with an average pressure gradient
of Gst ≈ 9.81 kPa/m, served as the reference, reflecting the water table and the upper
hydraulic limit of the system.

The average pressure gradient (Gdy) was calculated from the slope of the linear ten-
dency line of the dynamic pressure distribution (pdy) in each hydrostratigraphic unit. The
average pressure gradient (Gdy) exhibited values of 9.48 kPa/m for the CUU, 9.66 kPa/m
for the AU, 9.15 kPa/m for the IVU and 9.19 kPa/m for the LMU. When comparing these
results with the hydrostatic pressure gradient (Gst = 9.81 kPa/m) [26,27], it became evi-
dent that the aquifer system generally experienced under-hydrostatic pressure conditions
(Gdy < Gst). These findings followed the reported results of Marton [35], and Tóth and
Almasi [27], referring the general hydraulic conditions of Nyírseg Region.

However, it was possible to identify that each hydrostratigraphic unit exhibited up-
ward flow as well as horizontal flow directions in specific locations. Therefore, dynamic
pressure increments (∆p) maps (Figure 10b,d) were generated to provide a comprehensive
analysis of pressure variations between layers. These figures accurately illustrate the loca-
tions of the downward flow regime (−∆p), representing recharge areas, and the upward
flow regime (+∆p), representing discharge areas within the hydrostratigraphic units. The
0 kPa/m demarcates the boundary between these areas.
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The high production rates of the IVU, reported on the specific capacity data above,
have noticeable effects on pressure, evidenced by its lower average dynamic pressure
gradient (Gdy), as shown in Figure 9. Additionally, the dynamic pressure maps indicated
that these effects extend vertically up to the upper hydrostratigraphic unit (Figure 10b) and
laterally into the LMU (Figure 10b,d), showing evidence for a hydraulic window in the
central part of the study site, at the water extraction activities of the Debrecen Waterworks
Sites. The finding of hydraulic interactions between layers could have significant effect on
the chemical characteristics of the groundwater of the aquifer system with some differences
and similarities.

Three potential maps were generated to analyze the horizontal water flow pattern
within the hydrostratigraphic units. The potential map of the CUU illustrates the upper
hydraulic boundary of the groundwater body in the study area, as depicted in Figure 10.
Higher hydraulic heads were observed between Nyírlugos and Nyírgelse in the northeast-
ern part of the region, while lower hydraulic heads were observed in the southwest around
Hajdúszoboszló. The results reveal a regional flow direction from northeast to southwest,
as depicted in Figure 11. Overall, these findings followed the findings reported by the
research of Marton [35], and Tóth and Almasi [27].

In the potential map of the AU shown in Figure 10a, higher hydraulic heads were
observed between Bocskaikert and Penészlek, passing through Nyíradony in the northeast-
ern part of the region. Conversely, lower hydraulic heads were observed at two specific
locations. The first location is in the west-central region, where the Debrecen Water-
work Sites operate, and the second location is in a depression between Hajdúszoboszló
and Hajdúsovát.

Based on the stratigraphic interpretation presented in Figures 4 and 6, the LMU and
IVU exhibit similar depths at the Pxy points. Additionally, the pressure–depth plot in
Figure 9, along with the dynamic pressure increment map (Figure 10d), provides evidence
of the lateral hydraulic connection between the LMU and IVU. Consequently, a unified
piezometric map was generated for both hydrostratigraphic units. Higher hydraulic head
values were observed in the northwest, near Józsa, while lower values were sampled in
the west-central part, where the city of Debrecen and its waterworks sites are situated
(Figure 10b). It is noteworthy that water production in Debrecen impacts the distribution of
hydraulic heads. The observed pattern suggests a greater influence along the NE–SW axis
compared to the NW–SE axis (Figure 8c), indicating higher Darcy velocities within the IVU.
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Figure 11. The water table of the system in average recharge conditions. The water table is indicated
by a contour map with lines of equal elevation. The arrows on the map indicate the direction of
groundwater flow, while the cross represents the locations where measurements of the total head
were taken.
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The hydraulic head maps plotted for the hydrostratigraphic units in the Southern
NHGWB exhibit characteristics of a gravity-driven flow regime in a regionally unconfined
system [27,35]. The flow regime shows a downward flow direction in the hilly area of
the northeast and an upward flow direction in the lowlands near the East Main Canal.
However, the high production rates from the IVU create a local hydraulic disturbance in
the regional head distribution. This disturbance influences the hydraulic head distribution
of the AU, resulting in a radial depression cone geometry (Figure 10a). On the other hand,
the head distribution of the Incised Valley Unit and Late Miocene Unit is disrupted by a
pronounced ellipsoidal depression cone geometry (Figure 10b). The regional horizontal
flow direction presented in this research aligns with the one depicted by Marton [35];
however, the vertical interpretation of the flow is presented as conforming to the newly
proposed hydrostratigraphic framework of the conceptual model.

3.4. Geochemical Evidence of the Hydraulic Effects of the IVU

Water samples were collected from 118 wells with depth ranges from 56 m to 300 m
below the ground surface covering the entire study area. The physical and chemical
parameters were measured, including hydrogen potential (pH), temperature (T), electric
conductivity (EC), total dissolved solids (TDS), and Na, Ca, Mg, K, Cl, SO4, HCO3, CO3
and NO3 ions. The minimum, maximum, average and standard deviation values were
reported in Table 2, and the main ions statistic was plotted in Figure 12.

Table 2. Summary statistics of the dataset used for the geochemical characterization.

pH T
(◦C)

Ec
(Ω.m) Na+ K+ Mg2+ Ca2+ Cl− SO42− HCO3− CO3− NO3− TDS

Max 8.8 24.6 767.0 193.0 6.5 29.8 106.3 31.4 55.0 570.0 0.0 90.4 1304.0

Min 7.2 10.7 430.0 16.0 0.5 0.1 2.9 2.0 0.0 320.0 0.0 0.0 290.0

Mean 7.7 18.2 576.9 45.5 2.2 20.1 75.0 7.7 10.7 439.8 0.0 1.2 614.5

Media 7.6 18.0 566.5 33.4 2.2 21.4 81.1 7.0 8.6 440.0 0.0 0.0 604.0

St. Deviation 0.3 2.3 56.5 33.8 1.0 6.1 24.4 4.0 9.0 41.9 0.0 8.5 99.2

Note(s): The concentration is expressed in mg/L.
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Figure 12. Box plot of the main ions in the water samples. The figure presents the minimum,
maximum, median, mean and quartile ranges.
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The physicochemical parameters were used as input data to detect the geochemical
evolution, water type and geochemical modelling of the groundwater with flow path,
to determine the difference in the chemistry of water inside and outside the IVU. Piper
diagram, ionic ratio and saturation index were used for the evaluation. It was noted from
the average value that the cations were arranged in this order Ca2+ > Na+ > Mg2+ > K+ and
the anions followed this order HCO3

− > SO4
2− > Cl− > NO3.

The collected water samples were classified into three hydrogeochemical facies, as
shown in Figure 13a. Na-HCO3 facies (Type 1) represents the samples outside of the Incised
Valley, while the Ca-Mg-HCO3 facies (Type 2) includes the water samples of the IVU. This
apparent spatial differentiation of facies Type 1 and 2 indicated the effects of valley-fill
hydraulic performance, identified based on the hydrogeochemical facies of the enclosed
pore water.
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The Na-HCO3 facies was associated with advanced silicate weathering or ion exchange
in the pore system of the Late Miocene formations, while the Ca-Mg-HCO3 character can
be attributed to carbonate weathering or reverse ion exchange [73]. A mixed Na-Ca-HCO3
facies (Type 3) was observed in three samples; however, only one of them is located close to
the bounding surface of the incised valley, approximately 2.5 km northwest of Hajdúbagos
(Figure 13b). This facies indicated the mixing of two facies and suggested variable vertical
flow intensity.

Exceptions included four samples showing Ca-Mg-HCO3 facies in the center of the
study area near the lateral bounding surface of the incised valley, but out of it (the rectangle
in Figure 13b). This could be explained as a result of the over-exploitation of water by
Debrecen Waterworks activities that shifts the water mixing zone into the main aquifer since
the hydraulic conductivity of the IVU is higher than the surrounding units (Figure 13b),
and demonstrated before by the hydraulic conditions of the system (Figure 10). Another
exception was located in the southern part of the study area between Hajdúbagos and
Létavértes. It was represented by six samples, the groundwater shows Ca-Mg-HCO3 facies
due to the local effect of the higher carbonate content of sediments in this region, as reported
in the lithological logs.

The geochemical model, using database including pH, temperature, EC, TDS and
Na, Ca, Mg, K, Cl, SO4, HCO3, CO3 and NO3 ions (Table 2) as input for PHREEQC,
was performed to calculate the saturation index (SI) of calcite, aragonite, dolomite, halite,
gypsum and anhydrite minerals in the groundwater. The analysis aims to detect the change
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in the saturation index inside and outside the valley along the flowpaths. The minimum
and maximum value of the SI for the minerals, shown in Figure 14a, indicated that all the
water samples were undersaturated concerning halite, gypsum and anhydrite, showing
the ability of water to dissolve more from these minerals all over the model domain.
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The spatial distribution of saturation index (SI) values of calcite and dolomite
(Figure 14b,c) also revealed a reliable differentiation inside and outside the main aquifer.
The majority of the water samples within the IVU were oversaturated regarding calcite and
dolomite. The values range from 0.5 to 1.2 and from 0.7 to 2.1, respectively. This suggested
the ability of water to precipitate these minerals within the available pore space, decreasing
the HCO3 ion due to precipitation of carbonate minerals, and increasing the Ca2+ + Mg2+

(Figure 15d), indicating another source of Ca and Mg ions rather than carbonate dissolution,
such as silicate minerals. Outside the valley, in the Late Miocene sedimentary formations,
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the SI values concerning calcite and dolomite are relatively low, ranging from −0.2 to 0.5
and from −0.7 to 0.7, respectively. The negative value of the SI in the majority of the water
samples from the LMU indicated the ability of water to dissolve more calcite and dolomite
approaching to the valley; it begins to reach saturation with these minerals.
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The under-saturation in the LMU may be the result of the non-carbonate origin of
the waters or the advanced cation exchange. The outlying saturation index (SI) values
outside the IVU between Hajdúbagos and Létavértes, showing high oversaturation, can be
attributed to the higher carbonate content of the matrix, as previously mentioned. However,
since the carbonate content of the valley-fill sediments does not differ from or is even
lower than that of the pre-Quaternary formations, the most probable sources of dissolved
carbonate in the groundwater are the bio-carbonate minerals (such as gastropod shells,
rhizoids and rhizoliths) present in the Quaternary layers between central Nyírség, which
is the recharge area of the system. The direct recharge of the semi-confined aquifer has
the potential to increase the saturation index (SI) from under-saturation to neutrality or
even oversaturation, if we considered the joint interpretation of the flow pattern shown
in Figure 10.
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The spatial distribution of TDS values (Figure 15a) partially differs from that of
hydrogeochemical facies and saturation index values. It exhibits a dominant NE–SW trend
and a subdominant SE–NW trend in the study area, following the regional flow system
where the main recharge zones are located towards the central Nyírség to the north and
at the Pocsaj–Létavértes area to the south-east (Figure 11). However, the regional trend
appears to be influenced by the Debrecen Waterwork Sites.

From the pressure–depth profile and the distribution map of the pressure increments
(Figures 9 and 10), it was observed the vertical drawdown movement of water from the
upper layers to the IVU. The increased quantity of water from the upper layer due to
rainfall can lead to dilution and decrease the salinity (TDS) of the groundwater in the
Debrecen location, at the central part of the study area. Hydraulic conductivity also plays
a role in the salinity of groundwater as it reflects the residence time of water in contact
with rocks. The hydraulic conductivity map (Figure 15b) shows that the central part of
the valley has the highest hydraulic conductivity, indicating a shorter residence time of
water–rock interaction.

The ionic ratio between cations and anions was represented on a distribution map
(Figure 15b) and scatter plot (Figure 15c) to determine the type of water–rock interaction
or weathering type inside and outside the main aquifer. When considering the ratio of
Ca2+ + Mg2+/HCO3

− + SO4
2−, the effect of the incised valley became more evident, as the

values are less than 1 in all the water samples outside the incised valley. This reflects silicate
weathering or ion exchange. However, within the incised valley, most of the water samples
have a ratio greater than 1, indicating carbonate weathering or reverse ion exchange.

It should be emphasized that the spatial occurrence of the ratio > 1 within the valley
coincides with the TDS pattern. This coincidence confirms that the source of Ca2+ and
HCO3

− in the water of the incised valley is not the carbonate content of the valley-fill
sediments itself, but the carbonate dissolved along the flow path between the recharge
area at central Nyírség and the Debrecen Waterworks Site by enhancement of recharge rate
because the water extraction activities in situ.

Table 3 presents the chemical parameters obtained from Spearman’s correlation matrix.
The analysis revealed a highly significant positive correlation between various elements.
Specifically, there was a correlation coefficient of 0.74 between Ca2+ and Mg2+, 0.6 be-
tween Ca2+ and HCO3

−, 0.5 between Cl− and EC and 0.6 between HCO3
− and EC. These

strong-to-intermediate correlations indicate the significant contribution of these elements
to mineralization processes and groundwater salinity.

Table 3. Correlation matrix between physicochemical parameters.

Na+ K+ Mg2+ Ca2+ Cl− SO42− HCO3− Ec (Ω.m)

Na+ 1 −0.38 −0.82 −0.88 −0.04 −0.17 −0.3 −0.01
K+ 1 0.31 0.37 −0.01 0.02 0.13 0.05

Mg2+ 1 0.74 0.07 0.22 0.44 0.21
Ca2+ 1 0.3 0.27 0.6 0.36
Cl− 1 0.25 0.34 0.5

SO4
2− 1 0.16 0.27

HCO3
− 1 0.6

Ec (Ω.m) 1

Note(s): The concentration is expressed in mg/L.

There are different methods and diagrams that can be used to detect the main param-
eters or ions that have the greatest contribution to the groundwater salinity, such as TIS
salinity [72] and correlation matrix [29]. In the current study the correlation matrix was
used, and showed that HCO3

−, Cl− and Ca2+ are the main ions responsible for increasing
the salinity of the groundwater which appear in the high correlation with EC. The PCA
could also confirm the same point where the HCO3

−, Cl− and EC significance value in the
PC2 reflecting salinity and mineralization process.
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The robust correlation of 0.74 between Ca2+ and Mg2+ confirmed the dissolution of
dolomite CaMg(CO3)2 and calcite (CaCO3), which are carbonate minerals interspersed
within the aquifer. Furthermore, the significant correlation of 0.6 between HCO3

− with
EC revealed that HCO3

− is the main contributing element to the groundwater salinity.
It dissolves in water through the dissociation of carbonate minerals, including calcite
and dolomite. Interestingly, the strong negative correlation between Na+ and Cl− sug-
gested that the source of Na+ in the groundwater is primarily silicate minerals rather than
halite minerals.

The PCA outcomes showed that two components reported for 64.37% of the total
variance. Mainly, carbonate weathering (PC1) and silicate weathering (PC2) were identi-
fied as the primary factors influencing groundwater chemistry. Figure 16a illustrates the
PCA results.
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The first component (PC1) accounted for 43.36% of the total variance and involved
the following main ions: Mg2+ (0.86), Ca2+ (0.84) and K+ (0.57), all of which displayed
strong relationships with each other (as shown in Figure 16). The significant variables
(Mg2+, Ca2+ and K+) within PC1 verified that the carbonate weathering process is the
main factor controlling the groundwater chemistry and emphasizes the consequence of
the mineralization process. Natural processes such as cation exchange, and calcite and
dolomite dissolution occur, and are increased.

The second component (PC2) accounted for 21.01% of the total variance and comprised
Cl− (0.76), HCO3

− (0.70), SO4
2− (0.47) and EC (0.86), all of which exhibited strong positive

correlations among themselves in the same direction (as indicated in Table 3). The main
variables (Cl−, HCO3

−, SO4
2− and EC) within PC2 demonstrated a significant increase

associated with salinity (as shown in Figure 16b).
The hydrogeochemical dataset experienced PCA as a preprocessing step to improve the

quality of cluster cohesion, followed by the application of K-means clustering (Figure 17).
The Elbow curve analysis indicated that the wells could be grouped into three clusters.
The first class (cluster 1) consisted of 105 wells predominantly located within the valley,
characterized by high intercalations of carbonate minerals and a significant carbonate
weathering process. This process leads to the depletion of Na+ and K+ ions, which are
replaced by Ca2+ and Mg2+. The variables highly associated with PC1 (Mg2+ and Ca2+)
play a significant role in controlling the water chemistry within this cluster. The water type
for cluster 1 is identified as Ca-Mg-HCO3.
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of the three main clusters of k-means. The second class (clusters 2 and 3) comprised 13 wells located
outside the valley. These wells were associated with the significant variables of PC2 (HCO3

−, Cl−,
SO4

2− and EC). The water type for clusters 2 and 3 is Na-HCO3, the initial stage of the geochemical
evolution of groundwater through the precipitation process. As the groundwater flow direction
shifts from the eastern part of the study area to the central part (inside the valley), the water type
transitions to Ca-Mg-HCO3 due to water–rock interaction and replacement of Na+ and K+ with Ca2+

and Mg2+. Few samples outside the valley belong to Class 1. This can be attributed to the vertical
flow of groundwater through different stratigraphic layers, where these samples are located in a zone
where the water pressure changes from over hydrostatic pressure to under hydrostatic pressure.

4. Conclusions

The integrated analysis of geological, hydrogeological and geochemical data was
applied for the conceptualization of the groundwater system of the Southern Nyírség–
Hajdúság Groundwater Body in East-Hungary. It unveiled a stratigraphic unconformity
that had not been explored before. The high-resolution log correlation successfully revealed
the existence of four hydrostratigraphic units, wherein the primary aquifer happened to
be an incised paleo-valley of 10 to 13 km wide and NE–SW axis, and filled up with coarse
grain size sediments. It had been unconformably deposited in the eroded surface of the
Late Miocene Units and buried under an alluvial stratigraphic sequence and a series of
coarsening-upward sediments of undefined sedimentary environment.

Despite the limited availability of 2D geophysical data, the presented 3D stratigraphic
interpretation represents a significant improvement in understanding the hydrogeolog-
ical framework of the Southern Nyírség–Hajdúság Groundwater Body. The geometry
was demonstrated by its positive correlation with the spatial distribution of hydraulic
conductivity values and specific capacity, horizontal and vertical flow patterns, and the
geochemical evolution of the water.

The estimation of the apparent hydraulic conductivity aligned consistently with the
reported grain size information of each identified hydrostratigraphic unit. It indicated
the coarser grain size of the Incised Valley Unit in comparison with the surrounding units
and also represented in its higher average capacity of the water production wells. The
spatial distribution of the hydraulic conductivity shows conformity with the geometry
of the paleo-valley; the abrupt change in hydraulic conductivity values happened at the
border of the geometry presented as the Incised Valley Unit.

The observed fluid potential patterns showed: (1) a semiconfined aquifer system due to
the evident hydraulic windows connecting the different hydrostratigraphic units, (2) a grav-
ity drive flow represented in the similarity of water table and topography, wherein recharge
occurs on the highlands, whereas discharge happens on the lowlands, and (3) regionally
dominated by under-pressure conditions (downward flow direction) system depicted
form the fact that average pressure gradient of the hydrostratigraphic units is lower than
hydrostatic pressure gradient.
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The regional flow direction was described to be from NW to SE. Nevertheless, two main
perturbations of the potential field were notable: (1) the higher hydraulic conductivity
avenue of the Incised Valley Unit manifested in an elongate perturbation that follows the
same strike direction of the paleo-valley, and (2) the effects of the hydraulic windows
(IVU-AU vertical and IVU-LMU horizontal) shown in the depression of the dynamic
pressure increment and hydraulic head at the center of the study area, at the Debrecen
Waterworks Sites.

The conducted geochemical analysis concluded that the main aquifer is characterized
by a Ca-Mg-HCO3 water type, whereas the lateral surrounding aquifer exhibit Na-HCO3
water type. Additionally, the saturation index values indicated a transition from undersatu-
rated to supersaturated states for calcite and dolomite minerals along the geometry of the
IVU. These findings were further supported by the PCA and K-mean cluster analysis, which
demonstrated that carbonate weathering, ion exchange and silicate weathering processes
play a significant role in controlling the groundwater chemistry within the aquifer system
at the depth of the Incised Valley. These findings were in agreement with the fact that the
heterogeneity introduced by the main aquifer significantly impacts the flow pattern, and
the higher velocities of flows occur within the IVU.

The observed agreement between these findings and the understanding that hetero-
geneity introduced by the main aquifer has a substantial impact on the flow pattern further
strengthens the results. Specifically, it suggests that flows within the IVU occur at higher
velocities compared to other areas of the aquifer system, which enhances the contaminant
transport, and, consequently, increases the vulnerability of the aquifer.

The obtained results offer valuable and substantial insights into the regional-scale
hydrogeological interpretation of the area. These findings hold great promise in advancing
sustainable groundwater management practices in the region, especially considering the
ongoing escalation in water demands from the local community, agricultural activities and
industrial sectors. The reported results provide essential contributions towards informed
decision-making and the formulation of effective strategies aimed at securing the long-term
availability and optimizing the utilization of groundwater resources in the area.
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