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A B S T R A C T   

The variety and complexity of heterogeneous materials in the engineering practice are continuously increasing, 
open-cell metal foams filled with phase change materials are typical examples. These are also having an impact 
on the recent developments in the energy industry. Earlier room temperature heat pulse experiments on 
macroscale foam samples showed non-Fourier over-diffusive behavior on a particular time scale. Since there is a 
need to investigate such complex structures on larger spatial scales and extend the one-dimensional analysis on 
two-, and three-dimensional settings, here we develop a two-dimensional analytical solution for the Guyer- 
Krumhansl and Jeffreys-type heat equations in cylindrical coordinates to investigate the transient thermal 
behavior of large bodies. We provide the steady-state and transient temperature and heat flux distributions for a 
space-dependent heat source. The solutions presented here will be helpful for the thermal characterization of 
complex materials and for the validation of numerical methods.   

1. Introduction 

Numerous experimental and theoretical studies emerged on room- 
temperature heat conduction beyond Fourier in recent years. On the 
one hand, the nanoscale effects result in the deviation from Fourier’s 
law, usually with the appearance of ballistic heat conduction [1–3]. 
Furthermore, the size dependence of thermal conductivity enjoys great 
interest as it significantly influences the effectiveness of any nanoscale 
device [4,5]. On the other hand, room temperature non-Fourier heat 
conduction is not restricted to the nanoscale exclusively, and it is 
observable in macroscopic bodies under various conditions [6–8]. While 
the parallel diffusive and ballistic propagation modes are present on a 
nanoscale, the macroscopic deviation is due to the interaction of mul-
tiple parallel diffusive (and additional heat transfer) channels. Typical 
examples are rocks [9] and foams [10,11]. Although each component 
behaves according to Fourier’s law, the heterogeneous material struc-
ture overall (effectively) leads to a more complex, non-Fourier temper-
ature history. That was the motivation for two-temperature models 
[12–14]. 

The presence of multiple time scales is the most visible by showing 
experimental data obtained from a heat pulse experiment for an 
aluminum foam (Fig. 1) possessing multiple heat transfer channels. The 
response for a short but finite single pulse (0.01 s), together with the best 

achievable Fourier fit, shows that at least two heat conduction time 
scales are present simultaneously. This is called over-diffusion [15,6] 
and so far best modeled with the continuum Guyer-Krumhansl (GK) heat 
equation [10]. Here, with the word ”continuum” is an adjective, refer-
ring to the continuum thermodynamic background of the GK equation 
[16], it is free from the usual kinetic theory and phonon hydrodynamic 
assumptions, therefore it is valid on much larger temperature and spatial 
scales, independently of the Knudsen number. It is also worth noting that 
in Fig. 1, the time is re-scaled with respect to the pulse length, i.e., the 
dimensionless time ̂t = t/0.01. The transients become slow enough after 
about 7 s, meaning that the heat transfer process needs much more time 
to cancel out the effect of multiple time scales. In other words, if thermal 
transients continuously occur in some particular application, Fourier’s 
law might not apply. Otherwise, such an experiment reveals the limi-
tations on time scales, and the Guyer-Krumhansl equation provides a 
refinement of the thermal parameters in order to cover the faster pro-
cesses as well. However, this property indeed scales with the size 
(different heat capacities, heat transfer surfaces, time scales) and surface 
(boundary conditions), and thus it is necessary to extend the experi-
mental and theoretical capabilities in this direction. 

It is worth noting that recent heat exchanger applications exploit the 
advantageous properties of a metal foam structure: having large heat 
transfer surfaces, the matrix material is an excellent heat conductor, 
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therefore such solutions can essentially ease the realization of an 
effective thermal storage method. One outstanding example is when an 
open-cell foam structure is filled with phase change material [17–20]. 
The phase change materials usually have low thermal conductivity, 
significantly restricting their melting or solidification properties. How-
ever, a surrounding foam structure can notably enhance the thermal 
behavior, thus both the heating and cooling processes can be much more 
efficient. This further motivates the present study as there are currently 
no reliable thermal models which enable the resource-friendly modeling 
of such complex structures. A non-Fourier model, however, can be 
exceptional when the role of the parallel heat transfer channels is un-
derstood correctly in such an approach. The present study aims to take a 
step forward in this direction, deepening our understanding and 
extending our modeling possibilities about the Guyer-Krumhansl heat 
equation. In the following, let us briefly summarize the heat conduction 
models we consider here. 

The well-known Fourier law is 

q = − λ∇T, λ ∈ R+ (1)  

together with the balance of internal energy (e = cvT), 

ρcv∂tT +∇⋅q = qv(x, t), (2)  

includes only one time scale, described by the thermal diffusivity α =

λ/(ρcv), where λ, ρ and cv are the thermal conductivity, mass density, 
and isochoric specific heat, respectively. Furthermore, q and T stand for 
the heat flux and temperature fields, and qv is an internal heat genera-
tion, which could be time and space-dependent. We restrict ourselves to 
isotropic rigid materials. 

For a non-Fourier heat conduction model, the constitutive equation, 
Eq. (1), is exchanged with a more general expression, usually consisting 
of additional time and space derivatives. In the present paper, we 
consider the following two constitutive equations among the various 
models. First, we study the Guyer-Krumhansl equation, 

τ∂tq+q = − λ∇T + η1Δq+ η2∇∇⋅q, λ, τ, η1, η2 ∈ R+, (3)  

in which τ is the relaxation time; η1 and η2 are independent intrinsic 
length scales, not associated with a propagation mechanism in a con-
tinuum model [16]. We note that in the conventional treatment of the 
GK equation, η1 = l2 with l being the mean free path of phonons, and η2/

η1 = 2 for the particular approximations performed by Guyer and 
Krumhansl [21]. We emphasize that for a macroscopic room 

temperature problem, the phonon approach is not valid anymore, while 
the continuum model, although possessing the same structure, is free 
from any prior specific assumptions on the propagation mechanism, 
hence extending the model’s domain of validity. 

Second, we will continue our analysis with the Jeffreys equation 
(JE), i.e., 

τq∂tq+ q = − λ∇T − λτT ∂t∇T, λ, τq, τT ∈ R+ (4)  

where, instead of introducing further spatial derivatives, two time lags 
appear similarly to the popular dual-phase-lage (DPL) concept [15]. 
However, while no thermodynamic background is behind the DPL 
model, Eq. (4) can be derived on a thermodynamic basis [22]. Although 
we remain in the linear regime, it is worth noting that the coefficients 
are not completely independent of each other (also for Eq. (3)) in a sense 
that the T-dependence of λ would influence all the other parameters, too 
[23]. For the Jeffreys equation, τq and τT can be adjusted almost inde-
pendently, and the only exception is that when τq = 0, τT = 0 follows 
immediately (but not vice versa). That property is more visible from the 
solution of the entropy production with assuming linear relations [16], 
one finds 

mρ
l2

∂tq+ q =

(

l1 −
l12l21

l2

)

∇
1
T
−

mρl1

l2
∂t∇

1
T
, m, l1, l2 ∈ R+ (5)  

where l1, l2, l12, l21 are the Onsagerian coefficients, and these form the 
coefficients τq, λ and τT in Eq. (4) after acting with the corresponding 
derivatives on the 1/T terms. Apparently, the coefficients are clearly not 
independent of each other, τq can be zero only if m = 0, thus τT will 
follow immediately. However, taking l1 = 0, it leads to τT = 0 but 
τq ∕= 0, and also implies that l12 = − l21 to ensure the positivity of λ. 
Furthermore, due to these functional relationships, even the simplest 
nonlinearity, λ(T), can result in severe consequences, for instance, if 
l2(T) holds, then all the other coefficients become T-dependent. For a 
detailed derivation procedure and further discussion on the thermody-
namic background, let us refer to [16]. The GK and JE models consist of 
two time scales in different ways, and they share the same T-represen-
tation in a one-dimensional setting. However, their physical basis is 
quite different, and the GK equation fits much better into the systematic 
structure of non-Fourier models. 

In this paper, we choose to study large surface bodies since the 
typical heterogeneous materials also show strong size-dependent 
behavior [9]. In other words, extending the existing flash experiment 
for much larger bodies will be necessary as the usual thickness limit is 

Fig. 1. Typical appearance of over-diffusion [10].  
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about 3 − 6 mm for standardized equipment. This can be much smaller 
than the representative sample size for a heterogeneous material, 
especially for foams with large (3–5 mm) open-cell structures. Further-
more, we aim to investigate both models using an analytical solution for 
a two-dimensional setting, which will emphasize the structural differ-
ences between these equations. We note that even the book of Carslaw 
and Jaeger [24] has limitations towards the problem setting we discuss 
in the following. 

In other words, we wish to propose and study the magnified version 
of the heat pulse experiment, assuming significantly larger samples in 
order to determine, e.g., their thermal diffusivity based on the recorded 
temperature history. However, the larger sample size introduces further 
difficulties, especially considering a thermal behavior beyond the clas-
sical Fourier equation. One needs to consider significantly different time 
scales, and the heating must take longer due to the much larger heat 
capacity. A heat pulse experiment is designed to create relatively small 
temperature changes in the sample, thus linear theories with constant 
coefficients can be immediately applicable. For such a situation, this is 
not necessarily the case due to the more prolonged heating, the tem-
perature difference can be significant in some instances, and 
temperature-dependent coefficients might be necessary. However, this 
strongly depends on the material one studies, e.g., there is 1% change in 
the aluminum thermal conductivity between 300 and 400 K, so linear 
approaches are still viable. In the present paper, we wish to focus on the 
linear models, especially in the light of that τ(T),τq(T),τT(T),η1(T), and 
η2(T) are all unknown for heterogeneous materials so far. Even deter-
mining a correct λ(T) can be challenging for such complex structures. 
The limited availability of numerical methods is also a strong motive for 
the present research. In fact, COMSOL is tested on various one- 
dimensional heat equations, including the GK model as well [25]. It is 
found that COMSOL fails to deliver a physically valid solution for the 
over-diffusive region, i.e., when (η1 + η2)/τ > α, but works with η1 =

η2 = 0 reducing the GK equation to the Cattaneo model; and addition-
ally, also with τ = 0 to obtain Fourier’s equation. The proper imple-
mentation of the boundary conditions is not straightforward, and one 
must be careful with the numerical solutions of such advanced heat 
equations. Even a stable and convergent numerical solution can produce 
false solutions, including artificial dissipative and dispersion errors. The 
present work will serve as a basis for future research to develop a reliable 
numerical discretization to handle more complex initial and boundary 
conditions, or even nonlinear problems. 

For simplicity and clarity, we start and present our method on the 
example of the Fourier heat equation. This will provide an insight into 

the problem setting and the solution method. We will continue with the 
GK and JE equations, demonstrating how the solution method is applied 
to more complicated models. Such analytical solutions, especially for the 
GK equation, cannot be found in the literature. Moreover, as there is also 
missing a reliable two or three-dimensional numerical method, we offer 
a good starting point for future studies in this direction. Finally, we will 
compare the temperature histories to the Fourier equation and investi-
gate whether we find the transient behavior similar (or even the same) 
compared to the one-dimensional room temperature experiments on 
small samples. 

2. Problem statement 

Let us consider a plane wall constantly heated on one the left side in a 
circular area (r < rh) with qw such as Fig. 2 (left side) prescribes. In fact, 
the book of Carslaw and Jaeger [24] offers a solution for the Fourier heat 
equation for constant heating in the domain r < rh, however, we are 
looking for the temperature history further away from rh such as how the 
blue dots showing in Fig. 2. Additionally, since the boundary condition 
is space-dependent on the left side, it is challenging and difficult to apply 
the findings for non-Fourier heat equations. Therefore, we decided to 
reduce this original problem to a simpler one and substitute the surface 
heating with a space-dependent, surface-concentrated internal heat 
generation, as the characteristics present in Fig. 3. Hence the boundary 
conditions remain homogeneous but still applicable to the original 

Fig. 2. Schematic problem setting, presenting the boundary conditions and the characteristics of internal heat generation.  

Fig. 3. Internal heat generation characteristics (with dimensionless parame-
ters), the heat source is concentrated on the surface with respect to the scaling. 
These functions are more convenient to handle in the analytical solution. 
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problem. Furthermore, we assume that at a large enough distance from 
the heat source, the temperature remains constant, thus we prescribe 
constant temperature boundary conditions on the right side and on the 
top. 

It is more convenient to formulate our models in a cylindrical coor-
dinate system using dimensionless quantities. For the length scale, we 
can use both L and R, the thickness and the radius of the whole domain. 
Initially, we distinguish between L and R, reflecting it in the following 
dimensionless parameters, too, but for further calculations, we set the 
thickness to be L = R. The usual Fourier number is introduced using the 
thermal diffusivity α = λ/(ρcv) for the time scale. The temperature field 
is homogenized and normalized with the initial temperature T0. Overall, 
these lead to the following set of dimensionless quantities, 

r̂ =
r
R
, ẑ =

z
L
, t̂ =

αt
RL

, T̂ =
T − T0

T0
, (6)  

consequently, after substituting them into the energy balance, we can 
find that 

q̂r = qr
L

λT0
, q̂z = qz

R
λT0

, q̂v = qv
RL
λT0

. (7)  

Hence, the non-Fourier parameters read 

η̂1 = η1
1
L2, η̂2 = η2

1
R2, τ̂ =

ατ
RL

, τ̂q =
ατq

RL
, τ̂T =

ατT

R2 . (8)  

In the following, we leave the hat notation for simplicity and show the 
units wherever necessary. 

Taking account that it is a two-dimensional problem for r and z in a 
cylindrical coordinate system, the balance of internal energy 

∂tT + ∂rqr +
1
r
qr + ∂zqz = qv(r, z), t ∈ [0,∞), (r, z) ∈ [0, 1] × [0, 1], (9)  

and the constitutive equations are 

Fourier : qr = −
L
R

∂rT, (10)  

qz = −
R
L

∂zT, (11)  

GK : τ∂tqr + qr

= −
L
R

∂rT +

(
L2

R2η1 + η2

)[

∂rr −
1
r2 +

1
r
∂r

]

qr + η1∂zzqr + η2∂rzqz, (12)  

τ∂tqz + qz = −
R
L

∂zT +

(

η1 +
R2

L2η2

)

∂zzqz + η1
L2

R2

[

∂rr +
1
r
∂r

]

qz + η2
R2

L2

[
1
r
∂z

+ ∂rz

]

qr,

(13)  

JE : τ∂tqr + qr = −
L
R

∂rT − τT ∂trT, (14)  

τ∂tqz + qz = −
R
L

∂zT −
R
L

τT ∂tzT, (15)  

accompanying the T = 0 initial condition, and q = 0 and T = 0 bound-
ary conditions with respect to Fig. 2. We are looking for the corre-
sponding heat flux and temperature fields with setting L = R. 

3. Solution method 

Although the problem seems complicated, there is quite efficient 
method to handle such a complicated set of partial differential equa-
tions. Here is the strategy we follow. First, we exploit that the problem 
can be separated into two parts, viz., we can solve the homogeneous 

(qv = 0) transient case (Th(r, z, t)) separately and the inhomogeneous 
(qv ∕= 0) steady-state case (Tst(r, z)), and we find the solution as their 
superposition, T(r,z, t) = Tst(r, z) + Th(r,z, t). Second, we start with the 
Fourier heat equation, not merely because we want to compare the non- 
Fourier solutions to Fourier’s, but because we can exploit Fourier’s 
steady-state solution in solving the non-Fourier models. The steady 
temperature field remains the same for both Fourier and non-Fourier 
cases. However, the heat flux fields can differ, hence we also include 
this aspect. In the case of Fourier’s heat equation, we can quickly 
determine the proper eigenfunctions and eigenvalues through the 
Sturm–Liouville problem. It is worth noting that even the non-Fourier 
models do not introduce higher-order spatial derivatives for the tem-
perature field beyond the Laplacian. Therefore what eigenfunctions we 
find can also be applied to the GK and JE models. Third, we solve the 
non-Fourier models exploiting the ansatz that their solutions can be 
represented in the same set of eigenfunctions with time-dependent co-
efficients, this is a sort of Galerkin method. That approach simplifies the 
complicated system of partial differential equations to a set of ordinary 
differential equations for the time-dependent coefficients. 

3.1. Fourier heat equation 

In the case of the Fourier equation, it is easier to start with its T- 
representation, i.e., 

∂tT = ∂2
r T +

1
r
∂rT + ∂2

z T + qv(r, z), (16)  

and applying the standard separation of variable technique for the ho-
mogeneous part (where qv is absent), Th(r,z, t) = φ(t)ξ(r,z), one obtains 

for time:
dφ
dt

+ β2φ = 0, (17)  

for space:
1
r
∂rξ+ ∂2

r ξ+ ∂2
z ξ+ β2ξ = 0, ⇒ ξ(r, z) = ρ(r)ζ(z), ⇒

(18)  

for r :
1
r

dρ
dr

+
d2ρ
dr2 + μ2ρ = 0, (19)  

for z :
d2ζ
dz2 + γ2ζ = 0, (20)  

thus μ2 + γ2 = β2. Applying the boundary conditions 

qr(r = 0, z, t) = ∂rT|r=0 = 0, T(r = 1, z, t) = 0, qz(r, z = 0, t) = ∂zT|z=0

= 0, T(r, z = 1, t) = 0,
(21)  

we find the following eigenfunctions and eigenvalues, 

ρ(r) = J0(μnr), μn : J0(μn) = 0, ζ(z) = cos(γmz), γm =
π
2
+mπ, (22)  

and hence the solution is 

Th(r, z, t) =
∑∞

n=1

∑∞

m=0
Knme− β2

nmtJ0(μnr)cos(γmz), β2
nm = μ2

n + γ2
m. (23)  

Consequently, we can use Eq. (22) to construct the steady-state solution 
Tst, including the heat generation as well, i.e., 

Tst(r, z) =
∑∞

n=1

∑∞

m=0
CnmJ0(μnr)cos(γmz), qv(r, z)

=
∑∞

n=1

∑∞

m=0
BnmJ0(μnr)cos(γmz), (24)  
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Bnm =

∫1

0

∫1

0

rqvr(r)qvz(z)J0(μnr)cos(γmz)drdz. (25)  

Substituting Eq. (24) into Eq. (16) (with ∂tT = 0), we can find the 
relation between the known Bnm and the unknown Cnm, 

Cnm

(

−
1
r
μnJ1(μnr) −

μ2
n

2
(J0(μnr) − J2(μnr)) − J0(μnr)γ2

m

)

cos(γmz)

= BnmJ0(μnr)cos(γmz). (26)  

Then Eq. (26) is multiplied with rJ0(μnr)cos(γmz) and integrated from 
0 to 1 with respect to both r and z, following the Galerkin procedure. The 
z-direction is straightforward as both sides are multiplied with cos(γmz), 
the non-trivial part originates from the r direction, and results in 

Cnm = Bnm
1

β2
nm
, (27)  

which holds for any internal heat generation qv(r, z). Due to the sepa-
ration T(r, z, t) = Tst(r, z) + Th(r, z, t), the initial condition for the ho-
mogeneous part reads Th(r, z, t = 0) = − Tst(r, z) as T(r, z, t = 0) = 0, 
and thus Knm = − Cnm. 

3.2. Guyer-Krumhansl heat equation 

Although we follow the same technique here, we also separate the 
homogeneous and inhomogeneous parts, but it is more advantageous to 
determine the steady-state heat flux field first. Since the steady tem-
perature field Tst(r, z) is inherited, we can substitute ∂rTst(r, z) and 
∂zTst(r, z) into Eqs. (12)–(13). Furthermore, we suppose that each term 
inherits the corresponding set of eigenfunctions and eigenvalues as the 
boundary conditions remain, and thus 

qr =
∑∞

n=1

∑∞

m=0
DnmJ1(μnr)cos(γmz), qz =

∑∞

n=1

∑∞

m=1
EnmJ0(μnr)sin(γmz), (28)  

respecting the corresponding derivatives, too. In that steady-state, we 
consider that ∂tqr = ∂tqz = 0 in Eqs. (12)–(13), and after substituting Eq. 
(28) into Eqs. (12)–(13) and integrating, we obtain a set of algebraic 
relations among the coefficients, 

c1Dnm = μnCnm − c2Enm, c3Enm = γmCnm − c4Dnm, (29)  

with 

c1 = 1+(ηq + η2)(2+ μ2
n)+ η1γ2

m, c2 = η2μnγm, c3

= 1+ γ2
m(η1 + η2)+ μ2

nη1,

c4 = 2γmη2

(
1

μnJ1(μn)
2 + μn

)

. (30)  

Since Cnm is known from Eq. (27), Eq. (29) can be solved for Dnm and Enm, 
and it holds for any heat sources. Then the steady-state solution is given 
by Eqs. (24) and (28). 

The transient (homogeneous) solution is constructed similarly, 
however, the coefficients are now time-dependent, viz., we assume that   

qz(r, z, t) =
∑∞

n=1

∑∞

m=1
Ẽnm(t)J0(μnr)sin(γmz), (32)  

are still valid. Furthermore, now we need to exploit the energy balance 
as well to obtain C̃nm(t), 

d
dt

C̃nm(t)+ μnD̃nm(t)+ γmẼnm(t) = 0. (33)  

After following the same procedure, we obtain almost the same set of 
equations except that the time derivative terms appear. Consequently, 
the set of PDEs is reduced to a set of ODE, 

d
dt

⎡

⎣ C̃nm(t)D̃nm(t)Ẽnm(t)

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

0 − μn − γm

μn

τ −
c1

τ −
c2

τ
γm

τ −
c4

τ −
c3

τ

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎣ C̃nm(t)D̃nm(t)Ẽnm(t)

⎤

⎦,

(34)  

in which the coefficients are inherited from Eq. (30), and its solution can 
easily be found in the form of a matrix exponential, exp(Mnmt). Let us 
recall that the initial condition Th(r, z, t = 0) = − Tst(r, z) is the same, and 
therefore we can exploit the known coefficients C̃nm(t = 0) = − Cnm,

D̃nm(t = 0) = − Dnm, and Ẽnm(t = 0) = − Enm. 

3.3. Jeffreys heat equation 

Here, the solution is simpler as the steady-state heat flux field is 
identical to Fourier’s case, hence we do not need to compute it sepa-
rately. We repeat the ansatz of Eq. (31)–(32) to determine the coefficient 
matrix Mnm, and following the same steps, that procedure results in 

d
dt

⎡

⎣C̃nm(t)D̃nm(t)Ẽnm(t)

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 − μn − γm

μn

τ −
1+τT μ2

n

τ −
τT μnγm

τ
γm

τ −
τT μnγm

τ −
1+τT γ2

m

τ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣C̃nm(t)D̃nm(t)Ẽnm(t)

⎤

⎦,

(35)  

together with the known coefficients from Fourier’s solution, the time 
evolution for the Jeffreys case is obtained in the form of exp(Mnmt). 

4. Steady-state distributions 

First, let us begin with the steady-states, primarily focusing on the 
differences between the Fourier and GK equations. From a theoretical 
point of view, and according to Alvarez et al. [26], GK’s steady heat flux 
field can differ from Fourier’s. Here we have to discover in what sense 
and in what measure they can differ from each other. From a practical 
point of view, it is possible to measure the average local heat flux, 
usually on a minimal area of 10 × 10 mm2 up to about 80 × 80 mm2. 
Furthermore, it is known that such sensors can significantly distort the 
local heat flux field [27,28]. Consequently, if one aims to observe the 
traces of non-Fourier heat conduction at this level, such spatial scales 
must be included in the preliminary analysis as smooth flux distributions 

Th(r, z, t) =
∑∞

n=1

∑∞

m=0
C̃nm(t)J0(μnr)cos(γmz), qr(r, z, t) =

∑∞

n=1

∑∞

m=0
D̃nm(t)J1(μnr)cos(γmz), (31)   
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(such as for the temperature field) cannot be measured. These analytical 
calculations can ease such analysis as well. Since the JE model has the 
same steady-state as Fourier’s, we leave this analysis aside for that heat 
equation. 

Fig. 4 presents the temperature distribution for Fourier’s heat 
equation, which remains the same for the Guyer-Krumhansl and Jeffreys 
equations. Concerning the heat flux field, the situation becomes quite 
different. It is worth studying the outcome of the GK equation closer, see 
Fig. 5 for the details about qr(r, z = 0) and qz(r, z = 0.05). That char-
acteristics is preserved for any qr(r, z = const.) distributions. The 

influence of η1 is clear, and it can significantly decrease the maximum. 
Similarly to η1, η2 has the same effect on the heat flux field, being more 
influential on qz, see Fig. 6 for a particular solution. 

Although these effects are clear and strong for such a parameter in-
terval, the situation of observing them in a steady-state is not that 
hopeful. Let us consider the flash experiments on rocks and their GK- 
evaluation with a one-dimensional model [10], we find that η1 +

η2 ≈ 10− 7 m2, in general. Consequently, the most substantial effects 
could be observed for a body with R = 0.01 m or less, which would 
probably violate our initial assumptions, and the boundary conditions 

Fig. 4. Two-dimensional steady-state temperature distribution, using N = M = 200 terms, showing only partial spatial domain.  

Fig. 5. Steady-state qr(r, z = 0) (left) and qz(r, z = 0.05) (right) distributions with η2 = 0, using N = M = 200 terms, showing only partial spatial domain.  

Fig. 6. Steady-state qr(r, z = 0) (left) and qz(r, z = 0.05) (right) distributions with η2 = 10− 4, using N = M = 200 terms, showing only partial spatial domain.  
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would not be valid as well. For larger bodies, e.g., with R = 0.1 m or 
even larger (R = 1 m), the effect becomes small and difficult to detect. 
This is one reason why this scaling property is most important for 
nanoscale objects. 

5. Transient distributions 

5.1. Fourier’s heat equation 

Let us recall that we are using the conventional Fourier number for 
the time scale. The characteristic size could be 1 m as relatively large 
bodies are considered. Consequently, we must choose small Fourier 
numbers since those can express relatively large time instants. Fig. 7 
shows the temperature distribution for Fourier’s heat equation, in which 
we can observe that the characteristics of the distribution establish 
quickly and does not change significantly for larger time intervals. The 
color scaling, however, changes, showing how the equilibrium is 
approximated. At farther away from the heat source, the temperature 
changes more slowly since the gradients are much smaller. This is also 
presented in Fig. 8, showing the surface temperature history at different 
radii, as it is denoted previously in Fig. 2. We use Fig. 8 for comparative 
purposes in case of non-Fourier models as temperature maps (such as 
Fig. 7) would not highlight the characteristics of the non-Fourier 
behavior. 

Fig. 7. Transient temperature distribution following from Fourier’s heat equation, using N = M = 40 terms, showing only partial spatial domain.  

Fig. 8. Transient temperature history on the surface at different radii from 
Fourier’s equation, using N = M = 100 terms. 
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5.2. Guyer-Krumhansl heat equation 

Although the GK equation can reproduce the heat wave solutions 
following the Cattaneo equation with η1 = η2 = 0, called second sound, 
it is not meaningful in our situation. First, in order to generate such a 
heat wave, the time scale of the excitation (e.g., a heat pulse) should 
match the material’s characteristic properties, most importantly, its 
relaxation time τ. Since its values range from 10− 10 − − 1 s depending on 
the propagation phenomenon we investigate [29–31], such effects 
become irrelevant for large bodies on much larger time scales. Second, 
we use the GK equation as an effective approach to model the parallel 
diffusive mechanisms instead of modeling heat waves (or anything else 
related to phonon hydrodynamics). Fig. 9 presents two cases for the η1 =

η2 = 0 setting, with τ = 10− 3 (left) and τ = 10− 2 (right). Similarly to the 
Fourier number, the relaxation time has the same scaling, therefore even 
τ = 10− 3 is so large, it still does not show any difference from Fourier’s 
solution, unlike the second case with unrealistically large relaxation 
time, but the effect is still weak. This setting will not be relevant for such 
continuous heating in a large macroscale body. 

In fact, it is not easy to find parameters resulting in a remarkably 
different solution. Fig. 10 presents an example in which the radius we 
use is much closer to the heat source, for farther away and longer time 
intervals, the differences vanish. It is worth studying how we can recover 
a similar behavior observed in heat pulse experiments (see Fig. 1 for the 
experimental characteristics). Interestingly, being closer to the heat 
source, GK’s solution is not faster than Fourier’s, however, it changes 
with the radius. Fig. 11 presents these characteristics, and thus it is best 
to measure the temperature farther from the heat source to more reliably 
observe the non-Fourier behavior. 

5.3. Jeffreys heat equation 

The τT = 0 subcase coincides with the previous analysis using the GK 
equation (see the right side of Fig. 9), therefore we do not repeat it again. 
Instead, we focus on studying the effects induced by the extra time de-
rivative term in the constitutive relation with τT ∕= 0 and comparing 
our findings with Fig. 11. Although τT acts analogously on the temper-
ature field, their heat flux fields differ. That difference is essential for 
superfluids and further low-temperature modeling problems [32]. In 
engineering practice, however, that difference could be negligible as we 
seek only an effective model to provide a more accurate description of 
heterogeneous materials. An effective description cannot 

simultaneously model the temperature and heat flux fields. In that sense, 
neither approach is more accurate than the other. Both can reproduce 
the same temperature history, however, the GK equation can be much 
more complicated. On the one hand, for the JE model, as simply the time 
derivative of Fourier’s equation is added, it is easier to utilize the usual 
approaches for initial and boundary conditions. On the other hand, 
although thermodynamically compatible, the JE model does not fit into 
the systematic generalization of non-Fourier equations. 

6. Discussion 

There is a need for an advanced heat conduction model to overcome 
the difficulties emerging together with the use of complex heteroge-
neous materials. Their effective thermal behavior can significantly differ 
from Fourier’s prediction, even though the classical heat equation 
governs each component. The interaction of parallel heat transfer 
channels results in a non-Fourier behavior. Two promising extensions of 
the Fourier equation are the Guyer-Krumhansl and the Jeffreys models. 
Both describe two heat conduction time scales, even in an isotropic 

Fig. 9. Transient temperature history on the surface, comparing the Fourier and GK equations with η1 = η2 = 0 and τ = 10− 3 (left), τ = 10− 2 (right), using N = M =

100 terms. 

Fig. 10. Transient temperature history on the surface, comparing the Fourier 
and GK equations with η2 = 0, using N = M = 100 terms. 
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setting. These models are analytically solved for a two-dimensional 
situation (see Fig. 12). 

The analytical solution revealed that there is no need for additional 
boundary conditions for these GK and JE models, the same set of 
eigenfunctions can be used. That property notably eases the solution of 
these more complex models. The resulting ordinary differential equa-
tions can be solved easily for the linear situation; thus, unknown time- 
dependent coefficients are found. Furthermore, we also exploited that 
the steady-state temperature distribution given by Fourier’s law remains 
the same in the non-Fourier case, therefore, it is advantageous to handle 
the present heat conduction problem as a superposition of the transient 
and steady distributions. It also makes it more straightforward how to 
take into account the initial conditions. 

The present analytical solution can be helpful to validate a numerical 
solution and ease the development of advanced numerical techniques 
for two, or even three-dimensional problems. Furthermore, we proposed 
and solved a virtual experiment in which we supposed that the studied 
heterogeneous material could be modeled effectively with a non-Fourier 
heat equation. We depicted possible observations for the temperature 
history with realistic parameters based on earlier experimental studies. 
Moreover, the present analytical study and solution method might be 
extended toward modeling certain anisotropic materials. Nonlinearities, 
however, must be studied first in a more straightforward one- 
dimensional setting to reveal the possible difficulties introduced by 
the temperature dependence of non-Fourier coefficients. 

Restricting ourselves to the linear regime with constant coefficients, 
and studying the time evolution of the surface temperature time his-
tories T(t), we observed similarities compared to the one-dimensional 
heat pulse experiments, however, these situations are not directly 

comparable. First, as the surface temperature is the most straightfor-
ward to measure, it seems more advantageous if the thermometer is 
situated further from the heated region to observe the over-diffusive 
behavior possibly. This can change significantly in space. Second, with 
such constant heating, no steep transients occur in a large body due to its 
large heat capacity, thus, it is more challenging to observe the non- 
Fourier behavior. Based on the analytical solutions, it is clear that 
both models require unusually large parameters to obtain any observ-
able deviation from Fourier’s law. In the future, it would be worth 
investigating the outcome of periodic heating, especially the effects of 
the period time, and that could enhance the over-diffusive phenomenon. 
Third, for the GK equation, while the steady heat flux field differs from 
Fourier’s, it is not practically measurable due to the steep change in the 
heated region, the available heat flux sensors are too large for such an 
application. Moreover, as the most significant difference occurs under 
the heater, it excludes this possibility. However, the analytical calcula-
tions also revealed that if such constant heating does not induce notable 
non-Fourier effects, one could design a measurement method to char-
acterize such objects with Fourier’s law remaining valid thermally. 
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