
MTA SZTAKI Közlemények 37/1987 pp- ILI-1.

A R E S T R I C T E D D E S I G N METHODOLOGY TO ALLOW T E S T I N G FOR B C N F

I N P OL Y N O M I A L TIME

F. N. S F R I N G S T E E L

University of Missouri at Columbia
Department of Computer Science
Columbia, Missouri, 65211 USA

ABSTRACT

Boyce-Codd Normal Form (BCNF) is a well-known
condition on relational database schemas that
implies some desirable properties, and is known
to prevent some very undesirable "anomalies” from
occurring in the use of the database. It is thus
important to be able to test a proposed database
design for this condition.

This investigation of logical database design
methods asks whether there are any conditions on
a relational database schema such that, although
they are not equivalent to BCNF, do guarantee
that this desirable property can be detected in
polynomial time (P-time). Conditions equivalent
to BCNF are known to be intractable to test, but
the conditions we give here are either sufficient
for BCNF or else enable its being tested in P-time,
and the conditions themselves are likewise testable.
They are also desirable for certain design reasons.

While the first set of conditions only logically
imply BCNF, they provide a setting (regular entity-
relationship diagrams) which helped to suggest the
second set of conditions, in which it is easier to
test for this normal form than in general databases.
Also, we argue, this setting is valuable in its own
right, and can lead to a useful, if not universal,
database design methodology. This methodology works
for many databases expressible, by E-R diagrams which
have a "database key".

152

I. INTRODUCTION AND PRELIMINARIES

A. THE PROBLEM AND THE APPROACHES

It is clearly futile to search for conditions that are equivalent
to BCNF, because it is an NP-complete problem to test relations
for BCNF and conditions very similar to it, in general relational
databases CBB79: J F ; Osbl • Only very strong conditions seem to
imply BCNF, e.g. 4NF,PJNF CLePa], and Berge-acyclicity [JNS83al.

However, it is possible that certain conditions related to
"BCNF-ness" are so akin to this normal form that it can be tested
in their presence, in tractable time. Indeed we find that this is
the case; there are arguably quite, reasonable, realistic
conditions that one might like to see in the schema design
normally, fitting the above description.

For now we shall only describe one set of conditions in intuitive
terms ; later on we will give their formal descriptions. These
conditions model a type of very well designed database: there is
one master-file, S, which contains either a key or a determiner
of a key for each of the other files. These other files relate
either one key to its directly dependent attributes or else
relate several equivalent keys, possibly of different entities.
We refer to databases of this type as fitting our "master-file"
scenario.

In the next part of this first section we review the special
concepts needed for our approach, including the definition of
"regular" for an entity-relationship diagram (ERD). We assume
that the reader is familiar with standard relational database
theory, including the concepts of functional dependencies, keys,
and schema CUlm82al.

In Section II we discuss conditions that are sufficient to imply
BCNF for relation schemes in the canonical relational schema IR
of a regular ERD IE. Certain of these schemes are automatically
in BCNF in such IR, viz., those of entity sets, of purely "one-
related" relationships, and of binary relationships. Here we
give one condition sufficient for BCNF for all other schemes in
IR, that the underlying regular ERD also be "loop-free” .

In the third section we shall explain the "master-file approach"
formally, and show that it enables one to test the BCNF-ness of
the particular databases that can be defined to conform with it.
This "restrictive design methodology" is then discussed in the
last section.

153

В. ENTITY-RELATIONSHIP PRELIMINARIES

Until recently most authors have used E-R diagrams as concise
and intuitive database design indicators, using entities and
relationships as a "lingua franca" of data model theory. ERDs
act as interfaces between the various conceptual models in the
database literature. For examDle, in the 1982 ACM Symposium on
Principles of Database Systems both the opponents [AtPal and the
proponent CUlm82bl of the "universal relation view" used infor­
mal ERD's in their arguments.

We have seen logical analysis of the E-R model reach a new level,
that of rigorous and careful treatment of many of the basic
assumptions and definitions behind this "lacknife" of the trade
CCh76,80: JNS83a,b,cl. Not only do is this useful to help an
understanding of the entity-relation model, but also the newer
results have bearing on many issues of database, theory. There is
now an impetus to study its formaiicable aspects with the same
care that has been applied to the relational model. As a basic
text in database systems IUlm82aI explains, there is a natural
representation of the E-R model in terms of either the. relational
or network or hierarchical data models.

The conversion of an ERD into a relational model, using one
associated relation scheme for each entity or relationship, has
become a standard, accepted method CUlm82a]. We extend this
known conversion one step farther, to ask: What do the given
quantifying marks on the relation/entity connectors in the E-R
diagram imply that we know about functional dependencies (FDs) in
its canonical relational schema, of all the associated schemes?
We feel that the proper interpretation of these marks, in direct
accordance with standard mathematical thinking about many-to-one
functions, leads inevitably to the definition of a “regular" ERD
and of its "basic" (or fundamental) FDs, as seen below.

Example 0: Consider Figure O, containing entity sets, EMPL and
DEPT, and the relationship set EMPL_DEPT. These entity sets are
converted into relation schemes, with the same names, as follows:

EMPL < E#,EN,JC); DEPT(D#,MGR,LOC) .
Note that the respective keys are E# and D#, called the primary
entity keys, determining the other attributes in their relation
schemes, as seen by the quantifying mark 'n' on their connectors,
and '1' on the dependent attributes. Hence, in the relationship
scheme EMPL_DEPT we need not repeat the dependent attributes of
these entities, but only give these keys plus any attributes
directly dependent on the relation, here TASK and STart_DATE:

EMPL_DEPT (E# ,D#,TASK,ST_DATE) .

154
Note that the attributes E N .J C ,MGR,LOC,TASK and ST_DAT£ are in
fact all functionally determined by the key E# of EMPL, which
is thus a key of the relation scheme EMPL_DEPT.

The above dependency analysis can be seen to be correct from the
' n ' and '1' (partial) functional indicators on the arrows; i.e.f
we consistently mark all connectors in an ERD with indicators of
the connected entity's functional participation in the affected
relationship, whenever this information is known. Thus, by
following the arrows, from n- to 1-releted attributes, the ERD
deducible functional dependencies (FDs) can be written down!

Two cautions are in order: a) to employ this convenience, we
disallow any special types of attributes, e.g. those whose
existence depends on other entities, which would need special
designations; b) the device of "following the arrows" needs
interpretation for relationships of three or more entities.

However, for normal entity schemes or for binary relationships
as above our convention is clear. Thus, since the keys can be
seen by inspection, it follows that the "basic FDs" of the ERD
of Figure О are these;

E# -> EN, E# -> JC for the schema EMPL;

D# -> MGR, D# -> LOC for the schema DEPT; and

E# -> D#, E# -> TASK, E# -> ST_DATE for schema EMPL_DEPT.

Note that if we did NOT know the n/1 functionality in this last
relationship, then we could only assume an arbitrary many-related
indicator 'n' on both connectors between EMPL and DEPT, with the
consequence being in that case: the only deducible key (from this
information) would be (E#,D#>. Also, if an k-ary relation has
two or more entities (say PI thru Ps) with 'n' indicators, and

FIGURE O. A REGULAR ERD

155
all others marked '1'. then the indicated key is Pl....Ps. This
makes sense if one thinks of the arrows as showing the many-one
functionality from the several n-related arguments. Pi, to the
other attributes, a unique tuple of values of which is determined
by fixing an s-tuple of values for the key.

We shall call all relationship schemas with at least one
n-related entity n-RELs: if they have any unmarked entities
('n', by default) we also call them n-RELs. In either case the
indicated key would be the union of all the n-related entities'
primary keys. In practice an "all n" case is rare. Less rare is
the case of all entities being mutually determining keys, i.e.
Ei -> E t , all i and t . When this happens we call the relationship
schema 1-REL, because all its Ei should be marked '1'.

RULES FOR THE BASIC FDs GIVEN BY A (REGULAR) E-R DIAGRAM:

For each entity set relation scheme ENT(PK, A 1 ,Ae), where PK
is the pre-chosen primary key, we have these 'basic' FD's

RULE l: F (ENT) = {PK -> Ak : l<=k<=e.>

For each 1-REL relation scheme, the set of 'basic' FD's is

RULE 2: F(l-REL) = <Ei -> Au : Ei 1-related, A t any attribute).

Finally, for any n-REL relation scheme, where Pl,...,Ps are the
primary keys of the n-related entities, the 'basic' FD's are

RULE 3: F(n-REL) = {Pl...Ps -> Ai : Ai any other attribute).

The "canonical relational (database) schema" of an ERD is the set
of all its associated relation schemes. E.g., for Example 0, it
can be denoted IR = I EMPL, DEPT; EMPL_DEPT >.

DEFINITION: If an ERD has only relationship schemes of the
types 1-REL and/or of the type n-REL, with the basic FDs for each
of its entity and relationship schemes as defined above in Rules
1 - 3 , then we call the ERD, and its canonical relational schema
IR, regular.

NOTE; Since all these rule-given FD's are the only ones clearly
visible from the ERD itself, as the database design, and because
the ERD is presumed to have clear semantics, the set of all the
basic FDs is assumed to be a cover for all (the known) FDs of IR.
This assumption is implicit in the definition of "regular" ERD.

Clearly, the ERD of Figure 0, with the FDs we have deduced from
it as above, is a regular ERD.

156

DEFINITION: A relation schema R is said to be in Boyce-Codd
Normal Form (BCNF) with respect to a set F of FDs if. for any FD
X -> A embedded in R, either A is in X (i.e., this FD is trivial)
or else X contains a key of R (with respect to the set F) .
We also say that a relational schema <IR, IF> is in BCNF,
("globally") where IR is a set of relation schemes <Ri, Fi> with
FD sets Fi over R i , if each Ri is in BCNF with respect to all the
FDs derivable from IF = Ui Fi. We informally say that a regular
ERD IE is in ‘'BCNF” iff its canonical relational schema <IR, IF>
is, where IF is the family of all its basic FDs.

As examples showing the range of such conditions, we exhibit an
(upper conceptual domain of an) ERD which is not in BCNF and a
larger diagram which is.

Example 1. In this ERD of an Employee/Department/Pronect
relationship, each EMPL can work in more than one DEPT, and only
the combination of DEPT and EMPL determines the Project now being
worked on by that employee in that department. Each Project
is wholly contained in a single Department. The ERD is NOT in
BCNF, because PROJ -> DEPT is a violating F D .

FIGURE 1. Regular ERD not in BCNF

Example 2. This is from a real-world case study of a business
enterprise's accounting functions, of a complicated and very
inter-related nature CUlm82b3. (The sample subdiagram shown here
represents less than a third of the original!) With applications
of this complexity being common, some very realistic databases

157
can be seen to be in BCNF, as lone as they are well structured.
In this case the schema is in BCNF because all relationships are
in fact binary; c f . Proposition 1 of Section II.

FIGURE 2. Enterprise's schema, in BCNF

II. SUFFICIENT CONDITIONS FOR BCNF

In this section we shall describe some general conditions
that are sufficient to imply BCNF. This preface to our Section
III discussion of the scenario is needed for two purposes: a) to
help orient the reader to terminology used later, and b> to show
the power of certain general conditions by exhibiting their
desirable consequence when assumed as a "package", namely BCNF.

We assume that the reader is familiar with the principles
of database dependencies, as found in [Ulm82a3. We shall adopt
the notation and terminology there. Below we shall assume that
IE is a regular ERD whose canonical relational scheme can be
denoted

IR = (SI, S2,, Sn), and that these n relation schemes
have their basic sets of FDs, as defined in Section I, denoted
Fl, F2, Fn. Let the set of all basic FDs of IE be denoted

F(IE) = Fl U F2 U ...U Fn. By the nature of Rules 1-3,
each FD К -> A in an Fi must enioy these properties:

1. be embedded in an Si: KA Ç Si;

158
2. have, in К only primary key attributes of entity sets;

3. have a single attribute of Si as its right-hand side A;

4. have a key (or superkey) of Si as its left-hand aide K.

A. MANY RELATION SCHEMES FOR REGULAR ERDs ARE ALWAYS IN BCNF

Indeed, the title of this subsection is true for any entity set
relation scheme. For a relationship-set of the type 1-REL, its
relation scheme is also in BCNF.

THEOREM 1. LET IE be any regular ERD, and let ENT represent
the relation scheme of an entity-set. in IE. Then ENT is in BCNF
with respect to F(IE).

Formal proof of this fundamental fact can be found in CJNS83al.
But it should be intuitively clear that any FD of the form X -> A
that is embedded in ENT must be derivable from F(ENT) alone,
which only has FDs of the form PK -> A k , Ak any other attribute
of ENT. One reason for this is that the attributes Ak are not
found in any other scheme. It follows that the primary key PK
must be contained in X.

There is little syntactic distinction, at root, between ENT
relation schemes with different, equivalent candidate keys and
the relation schemes of type 1-REL. Often, the choice of
entity-set or 1-related relationship to represent an "object"
like Department, is arbitrary. This suggests that Theorem 1 may
be extendable to relation schemes of 1-REL type. We find this
to be the case.

THEOREM 2. Let REL be a relationship-set relation scheme, in
a regular ERD IE, which has entity-sets El, Et all
1-related. Then REL is in BCNF with respect to F(IE).

Again, a formal proof can be found in CJNS 83a3 , based on the
simple observation that if X -> A is in any nontrivial FD true in
REL, then by regularity it must be derivable from F(REL). Thus, X
must contain the primary key of some E j , l<=j<=t, any of which is
a key of REL.

By exhaustive consideration of the cases of keys for any binary
relationship RCA, B), we can also conclude the following
proposition, which is the basis for the claim that Example 2,
despite its complex inter-connections, in in BCNF. In the. "worst

", where R is a many-to-many relation, even if some externalcase

159
connections imply the FD A -> B. we simply conclude that the key
A of R must be included on the left-side of any non-trivial FDs
derivable from F(R). (Another FD В -> A means В is also a key.)

PROPOSITION l: If REL is a binary relationship in a regular ERD
iE, then REL is in BCNF with respect to F(IE).

B. LOOP-FREE ERDs HAVE ALL RELATION SCHEMAS IN BCNF

The relationship-set relation schema E_D_P (EMPL, DEPT, PROJ)
of Example 1 is not in BCNF, because by Rule 3 applied to
D_P(DEPT, PROJ), the FD PROJ -> DEPT becomes embedded in the
schema E_D_P, where PROJ is NOT a key. We seek a condition to
rule out such cases. Note that there is no way to decompose
E_D_P into two binary relationships without losing some semantic
information.

We conclude that the problem in Example 1 arises from the fact
that this ERD contains a loop involving at least two distinct
relationship sets. Below we define formally what we mean by
"loop" and "loop-free" for an arbitrary regular ERD. Note that,
as in this example, it suffices to consider only the entites and
relationships, the "upper conceptual domain" of the ERD, rather
than the low-level attributes, because the latter do not affect
the existence of loops OR of BCNF-violating FDs in the ERD.

DEFINITION: Let the upper conceptual domain U(IE) of an ERD IE
be identified as the hypergraph whose nodes are all the entity
sets Ei of IE and whose (hyper)edges are all the relationship
sets R} of IE. Each Rj as an edge is the set of distinct
entity sets related by R “| . (This notion of possibly non-binary
edges generalizes the usual edge notion in graphs [Berg].)

Suppose E and E' denote entity sets in IE. A path from E to E'
is a sequence of distinct relationships R 1 , ..., Rs such that:

E is in Rl, E' is in Rs, and Ri Л Ri + 1 Ф ÇÎ, l< = i< = s.
The length of the above path is a. A loop based at E is a path
from E to E of length at least two. We shall call IE loop-free
if there does not exist a loop based at any node in U(IE).

PROPOSITION 2: An ERD IE is loop-free if and only if there is no
sequence in U(IE) of the for»

(R l , El, R2, E2, Rs, Es, Rs+1), where

1. El, E2, ..., Es are distinct entity sets;
2. Rl, R2, ..., Rs are distinct relationships:
3. s is at least two, and Rs+1 = R l ;
4. Ei is in (and so related by) both Ri and Ri+1, l<*i<=s.

160

This Proposition shows that IE is loop-free if and only if its
hypergraph is Berge-acyclic [Berg], equivalent here to 1-4, and
its proof follows directly from the definitions.

THEOREM 3: Let IE be a regular ERD that is also loop-free. Then
every relation scheme S in the canonical relational schema IR of
IE is in BCNF with respect to F(IE).

[The formal proof of Theorem 3 is too long to include here, but
is based on the intuitive idea that if no loops exist in the ERD,
then no "externally implied" FDs can become embedded even in a
non-binary, n-REL type relation scheme S. Notice that we already
know, by Theorems 1 and 2 and Proposition 1, that all other types
of relation schemes in IR are in BCNF with respect to F(1E).J

Example 3: The ERD in Figure 3 is the upper domain of the COMPUCO
database (from the manual of a popular DBMS), and it is clearly
loop-free. If we assume it is also regular, then we can write
down the important, inter-entity FDs simply by following Rules
1-3. However, even before seeing the FDs, we know by Theorem 3
that none of them will violate the BCNF conditions for the
relationship TRANSAX, which records daily transactions involving
customers, vended products, and sales representatives of a
value-added-reseller, where each product contains a certain type
of computer. For example, we see that the key transactid of
TRANSAX cannot be determined by any combination of the primary
entity keys: empid, custid, prodid.

FIGURE 3. The upper ERD of the COMPUCO database

161
NOTE: Although Theorem 3 can sometimes be used to conclude that
an entire database schema will be in BCNF, even before all the
FDs are explicitly seen, the loop-free condition is very much
stronger than the BCNF condition. That is, the former is not a
necessary condition for the latter, as the following example
shows. Also, c f . Example 2, which is in BCNF by Proposition 1,
but contains many loops.

Example 4: The entities are Contract, Supplier, Part, and pRice.
The parts and their prices are dependent by bid on the contract,
but not on the supplier. There is only one supplier for each
contract, but a supplier can charge different prices on different
contracts. The explicit keys are underlined:

IR = [ÇSPR; CS; Ç P : Ç R ; SR 3.

Theorem 3 does not apply to this IR, because its easily
diagrammed U (IE) has loops, but it is clearly in BCNF.

PROPOSITION 3: There are P-time algorithms to determine whether
any ERD IE is: <1) regular, for a given set IF of FDs, or (2>
loop-free.

Proof: One can test regularity, given the sets IF and F(IE) of
FDs, by testing if F<IE)+ = IF by use of the closure-membership
algorithm CUlm82b3, in time linear in the product of the sizes of
the sets. By Proposition 2, the loop-free test can be done by
standard algorithms for cycle-checking in P-time; cf. [FagSlD.H

III. SPECIAL CONDITIONS MAKING BCNF P-TIME TESTABLE

A. THE MASTER-FILE SCENARIO FORMALIZED

Many modest-sized databases have regular ERDs with canonical
relational schemas that exemplify the "unique masterfile"
scenario, mentioned in the Introduction. For convenience we
continue to study their ERD models here via the simplified
canonical relational schema which ignores the lower conceptuel
domains' proper parts: dependent attributes of entity and
relationship sets. That is, we consider only the entities - as
basic units - and the. relationships between them, the "upper
conceptual domain", in order to focus on the open question of
testing BCNF. We can do so without loss of generality because
the BCNF conditions can only be violated in regular ERD'a by
certain functional dependencies between entities, i .e . between
their primary key attributes. Thus, entities are here
represented solely by primary keys, the only attributes kept.

162
For our real-world-oriented class o±' ERDa we. can formalize the
nasterfile scenario as follows, assuming regularity. The class
includes all ERDs having canonical relational schemas of form:

(#> IR = (El.....Em: Rl,...,Rn; S3, where:

a. the Ei are all the entity set relation schemes;

b. S is the only relationship scheme which can relate one or
more m-related entities, except for the binary relationships;

c. the Ri are the other relationships' schemes, either
binary relationships (possibly n-to-1 , n-to-n, or 1 -to -1) or else
"equivalence" relationships where all entities are 1 -related:
1-RELs.

d. furthermore, the m-related entities of S, say Pl,...,Ps,
include a key or a determiner of a key for each entity set E} ,
i.e., PI...Pa -> Ет, 1< = j < = m . Thus, S contains a "database key"
CAtPa] .

While another type of Ri would be logically consistent, one that
has only one n-related entity and two or more 1 -related entities,
for simplicity we asssume this type decomposed into two or more
binary relationships, without losing generality. This is a
valid simplification when the ERD is regular. For example, the
relationship R(ABC3 with FD's A -> В and A -> C for A n-related
and B,C 1-related. By standard methods, R(ABC> is decomposable
into R'(AB3 and R"(AC3, losslessly, since A = AB л АС -> ВС
[Ulm82a].

В. TRANSFORMATION METHOD: UNIT FDa and KEY EQUIVALENCES

The masterfile scenario (#3 desribe.d above can be subjected to
the analysis of a transformational method that may reduce its set
IK of key dependencies to a "linear" set (of unit FDs3, whose
full set of keys can be discovered in P-time. Since the methodic
discovery of a new key, even for a single relation scheine, is the
NP-complete problem at the source of the intractibility of BCNF
C0sb3, such a transformation would solve the BCNF problem in this
case. To solve it in more general cases seems impossible by this
special method, because the needed assumptions are rather closely
fitted to our formal description of the given scenario.

The assumed scenario IR models a type of wel1-designed database:
there is one masterfile, S, which contains at least a determiner
of a key for each of the other files, the latter files having
either one key or else several equivalent keys. Some
wel1-designed, regular ERD's have canonical relational schemata
that can be described by the scenario above: Examples 3 and 4 are
such cases "in the small", but many others can be imagined, where

163

one file like the Transact Form file determines a key of all the
other files.

The main contribution of this section of the paper is chiefly
the insight that a fairly obscure, theorem, published by the Czech
researcher J. Pokorny, applies to this subclass of the regular
ERD's [Pok3. We use it to help test BCNF; to do so when normal
forms are untreated in Pokorny's paper, takes some mathematical
manipulation, but the ’'key” machinery is available in hie work!

Application to this special scenario (#) will show the logical
power of Pokorny's theorem, but it is impossible within the
constraints here even to outline its long proof. Essentially, the
result here can be applied to relational schemas other than as
depicted in the scenario, as long as their non-binary relation
schemes having m-related entities are losslessly loinable into a
single scheme, S. The exact conditions under which such loining
is possible is worthy of further research but is beyond the scone
of this work, which only seeks to clarify the basic approach.

Concerning the masterfile S, the basic Rule 3 FD's of S are in:

F (3) = {. Pl...Ps -> Ej , 1<=i<=t>,

where the Pi are the m-related and the E} the 1-related entities
of S. [We may assume by renumbering that these entities are the
first t in IR.3 Of course, Pl...Ps is not necessarily a minimal
key of S, which is part of our problem. If we knew that Pl...Pr,
r<s, say were a minimal key then we would retain only Pl,....,Pr
as the m-related entities in S and relegate the other Pi's to be
among its 1-related entities. Since the minimal left-hand sides
of the t FDs in F(S) can be determined easily, by standard
algorithms, we shall assume that F(S) is minimal.

Another assumption needed for using Pokorny's Theorem is the
non-redundancy of left-hand side attributes in the FDs of F(IR).
But this is trivial for the unit FDs in the other schemes, and we
have lust guaranteed by the minimality of FCS) that we do not
have either Pi->Pi or Pi->Pi.

Note that all the fundamental FD's in IF - F(S) are of the form
К -> A where К and A are entity-set primary (key) attributes,
and К is the key of a relation scheme other than S. FD's in this
simple form, with both left and right sides a single attribute,
are called "linear" by Pokorny; following common usage, we call
them "unit FDs" CBB793.

DEFINITION (ASSOCIATED SET OF UNIT FDs): Let us denote by

UFD(IR) = C F (I R) - F (S) 3 U { Pi -> E 3 : all i< = s,j< = t>.

164
the "set of unit FDs associated with" F < 1Ю . The set UFD(IR)
cannot be expected to be FD-equivalent to F(IR), but, under
certain further conditions, it may be "S-key-equivalent", meaning
that the sets of keys of S with respect to either F(IR) or
UFD(IR) would be identical. This is a desirable state; it would
enable testing S for the BCNF-ness! Indeed, Pokorny gives such
conditions that are a) easily P-time testable, b) neceseary when
BCNF does in fact hold, and c> in any case strong enough to make
the determination of BCNF possible in P-time.

To employ Pokorny's theorem in our setting, we define the
directed graph

G(IR) = < tEl,...,Em}; UFD(IR) >, where each unit FD

El->Eg in UFD(IR) is considered as an edge joining node Ei to
node Eg. Thus G(IR) is the directed graph with nodes all the
entity sets in IR and edges the unit FD'e associated with F(IR).
Since IR can be assumed to be a connected ERD (via the database
key) , it is easy to see that, the strongly connected components of
G (IR) , hereafter called components, determine what sets of
attributes are the keys of S under the FD constraints in
UFD(IR). By one other assumption, Pokorny's theorem shows us
how to determine that the same, sets are also the keys of S under
the FD's in all of F(IR>! We shall explain that other
assumption, which is easy to check in our scenario case.

Recall that any key of S is a key/determiner of any entity-set
E i . By a source component in G(IR) we shall mean, as in СРокЗ , a
component whose entities (all equivalent under unit fd's) have
in-degree, zero: there are no unit FDs from other components of
which they are the right-hand side. Clearly, any key of S must
consist of attributes Pi that are in separate, source, components.
All source components are easily computable in (small) polynomial
time, using Tartan's algorithm CAHUJ.

Let the source components of G(IR> be denoted as Sl,...,Sk.

DEFINITION: Let f: A 1An -> E be any FD in F(IR).
Let C be any non-source component in G(IR). We say that f is
hierarchiai for C if: (a) E is in C, and (b) none of the A 3 are
in C, for 1< = 3 < = n .

THEOREM 4: For the defined UFD(IR), the masterfile S of IR with
the assumptions above, and F(IR) the set of basic FDs of !R
having the minimality assumptions made above:

the sets of keys of S with respect to either F(IR) or
UFD(IR) are identical, if and only if:

(») for each non-source component C in G(IR), there is at least
one FD f in F(IR) that is hierarchiai for C.

165

NOTE: This is a restatement and aoplication of Pokornv’s Theorem
2 to our scenario. When this theorem is applicable, it will be
tractable to check the BCNF conditions for S, because finding
keys with respect to a set of unit FDs is solvble in P-time
CPok].

Suppose that the condition C*) of Theorem 4 is true. Then, in
particular for any non-source component C holding an E t of S:
there is at least one FD in FCS) of the form Pl...Ps -> E t such
that E t is in C and no Pi is in C, i.e. E t->Pí is NOT in F(IR).
Indeed, this is case, because, as we next show, for our special
scenario, this desirable condition C») is in fact true!

LEMMA: For relational schema IR of the special form <#>, with
the minimality of FCIR) assumed above, the condition C*) of
Theorem 4 is always true.

PROOF: In the scenario case C#). recall, the minimal left-sides
cf basic FDs in FCS) contain Pi that can be found in source
components of GCIR). Now, each non-source component C lies at
the end of an incoming edge Ca unit FD) from some other component
B. Let E in C be the right-side of such a unit FD. By the
nature of the two kinds of unit FDs in GCIR), associated with the
basic FDs in FCIR), there are two main cases:

Cl) В is a source component, and the unit FD can be
taken to be Р -> E. Then either this is a basic FD of FCIR) or
else, when E is in S and Р is some Pi, a minimal FD PI...Pa -> E
is in F(IR). In either subcase, none of the left side P's is in C
because C is non-source;

<2) В is a non-source component distinct from C, and the
connecting unit FD in GCIR) is say D -> E, where D is in B. But
this implies that D -> E is a basic FD in FCIR), and that D is
not in C because distinct components are disjoint.

Thus, in either main case for C an arbitrary non-source
component, there is an FD in FCIR) which is hierarchiai for C. [)

COROLLARY. For a relational schema of a regular ERD, in the form
C#) IR = CEl,...,Em; Rl,...,Rn; S) , as described above,

the property of being in BCNF can be decided algorithmically
in polynomial time.

PROOF: Recall that all schemes in IR, except possibly S, are
already in BCNF, by Theorems 1 and 2. Because Theorem 4's
condition C*) is true for IR, it can be applied to verify whether
S is in BCNF wrt FCIR) by finding the keys of S with respect to
the unit FD's in UFDCIR). CPokorny also showed that the
key-finding problem for a set of unit FD's is solvable in
P-time). Then, for any FD X -> A in the scope of S, one will
know whether X contains a key of S wrt FCIR), and so whether S
is in BCNF. Since the basic FDs of FCIR) form a cover of all
FDs, the whole process can be done in time polynomial in the size
of FC IR) . [3

166

IV. CONCLUDING REMARKS

We have seen two possible approaches to the problem of whether a
relational database schema IR is in BCNF, where we consider IR
the canonical schema of a regular ERD IE. In the first approach,
that of finding sufficient conditions to imply BCNF, we saw
incidentally that many relation schemes in IR are in fact in BCNF
with respect to F(!E) due to the regularity of IE: namely, the
schemes of entity sets (Theorem 1), of any binary relationships
(Proposition 1), and of any purely 1-related relationship sets
(Theorem 2). To ensure that every relation scheme in IR is in
BCNF, we defined the loop-free condition for an ERD; this
condition, in addition to regularity, obtains the desired result
(Theorem 3). There are P-time algorithms to determine the
regularity or loop-freeness of arbitrary ERDs (Proposition 3).

However, loop-freeness is equivalent to Berge acyclicity of IR,
which is the strongest notion of acyclicity usually studied for
relational schema CFagôl]. It is also a fairly restrictive
condition: an ERD with two different relationships that share at
least two entity sets (as in Example i.) violates it. Fagin's
results on Berge acyclicity show it eliminates ambiguity in
navigational paths to answer queries, and so it is nonetheless a
desirable property, both from this aspect and from the fact that
the implied BCNF condition prevents certain of the classical
update and insertion anomalies CLePa].

For our second approach to the BCNF problem, we posited an
ERD-based design scenario suggested by several examples that
makes it possible to test for the condition. To see that this
test can be done in the scenario setting, it was helpful to use
the "key-equivalence via unit FDs" result of Pokorny (Theorem 4).
In its corollary, we have given a method that determines truth or
falsity of BCNF, under quite feasible conditions. These
conditions include the non-existence of pairs of redundant
attributes Pl....Ps in the primary key of S, which holds a
database key, implying all other attributes. To reduce the
seeming "restriction" of this design requirement, note that the
DBA can avoid redundancy by combining equivalent attributes into
one entity, with separate fields for the attributes.

Overall, we have seen that when the Section III relational model
IR of the scenario is used as a guide, a specialized database
design methodology is obtained that has the desired property: its
specific cases, various relational schemata, can be tested for
BCNF in polynomial time. The scenario design model also has
other pleasing properties, e.g, that its most complex relation
scheme S acts as a "masterfile" for the database, and that its
own minimal keys are easy to find. While this model is clearly
not universally applicable, in many cases (e.g., where a database
key can be given) it may turn out to be useful, at least as a
guide. ***###***

167

REFERENCES

ÍAHU3 Ahof A., Hoccroft, J. and Ullman, J. "The Design and
Analysis of Computer Algorithms", Addison-Wesley, Reading, 1 9 7 6

[AtPa3 Atzeni, P. and Parker, D.S. Assumptions in relational
database theory. Proc. 1st ACM Conf. Principles DB Systems, 1982

[BB793 Beeri, C. and Bernstein, P. Computational problems
related to the design of normal form relational databases. ACM
Trans. Database Sys., 4(1), Mar. 1979

[Berg] Berge, C. "Graphs and Hypergraphs", North-Ho1land,
Amsterdam, 1976.

[Ch763 Chen, P. The entity-relationship model: towards a
unified view of data. ACM Trans. Database Sys., 1<13, Mar. 1976

[Ch803 Chen, P. (ed.) "Entity-Relationship Approach to
Systems Analysis and Design", North-Holland, Amsterdam, 1980

CCoddl Codd, E.F. Recent investigations in relational
database systems, Proc. 1974 IFIP Cong., North-Holland, 1974

[Fag813 Fagin, R. Types of acyclicity for hypergraphs and
relational databases, Technical Report RJ 3330, IBM San Jose,
1981

[JF3 Jou, J. and Fischer, P. The complexity of recognizing
third-normal form. Info. Proc. Letters 14 (4), June 1982

[JNS83a3 Jaiodia,S., Ng,P. and Springsteel, F. Entity-
relationship diagrams which are in BCNF, Inti. J. Comp. Info.
Sei. 12 (4), 1983

[JNS83b3 Jajodia, Ng, and Springsteel. Problems of equivalence
for entity-relationship diagrams, IEEE Trans. Software Enqr. 9,
1983

[JNS83c3 Jaiodia, Ng, and Springsteel. On universal and
representative instances for inconsistent databases. Proc. 3rd
Entity-Relationship Conf., North-Holland, 1983

[LePs3 LeDoux, C. and Parker, D.S. Reflections on Boyce-Codd
Normal Form, Proc. 8th Inti. Conf. Very Large Data Bases, 1982

[Lien] Lien, E. On equivalence of database models, J.ACM
29 < 2 >, 1982

[0sb3 Osborn, S. Testing for existence of a covering Boyce-
Codd Normal Form, Information Processing Letters 8 <1), 1979

168

СРокЗ Р о к о т у , J. Key-equivalence of functional dependency
systems, Proc. lOth Symp. Math. Foundations Computer Science.
Lecture Notes in Comp. Sei. #llô, Springer-Verlag (1981)

[Ulm82a3 Ullman, J. "Principles of Database Systems". Second
Edtn., Computer Science Press, Rockville, Maryland, 1982

[Ulm823 Ullman, J. The U(niversal) R(elation) strikes back!
Proc. 1st ACM Conf. Principles Database Systems, 1982

Prof. F.N. Springsteel
University of Missouri at Columbia
Department of Computer Science
Columbia, Missouri 65211 USA
Telephone: (314) 882-4480, 882-3842

169

A restricted design methodology to allow testing for
BCNF in polynomial time

F.N. Springsteel

Summary

In a relational database it is important to be able
to test a proposed database design for the Boyce-Codd
Normal Form (BCNF) condition. In the paper conditions
are given that are either sufficient for BCNF or show
that BCNF cannot be tested in polynomial time. There
are two sets of conditions. The first one logically
imply BCNF and it provide a setting which helps to
suggest the second one in which it is easier to test
for BCNF. The proposed methodology works for many data­
bases expressible by E-R diagrams which have a
"database key".

1 70

Egy korlátozott tervezési metodika BCNA tesztelésére
polinomiális időben

F.N. Springsteel

összefoglaló

A relációs adatbázis modell esetén igen fontos kitesz­
telni a javasolt adatbázis tervet, vajon teljesiti-e a
Boyce-Codd-féle Normál Alak /BCNA/ feltételt. A cikkben
olyan feltételek vannak megadva, amelyek vagy elégsége­
sek a BCNA-hoz, vagy megmutatják, hogy a BCNA-t nem
lehet polinom idő alatt kitesztelni. Kétfajta feltétel-
rendszer van. Az elsőnek logikai következménye a BCNA
és egyben megmutatja hogyan néz ki a második, amelyben a
BCNA-t már könnyebben lehet tesztelni. A javasolt meto­
dika különösen alkalmas azokra az adatbázisokra, amelye­
ket "adatbázis kulcs"-al rendelkező E-R diagramm segít­
ségével lehet leirni.

	F. N. Springsteel: A restricted design methodology to allow testing for BCNF in polynomial time��
	Oldalszámok������������������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������

