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ABSTRACT

Boyce-Codd Normal Form (BCNF) is a well-known 
condition on relational database schemas that 
implies some desirable properties, and is known 
to prevent some very undesirable "anomalies” from 
occurring in the use of the database. It is thus 
important to be able to test a proposed database 
design for this condition.

This investigation of logical database design 
methods asks whether there are any conditions on 
a relational database schema such that, although 
they are not equivalent to BCNF, do guarantee 
that this desirable property can be detected in 
polynomial time (P-time). Conditions equivalent 
to BCNF are known to be intractable to test, but 
the conditions we give here are either sufficient 
for BCNF or else enable its being tested in P-time, 
and the conditions themselves are likewise testable. 
They are also desirable for certain design reasons.

While the first set of conditions only logically 
imply BCNF, they provide a setting (regular entity- 
relationship diagrams) which helped to suggest the 
second set of conditions, in which it is easier to 
test for this normal form than in general databases. 
Also, we argue, this setting is valuable in its own 
right, and can lead to a useful, if not universal, 
database design methodology. This methodology works 
for many databases expressible, by E-R diagrams which 
have a "database key".
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I. INTRODUCTION AND PRELIMINARIES

A. THE PROBLEM AND THE APPROACHES

It is clearly futile to search for conditions that are equivalent 
to BCNF, because it is an NP-complete problem to test relations 
for BCNF and conditions very similar to it, in general relational 
databases CBB79: J F ; Osbl • Only very strong conditions seem to
imply BCNF, e.g. 4NF,PJNF CLePa], and Berge-acyclicity [JNS83al.

However, it is possible that certain conditions related to 
"BCNF-ness" are so akin to this normal form that it can be tested 
in their presence, in tractable time. Indeed we find that this is 
the case; there are arguably quite, reasonable, realistic 
conditions that one might like to see in the schema design 
normally, fitting the above description.

For now we shall only describe one set of conditions in intuitive 
terms ; later on we will give their formal descriptions. These 
conditions model a type of very well designed database: there is 
one master-file, S, which contains either a key or a determiner 
of a key for each of the other files. These other files relate 
either one key to its directly dependent attributes or else 
relate several equivalent keys, possibly of different entities.
We refer to databases of this type as fitting our "master-file" 
scenario.

In the next part of this first section we review the special 
concepts needed for our approach, including the definition of 
"regular" for an entity-relationship diagram (ERD). We assume 
that the reader is familiar with standard relational database 
theory, including the concepts of functional dependencies, keys, 
and schema CUlm82al.

In Section II we discuss conditions that are sufficient to imply 
BCNF for relation schemes in the canonical relational schema IR 
of a regular ERD IE. Certain of these schemes are automatically 
in BCNF in such IR, viz., those of entity sets, of purely "one- 
related" relationships, and of binary relationships. Here we 
give one condition sufficient for BCNF for all other schemes in 
IR, that the underlying regular ERD also be "loop-free” .

In the third section we shall explain the "master-file approach" 
formally, and show that it enables one to test the BCNF-ness of 
the particular databases that can be defined to conform with it. 
This "restrictive design methodology" is then discussed in the 
last section.
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В. ENTITY-RELATIONSHIP PRELIMINARIES

Until recently most authors have used E-R diagrams as concise 
and intuitive database design indicators, using entities and 
relationships as a "lingua franca" of data model theory. ERDs 
act as interfaces between the various conceptual models in the 
database literature. For examDle, in the 1982 ACM Symposium on 
Principles of Database Systems both the opponents [AtPal and the 
proponent CUlm82bl of the "universal relation view" used infor­
mal ERD's in their arguments.

We have seen logical analysis of the E-R model reach a new level, 
that of rigorous and careful treatment of many of the basic 
assumptions and definitions behind this "lacknife" of the trade 
CCh76,80: JNS83a,b,cl. Not only do is this useful to help an 
understanding of the entity-relation model, but also the newer 
results have bearing on many issues of database, theory. There is 
now an impetus to study its formaiicable aspects with the same 
care that has been applied to the relational model. As a basic 
text in database systems IUlm82aI explains, there is a natural 
representation of the E-R model in terms of either the. relational 
or network or hierarchical data models.

The conversion of an ERD into a relational model, using one 
associated relation scheme for each entity or relationship, has 
become a standard, accepted method CUlm82a]. We extend this 
known conversion one step farther, to ask: What do the given
quantifying marks on the relation/entity connectors in the E-R 
diagram imply that we know about functional dependencies (FDs) in 
its canonical relational schema, of all the associated schemes?
We feel that the proper interpretation of these marks, in direct 
accordance with standard mathematical thinking about many-to-one 
functions, leads inevitably to the definition of a “regular" ERD 
and of its "basic" (or fundamental) FDs, as seen below.

Example 0: Consider Figure O, containing entity sets, EMPL and
DEPT, and the relationship set EMPL_DEPT. These entity sets are 
converted into relation schemes, with the same names, as follows:

EMPL < E#,EN,JC); DEPT(D#,MGR,LOC) .
Note that the respective keys are E# and D#, called the primary 
entity keys, determining the other attributes in their relation 
schemes, as seen by the quantifying mark 'n' on their connectors, 
and '1' on the dependent attributes. Hence, in the relationship 
scheme EMPL_DEPT we need not repeat the dependent attributes of 
these entities, but only give these keys plus any attributes 
directly dependent on the relation, here TASK and STart_DATE:

EMPL_DEPT ( E# ,D#,TASK,ST_DATE) .
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Note that the attributes E N .J C ,MGR,LOC,TASK and ST_DAT£ are in 
fact all functionally determined by the key E# of EMPL, which 
is thus a key of the relation scheme EMPL_DEPT.

The above dependency analysis can be seen to be correct from the 
' n ' and '1' (partial) functional indicators on the arrows; i.e.f 
we consistently mark all connectors in an ERD with indicators of 
the connected entity's functional participation in the affected 
relationship, whenever this information is known. Thus, by 
following the arrows, from n- to 1-releted attributes, the ERD 
deducible functional dependencies (FDs) can be written down!

Two cautions are in order: a) to employ this convenience, we 
disallow any special types of attributes, e.g. those whose 
existence depends on other entities, which would need special 
designations; b) the device of "following the arrows" needs 
interpretation for relationships of three or more entities.

However, for normal entity schemes or for binary relationships 
as above our convention is clear. Thus, since the keys can be 
seen by inspection, it follows that the "basic FDs" of the ERD 
of Figure О are these;

E# -> EN, E# -> JC for the schema EMPL;

D# -> MGR, D# -> LOC for the schema DEPT; and

E# -> D#, E# -> TASK, E# -> ST_DATE for schema EMPL_DEPT.

Note that if we did NOT know the n/1 functionality in this last 
relationship, then we could only assume an arbitrary many-related 
indicator 'n' on both connectors between EMPL and DEPT, with the 
consequence being in that case: the only deducible key (from this 
information) would be (E#,D#>. Also, if an k-ary relation has 
two or more entities (say PI thru Ps) with 'n' indicators, and

FIGURE O. A REGULAR ERD
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all others marked '1'. then the indicated key is Pl....Ps. This 
makes sense if one thinks of the arrows as showing the many-one 
functionality from the several n-related arguments. Pi, to the 
other attributes, a unique tuple of values of which is determined 
by fixing an s-tuple of values for the key.

We shall call all relationship schemas with at least one 
n-related entity n-RELs: if they have any unmarked entities 
('n', by default) we also call them n-RELs. In either case the 
indicated key would be the union of all the n-related entities' 
primary keys. In practice an "all n" case is rare. Less rare is 
the case of all entities being mutually determining keys, i.e.
Ei -> E t , all i and t . When this happens we call the relationship 
schema 1-REL, because all its Ei should be marked '1'.

RULES FOR THE BASIC FDs GIVEN BY A (REGULAR) E-R DIAGRAM:

For each entity set relation scheme ENT(PK, A 1 , ....Ae), where PK
is the pre-chosen primary key, we have these 'basic' FD's

RULE l: F (ENT) = {PK -> Ak : l<=k<=e.>

For each 1-REL relation scheme, the set of 'basic' FD's is 

RULE 2: F(l-REL) = <Ei -> Au : Ei 1-related, A t any attribute).

Finally, for any n-REL relation scheme, where Pl,...,Ps are the 
primary keys of the n-related entities, the 'basic' FD's are

RULE 3: F(n-REL) = {Pl...Ps -> Ai : Ai any other attribute).

The "canonical relational (database) schema" of an ERD is the set 
of all its associated relation schemes. E.g., for Example 0, it 
can be denoted IR = I EMPL, DEPT; EMPL_DEPT >.

DEFINITION: If an ERD has only relationship schemes of the
types 1-REL and/or of the type n-REL, with the basic FDs for each 
of its entity and relationship schemes as defined above in Rules 
1 - 3 ,  then we call the ERD, and its canonical relational schema 
IR, regular.

NOTE; Since all these rule-given FD's are the only ones clearly 
visible from the ERD itself, as the database design, and because 
the ERD is presumed to have clear semantics, the set of all the 
basic FDs is assumed to be a cover for all (the known) FDs of IR. 
This assumption is implicit in the definition of "regular" ERD.

Clearly, the ERD of Figure 0, with the FDs we have deduced from 
it as above, is a regular ERD.
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DEFINITION: A relation schema R is said to be in Boyce-Codd
Normal Form (BCNF) with respect to a set F of FDs if. for any FD 
X -> A embedded in R, either A is in X (i.e., this FD is trivial) 
or else X contains a key of R (with respect to the set F ) .
We also say that a relational schema <IR, IF> is in BCNF, 
("globally") where IR is a set of relation schemes <Ri, Fi> with 
FD sets Fi over R i , if each Ri is in BCNF with respect to all the 
FDs derivable from IF = Ui Fi. We informally say that a regular 
ERD IE is in ‘'BCNF” iff its canonical relational schema <IR, IF> 
is, where IF is the family of all its basic FDs.

As examples showing the range of such conditions, we exhibit an 
(upper conceptual domain of an) ERD which is not in BCNF and a 
larger diagram which is.

Example 1. In this ERD of an Employee/Department/Pronect
relationship, each EMPL can work in more than one DEPT, and only 
the combination of DEPT and EMPL determines the Project now being 
worked on by that employee in that department. Each Project 
is wholly contained in a single Department. The ERD is NOT in 
BCNF, because PROJ -> DEPT is a violating F D .

FIGURE 1. Regular ERD not in BCNF

Example 2. This is from a real-world case study of a business 
enterprise's accounting functions, of a complicated and very 
inter-related nature CUlm82b3. (The sample subdiagram shown here 
represents less than a third of the original!) With applications 
of this complexity being common, some very realistic databases
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can be seen to be in BCNF, as lone as they are well structured. 
In this case the schema is in BCNF because all relationships are 
in fact binary; c f . Proposition 1 of Section II.

FIGURE 2. Enterprise's schema, in BCNF 

II. SUFFICIENT CONDITIONS FOR BCNF

In this section we shall describe some general conditions 
that are sufficient to imply BCNF. This preface to our Section 
III discussion of the scenario is needed for two purposes: a) to
help orient the reader to terminology used later, and b> to show 
the power of certain general conditions by exhibiting their 
desirable consequence when assumed as a "package", namely BCNF.

We assume that the reader is familiar with the principles 
of database dependencies, as found in [Ulm82a3. We shall adopt 
the notation and terminology there. Below we shall assume that 
IE is a regular ERD whose canonical relational scheme can be 
denoted

IR = (SI, S2, ...., Sn), and that these n relation schemes
have their basic sets of FDs, as defined in Section I, denoted 
Fl, F2, ..... Fn. Let the set of all basic FDs of IE be denoted

F(IE) = Fl U F2 U ...U Fn. By the nature of Rules 1-3, 
each FD К -> A in an Fi must enioy these properties:

1. be embedded in an Si: KA Ç Si;
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2. have, in К only primary key attributes of entity sets;

3. have a single attribute of Si as its right-hand side A;

4. have a key (or superkey) of Si as its left-hand aide K.

A. MANY RELATION SCHEMES FOR REGULAR ERDs ARE ALWAYS IN BCNF

Indeed, the title of this subsection is true for any entity set 
relation scheme. For a relationship-set of the type 1-REL, its 
relation scheme is also in BCNF.

THEOREM 1. LET IE be any regular ERD, and let ENT represent 
the relation scheme of an entity-set. in IE. Then ENT is in BCNF 
with respect to F(IE).

Formal proof of this fundamental fact can be found in CJNS83al. 
But it should be intuitively clear that any FD of the form X -> A 
that is embedded in ENT must be derivable from F(ENT) alone, 
which only has FDs of the form PK -> A k , Ak any other attribute 
of ENT. One reason for this is that the attributes Ak are not 
found in any other scheme. It follows that the primary key PK 
must be contained in X.

There is little syntactic distinction, at root, between ENT 
relation schemes with different, equivalent candidate keys and 
the relation schemes of type 1-REL. Often, the choice of 
entity-set or 1-related relationship to represent an "object" 
like Department, is arbitrary. This suggests that Theorem 1 may 
be extendable to relation schemes of 1-REL type. We find this 
to be the case.

THEOREM 2. Let REL be a relationship-set relation scheme, in 
a regular ERD IE, which has entity-sets El, Et all
1-related. Then REL is in BCNF with respect to F(IE).

Again, a formal proof can be found in CJNS 83a3 , based on the 
simple observation that if X -> A is in any nontrivial FD true in 
REL, then by regularity it must be derivable from F(REL). Thus, X 
must contain the primary key of some E j , l<=j<=t, any of which is
a key of REL.

By exhaustive consideration of the cases of keys for any binary 
relationship RCA, B), we can also conclude the following 
proposition, which is the basis for the claim that Example 2, 
despite its complex inter-connections, in in BCNF. In the. "worst 

", where R is a many-to-many relation, even if some externalcase
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connections imply the FD A -> B. we simply conclude that the key 
A of R must be included on the left-side of any non-trivial FDs 
derivable from F(R). (Another FD В -> A means В is also a key.)

PROPOSITION l: If REL is a binary relationship in a regular ERD
iE, then REL is in BCNF with respect to F(IE).

B. LOOP-FREE ERDs HAVE ALL RELATION SCHEMAS IN BCNF

The relationship-set relation schema E_D_P (EMPL, DEPT, PROJ) 
of Example 1 is not in BCNF, because by Rule 3 applied to 
D_P(DEPT, PROJ), the FD PROJ -> DEPT becomes embedded in the 
schema E_D_P, where PROJ is NOT a key. We seek a condition to 
rule out such cases. Note that there is no way to decompose 
E_D_P into two binary relationships without losing some semantic 
information.

We conclude that the problem in Example 1 arises from the fact 
that this ERD contains a loop involving at least two distinct 
relationship sets. Below we define formally what we mean by 
"loop" and "loop-free" for an arbitrary regular ERD. Note that, 
as in this example, it suffices to consider only the entites and 
relationships, the "upper conceptual domain" of the ERD, rather 
than the low-level attributes, because the latter do not affect 
the existence of loops OR of BCNF-violating FDs in the ERD.

DEFINITION: Let the upper conceptual domain U(IE) of an ERD IE
be identified as the hypergraph whose nodes are all the entity 
sets Ei of IE and whose (hyper)edges are all the relationship 
sets R} of IE. Each Rj as an edge is the set of distinct
entity sets related by R “| . (This notion of possibly non-binary 
edges generalizes the usual edge notion in graphs [Berg].)

Suppose E and E' denote entity sets in IE. A path from E to E' 
is a sequence of distinct relationships R 1 , ..., Rs such that:

E is in Rl, E' is in Rs, and Ri Л Ri + 1 Ф  ÇÎ, l< = i< = s.
The length of the above path is a. A loop based at E is a path 
from E to E of length at least two. We shall call IE loop-free 
if there does not exist a loop based at any node in U(IE).

PROPOSITION 2: An ERD IE is loop-free if and only if there is no
sequence in U(IE) of the for»

(R l , El, R2, E2, Rs, Es, Rs+1), where

1. El, E2, ..., Es are distinct entity sets;
2. Rl, R2, ..., Rs are distinct relationships:
3. s is at least two, and Rs+1 = R l ;
4. Ei is in (and so related by) both Ri and Ri+1, l<*i<=s.
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This Proposition shows that IE is loop-free if and only if its 
hypergraph is Berge-acyclic [Berg], equivalent here to 1-4, and 
its proof follows directly from the definitions.

THEOREM 3: Let IE be a regular ERD that is also loop-free. Then 
every relation scheme S in the canonical relational schema IR of 
IE is in BCNF with respect to F(IE).

[The formal proof of Theorem 3 is too long to include here, but 
is based on the intuitive idea that if no loops exist in the ERD, 
then no "externally implied" FDs can become embedded even in a 
non-binary, n-REL type relation scheme S. Notice that we already 
know, by Theorems 1 and 2 and Proposition 1, that all other types 
of relation schemes in IR are in BCNF with respect to F(1E).J

Example 3: The ERD in Figure 3 is the upper domain of the COMPUCO 
database (from the manual of a popular DBMS), and it is clearly 
loop-free. If we assume it is also regular, then we can write 
down the important, inter-entity FDs simply by following Rules 
1-3. However, even before seeing the FDs, we know by Theorem 3 
that none of them will violate the BCNF conditions for the 
relationship TRANSAX, which records daily transactions involving 
customers, vended products, and sales representatives of a 
value-added-reseller, where each product contains a certain type 
of computer. For example, we see that the key transactid of 
TRANSAX cannot be determined by any combination of the primary 
entity keys: empid, custid, prodid.

FIGURE 3. The upper ERD of the COMPUCO database
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NOTE: Although Theorem 3 can sometimes be used to conclude that 
an entire database schema will be in BCNF, even before all the 
FDs are explicitly seen, the loop-free condition is very much 
stronger than the BCNF condition. That is, the former is not a 
necessary condition for the latter, as the following example 
shows. Also, c f . Example 2, which is in BCNF by Proposition 1, 
but contains many loops.

Example 4: The entities are Contract, Supplier, Part, and pRice.
The parts and their prices are dependent by bid on the contract, 
but not on the supplier. There is only one supplier for each 
contract, but a supplier can charge different prices on different 
contracts. The explicit keys are underlined:

IR = [ ÇSPR; CS; Ç P : Ç R ; SR 3.

Theorem 3 does not apply to this IR, because its easily 
diagrammed U (IE) has loops, but it is clearly in BCNF.

PROPOSITION 3: There are P-time algorithms to determine whether 
any ERD IE is: <1) regular, for a given set IF of FDs, or (2>
loop-free.

Proof: One can test regularity, given the sets IF and F(IE) of
FDs, by testing if F<IE)+ = IF by use of the closure-membership 
algorithm CUlm82b3, in time linear in the product of the sizes of 
the sets. By Proposition 2, the loop-free test can be done by 
standard algorithms for cycle-checking in P-time; cf. [FagSlD.H

III. SPECIAL CONDITIONS MAKING BCNF P-TIME TESTABLE

A. THE MASTER-FILE SCENARIO FORMALIZED

Many modest-sized databases have regular ERDs with canonical 
relational schemas that exemplify the "unique masterfile" 
scenario, mentioned in the Introduction. For convenience we 
continue to study their ERD models here via the simplified 
canonical relational schema which ignores the lower conceptuel 
domains' proper parts: dependent attributes of entity and 
relationship sets. That is, we consider only the entities - as 
basic units - and the. relationships between them, the "upper 
conceptual domain", in order to focus on the open question of 
testing BCNF. We can do so without loss of generality because 
the BCNF conditions can only be violated in regular ERD'a by 
certain functional dependencies between entities, i .e . between 
their primary key attributes. Thus, entities are here 
represented solely by primary keys, the only attributes kept.
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For our real-world-oriented class o±' ERDa we. can formalize the 
nasterfile scenario as follows, assuming regularity. The class 
includes all ERDs having canonical relational schemas of form:

(#> IR = (El.....Em: Rl,...,Rn; S3, where:

a. the Ei are all the entity set relation schemes;

b. S is the only relationship scheme which can relate one or 
more m-related entities, except for the binary relationships;

c. the Ri are the other relationships' schemes, either 
binary relationships (possibly n-to-1 , n-to-n, or 1 -to -1 ) or else 
"equivalence" relationships where all entities are 1 -related: 
1-RELs.

d. furthermore, the m-related entities of S, say Pl,...,Ps, 
include a key or a determiner of a key for each entity set E} , 
i.e., PI...Pa -> Ет, 1< = j < = m . Thus, S contains a "database key" 
CAtPa] .

While another type of Ri would be logically consistent, one that 
has only one n-related entity and two or more 1 -related entities, 
for simplicity we asssume this type decomposed into two or more 
binary relationships, without losing generality. This is a 
valid simplification when the ERD is regular. For example, the 
relationship R(ABC3 with FD's A -> В and A -> C for A n-related 
and B,C 1-related. By standard methods, R(ABC> is decomposable 
into R'(AB3 and R"(AC3, losslessly, since A = AB л АС -> ВС 
[Ulm82a].

В. TRANSFORMATION METHOD: UNIT FDa and KEY EQUIVALENCES

The masterfile scenario (#3 desribe.d above can be subjected to 
the analysis of a transformational method that may reduce its set 
IK of key dependencies to a "linear" set (of unit FDs3, whose 
full set of keys can be discovered in P-time. Since the methodic 
discovery of a new key, even for a single relation scheine, is the 
NP-complete problem at the source of the intractibility of BCNF 
C0sb3, such a transformation would solve the BCNF problem in this 
case. To solve it in more general cases seems impossible by this 
special method, because the needed assumptions are rather closely 
fitted to our formal description of the given scenario.

The assumed scenario IR models a type of wel1-designed database: 
there is one masterfile, S, which contains at least a determiner 
of a key for each of the other files, the latter files having 
either one key or else several equivalent keys. Some 
wel1-designed, regular ERD's have canonical relational schemata 
that can be described by the scenario above: Examples 3 and 4 are 
such cases "in the small", but many others can be imagined, where
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one file like the Transact Form file determines a key of all the 
other files.

The main contribution of this section of the paper is chiefly 
the insight that a fairly obscure, theorem, published by the Czech 
researcher J. Pokorny, applies to this subclass of the regular 
ERD's [Pok3. We use it to help test BCNF; to do so when normal 
forms are untreated in Pokorny's paper, takes some mathematical 
manipulation, but the ’'key” machinery is available in hie work!

Application to this special scenario (#) will show the logical 
power of Pokorny's theorem, but it is impossible within the 
constraints here even to outline its long proof. Essentially, the 
result here can be applied to relational schemas other than as 
depicted in the scenario, as long as their non-binary relation 
schemes having m-related entities are losslessly loinable into a 
single scheme, S. The exact conditions under which such loining 
is possible is worthy of further research but is beyond the scone 
of this work, which only seeks to clarify the basic approach.

Concerning the masterfile S, the basic Rule 3 FD's of S are in:

F ( 3 ) = {. Pl...Ps -> Ej , 1<=i<=t>,

where the Pi are the m-related and the E} the 1-related entities 
of S. [We may assume by renumbering that these entities are the 
first t in IR.3 Of course, Pl...Ps is not necessarily a minimal 
key of S, which is part of our problem. If we knew that Pl...Pr, 
r<s, say were a minimal key then we would retain only Pl,....,Pr 
as the m-related entities in S and relegate the other Pi's to be 
among its 1-related entities. Since the minimal left-hand sides 
of the t FDs in F(S) can be determined easily, by standard 
algorithms, we shall assume that F(S) is minimal.

Another assumption needed for using Pokorny's Theorem is the 
non-redundancy of left-hand side attributes in the FDs of F(IR). 
But this is trivial for the unit FDs in the other schemes, and we 
have lust guaranteed by the minimality of FCS) that we do not 
have either Pi->Pi or Pi->Pi.

Note that all the fundamental FD's in IF - F(S) are of the form 
К -> A where К and A are entity-set primary (key) attributes, 
and К is the key of a relation scheme other than S. FD's in this 
simple form, with both left and right sides a single attribute, 
are called "linear" by Pokorny; following common usage, we call 
them "unit FDs" CBB793.

DEFINITION (ASSOCIATED SET OF UNIT FDs): Let us denote by

UFD(IR) = C F (I R) - F (S ) 3 U { Pi -> E 3 : all i< = s,j< = t>.
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the "set of unit FDs associated with" F < 1Ю . The set UFD(IR) 
cannot be expected to be FD-equivalent to F(IR), but, under 
certain further conditions, it may be "S-key-equivalent", meaning 
that the sets of keys of S with respect to either F( IR) or 
UFD(IR) would be identical. This is a desirable state; it would 
enable testing S for the BCNF-ness! Indeed, Pokorny gives such 
conditions that are a) easily P-time testable, b) neceseary when 
BCNF does in fact hold, and c> in any case strong enough to make 
the determination of BCNF possible in P-time.

To employ Pokorny's theorem in our setting, we define the 
directed graph

G(IR) = < tEl,...,Em}; UFD(IR) >, where each unit FD

El->Eg in UFD(IR) is considered as an edge joining node Ei to 
node Eg. Thus G(IR) is the directed graph with nodes all the 
entity sets in IR and edges the unit FD'e associated with F(IR). 
Since IR can be assumed to be a connected ERD (via the database 
key) , it is easy to see that, the strongly connected components of 
G ( IR ) , hereafter called components, determine what sets of 
attributes are the keys of S under the FD constraints in 
UFD(IR). By one other assumption, Pokorny's theorem shows us 
how to determine that the same, sets are also the keys of S under 
the FD's in all of F(IR>! We shall explain that other 
assumption, which is easy to check in our scenario case.

Recall that any key of S is a key/determiner of any entity-set 
E i . By a source component in G(IR) we shall mean, as in СРокЗ , a 
component whose entities (all equivalent under unit fd's) have 
in-degree, zero: there are no unit FDs from other components of
which they are the right-hand side. Clearly, any key of S must 
consist of attributes Pi that are in separate, source, components. 
All source components are easily computable in (small) polynomial 
time, using Tartan's algorithm CAHUJ.

Let the source components of G(IR> be denoted as Sl,...,Sk.

DEFINITION: Let f: A 1 .....An -> E be any FD in F(IR).
Let C be any non-source component in G(IR). We say that f is 
hierarchiai for C if: (a) E is in C, and (b) none of the A 3 are
in C, for 1< = 3 < = n .

THEOREM 4: For the defined UFD(IR), the masterfile S of IR with 
the assumptions above, and F(IR) the set of basic FDs of !R 
having the minimality assumptions made above:

the sets of keys of S with respect to either F(IR) or 
UFD(IR) are identical, if and only if:

(») for each non-source component C in G(IR), there is at least 
one FD f in F(IR) that is hierarchiai for C.
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NOTE: This is a restatement and aoplication of Pokornv’s Theorem 
2 to our scenario. When this theorem is applicable, it will be 
tractable to check the BCNF conditions for S, because finding 
keys with respect to a set of unit FDs is solvble in P-time 
CPok].

Suppose that the condition C*) of Theorem 4 is true. Then, in 
particular for any non-source component C holding an E t of S: 
there is at least one FD in FCS) of the form Pl...Ps -> E t such 
that E t is in C and no Pi is in C, i.e. E t->Pí is NOT in F(IR). 
Indeed, this is case, because, as we next show, for our special 
scenario, this desirable condition C») is in fact true!

LEMMA: For relational schema IR of the special form <#>, with
the minimality of FCIR) assumed above, the condition C*) of 
Theorem 4 is always true.

PROOF: In the scenario case C#). recall, the minimal left-sides
cf basic FDs in FCS) contain Pi that can be found in source 
components of GCIR). Now, each non-source component C lies at 
the end of an incoming edge Ca unit FD) from some other component 
B. Let E in C be the right-side of such a unit FD. By the 
nature of the two kinds of unit FDs in GCIR), associated with the 
basic FDs in FCIR), there are two main cases:

Cl) В is a source component, and the unit FD can be 
taken to be Р -> E. Then either this is a basic FD of FCIR) or 
else, when E is in S and Р is some Pi, a minimal FD PI...Pa -> E 
is in F(IR). In either subcase, none of the left side P's is in C 
because C is non-source;

<2) В is a non-source component distinct from C, and the 
connecting unit FD in GCIR) is say D -> E, where D is in B. But 
this implies that D -> E is a basic FD in FCIR), and that D is 
not in C because distinct components are disjoint.

Thus, in either main case for C an arbitrary non-source 
component, there is an FD in FCIR) which is hierarchiai for C. [)

COROLLARY. For a relational schema of a regular ERD, in the form 
C#) IR = CEl,...,Em; Rl,...,Rn; S ) , as described above,

the property of being in BCNF can be decided algorithmically 
in polynomial time.

PROOF: Recall that all schemes in IR, except possibly S, are 
already in BCNF, by Theorems 1 and 2. Because Theorem 4's 
condition C*) is true for IR, it can be applied to verify whether 
S is in BCNF wrt FCIR) by finding the keys of S with respect to 
the unit FD's in UFDCIR). CPokorny also showed that the 
key-finding problem for a set of unit FD's is solvable in 
P-time). Then, for any FD X -> A in the scope of S, one will 
know whether X contains a key of S wrt FCIR), and so whether S 
is in BCNF. Since the basic FDs of FCIR) form a cover of all 
FDs, the whole process can be done in time polynomial in the size 
of FC IR) . [3
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IV. CONCLUDING REMARKS

We have seen two possible approaches to the problem of whether a 
relational database schema IR is in BCNF, where we consider IR 
the canonical schema of a regular ERD IE. In the first approach, 
that of finding sufficient conditions to imply BCNF, we saw 
incidentally that many relation schemes in IR are in fact in BCNF 
with respect to F(!E) due to the regularity of IE: namely, the 
schemes of entity sets (Theorem 1), of any binary relationships 
(Proposition 1), and of any purely 1-related relationship sets 
(Theorem 2). To ensure that every relation scheme in IR is in 
BCNF, we defined the loop-free condition for an ERD; this 
condition, in addition to regularity, obtains the desired result 
(Theorem 3). There are P-time algorithms to determine the 
regularity or loop-freeness of arbitrary ERDs (Proposition 3).

However, loop-freeness is equivalent to Berge acyclicity of IR, 
which is the strongest notion of acyclicity usually studied for 
relational schema CFagôl]. It is also a fairly restrictive 
condition: an ERD with two different relationships that share at 
least two entity sets (as in Example i.) violates it. Fagin's 
results on Berge acyclicity show it eliminates ambiguity in 
navigational paths to answer queries, and so it is nonetheless a 
desirable property, both from this aspect and from the fact that 
the implied BCNF condition prevents certain of the classical 
update and insertion anomalies CLePa].

For our second approach to the BCNF problem, we posited an 
ERD-based design scenario suggested by several examples that 
makes it possible to test for the condition. To see that this 
test can be done in the scenario setting, it was helpful to use 
the "key-equivalence via unit FDs" result of Pokorny (Theorem 4). 
In its corollary, we have given a method that determines truth or 
falsity of BCNF, under quite feasible conditions. These 
conditions include the non-existence of pairs of redundant 
attributes Pl....Ps in the primary key of S, which holds a 
database key, implying all other attributes. To reduce the 
seeming "restriction" of this design requirement, note that the 
DBA can avoid redundancy by combining equivalent attributes into 
one entity, with separate fields for the attributes.

Overall, we have seen that when the Section III relational model 
IR of the scenario is used as a guide, a specialized database 
design methodology is obtained that has the desired property: its 
specific cases, various relational schemata, can be tested for 
BCNF in polynomial time. The scenario design model also has 
other pleasing properties, e.g, that its most complex relation 
scheme S acts as a "masterfile" for the database, and that its 
own minimal keys are easy to find. While this model is clearly 
not universally applicable, in many cases (e.g., where a database 
key can be given) it may turn out to be useful, at least as a 
guide. ***###***
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A restricted design methodology to allow testing for 
BCNF in polynomial time

F.N. Springsteel

Summary

In a relational database it is important to be able 
to test a proposed database design for the Boyce-Codd 
Normal Form (BCNF) condition. In the paper conditions 
are given that are either sufficient for BCNF or show 
that BCNF cannot be tested in polynomial time. There 
are two sets of conditions. The first one logically 
imply BCNF and it provide a setting which helps to 
suggest the second one in which it is easier to test 
for BCNF. The proposed methodology works for many data­
bases expressible by E-R diagrams which have a 
"database key".
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Egy korlátozott tervezési metodika BCNA tesztelésére 
polinomiális időben

F.N. Springsteel

összefoglaló

A relációs adatbázis modell esetén igen fontos kitesz­
telni a javasolt adatbázis tervet, vajon teljesiti-e a 
Boyce-Codd-féle Normál Alak /BCNA/ feltételt. A cikkben 
olyan feltételek vannak megadva, amelyek vagy elégsége­
sek a BCNA-hoz, vagy megmutatják, hogy a BCNA-t nem 
lehet polinom idő alatt kitesztelni. Kétfajta feltétel- 
rendszer van. Az elsőnek logikai következménye a BCNA 
és egyben megmutatja hogyan néz ki a második, amelyben a 
BCNA-t már könnyebben lehet tesztelni. A javasolt meto­
dika különösen alkalmas azokra az adatbázisokra, amelye­
ket "adatbázis kulcs"-al rendelkező E-R diagramm segít­
ségével lehet leirni.
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