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ABSTRACT

Boyce-Codd Normal Form (BCNF) ia a well-known
condition on relational database schemas that
impliea some deairable propertieas, and is known
to prevent some very undesirable "anomalies'™ from
occurring in the use of the database. It is thus
important to be able to test a proposed database
design for this condition.

Thia inveatigation of logical databaae deaign
methoda askas whether there are any conditionsas on

a relational database schema such that., although
they are not equivalent to BCNF, do guarantee
that this desirable property can be detected in
polynomial time (P-time). Conditions equivalent

to BCNF are known to be intractsable to test, but
the conditions we give here are either asufficient
for BCNF or elase enable ita being teasted in P-time,
and the conditions themselves are likewise testable.
They are also desirable for certain design reasonsa.

While the first set of conditions only logically
imply BCNF, they provide a setting (regular entity-
relationship diagrams) which helped to suggest the
second set of conditions, in which it is easier to
teat for thias normal form than in general databases.
Also, we argque, this setting is valuable in its own
right, and can lead to a useful, if not universal,
database design methodology. Thia methodology works
for many databases expressible by E-R diagrams which
have a '"database key". .
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I. INTRODUCTION AND PRELIMINARIES

A. THE PROBLEM AND THE APPROACHES

It is clearly futile to search for conditions that are eguivalent
to BCNF, because it ias an NP-complete problem to test relstions
for BCNF and conditions very asimilar to it, in general relationsl
databases [BB79:; JF; Csbl. Only very satrong conditions seem to
imply BCNF, e.g. 4NF,PJNF [LePal, and Berge-acyclicity [JINS83al.

However, it is possible that certain conditions related to
“BCNF-ness'" are so akin to this normal form that it can be tested
in their presence, in tractable time. Indeed we find that this is
the case; there are arguably gquite reasonable, realistic
conditions that one might like to see in the schema design
normally, fitting the above description.

For now we shall only deacribe one aet of conditiona in intuitive
terms : later on we will give their formal deacriptions, These
conditions model a type of very well designed datebase: there is
one master-file, S, which contains either a key or a determiner
of a key for each of the other filea. These other filea relate
either one key to ite directly dependent attributes or else
relate aseveral equivalent keysa, poasibly of different entitiesa.
We refer to datsbases of this type as fitting our "master-file"
scenario.

In the next part of this first section we review the special
concepta needed for our approach, including the definition of
“regular" for an entity-relationship diagram (ERD). We aasume
that the reader ia familiar with atandard relational database
theory, including the conceptas of functional dependenciesas, keyvs,
and achema [Ulm82al.

In Section II we diacuas conditione that are aufficient to imply
BCNF for relation aschemes in *“he canonical relstional schema IR
of a regular ERD IE. Certain of these schemes are automatically
in BCNF in such IR, viz., those of entity seta, of purely "one-
related"” relationships, and of binary relationships. Here we
give one condition sufficient for BCNF for all other achemes in
IR, that the underlying regular ERD also be "loop-free®.

In the third section we shall explain the "master-file approach™
formally, and show that it enables one to test the BCNF-nessa of
the particular databases that can be defined to conform with it.
This "restrictive design methodology" is then diacuased in the
laat section.
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B. ENTITY-RELATIONSHIP PRELIMINARIES

Until recently most authors have used E-R diagrams as concise
and intuitive database design indicators, using entities and
relationships as a *"lingua franca" of data model theory. ERDs
act as interfaces between the various conceptual models in the
database litersature. For example, in the 1982 ACM Symposium on
Principles of Database Systems both the opponents [AtPal and the
proponent [(Ulm82bl of the "universal relation view” used infor-
mal ERD’s in their arguments.

We have seen logical analysis of the E-R model reach a new level,
that of rigorous and careful treatment of many of the bhasic
asaumptions and definitions behind this "jacknife" of the trade
[Ch76,80: JNS83a,b,cl. Not only do is this useful to help an
understanding of the entity-relation model, but alsc the newer
results have bearing on many issues of database theory. There is
now an impetus to study its formalizable aspecta with the =same
care that has been applied to the relational model. As a baaic
text in database systems [Ulm82al explains, there iz a natural
representation of the E-R model in terms of either the relational
or network or hierarchical data models.

The conversion of an ERD intoc a relational model, using one
sasociated relation scheme for each entity or relationship, has
become a standard, accepted method (Ulm82al)l. We extend this
known conversasion one atep farther, to ask: What do the given
quantifying marks on the relation/entity connectors in the E-R
diagram imply that we know &bout functional dependencies (FDa) in
its canonical relational schema, of all the associated schemes?
We feel that the proper interpretation of these marks, in direct
accordance with standard mathematical thinking about many-to-one
functiona, leads inevitably to the definition of a "regular' ERD
and of its "basic"™ (or fundamental) FDs, as seen below.

Example O: Conaider Figure O, containing entity sets, EMPL and
DEPT, and the relationship set EMPL_DEPT. These entity sete are
converted into relation schemes, with the same names, as follows:

EMPL(E#,EN,JC); DEPT(D#,MGR,LOC) .

Note that the respective keyas are E# and D#, called the primary
entity keys, determining the other attributes in their relation
achemesa, as seen by the quantifying mark *n’ on their connectors,
and ‘1’ on the dependent attributes. Hence, in the relationship
acheme EMPL_DEPT we need not repeat the dependent attributes of
thesge entities, but only give these keys plus any attributes
directly dependent on the relation, here TASK and STart_DATE:

EMPL_DEPT(E#,D#,TASK,ST_DATE).
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Note that the attributes EN,JC,MGR,LOC,TASK and ST_DATE are in
fact all functionally determined by the key E# of EMPL, which
ia thua a key of the relation acheme EMPL_DEPT.

1
n EMPL_DEPT DEPT

EMPL o

O 'HORECHES

FIGURE 0. A REGULAR ERD

The above dependency analysias can be seen to be correct from the
‘n’ and ‘1’ (partial) functional indicators on the arrowa; i.e.,
we consistently mark all connectora in an ERD with indicators of
the connected entity’s functional participaticn in the affected
relationship, whenever this information is known. Thus, by
following the arrows, from n- to l-related attributes, the ERD
deducible functional dependencies (FDs) can be written down!

Two cautions 8are in order: a) to employ this convenience, we
disailow any special types of attributes, e.g. those whose
existence depends on other entities, which would need apecial
designations: b) the device of “following the arrows' needs
interpretation for relationships of three or more entities.

However, for normal entity schemes or for binary relationships
as above our convention ia clear. Thus, since the keys can be
seen by inapection, it followa that the *"basic FDa'" of the ERD
of Figure O are these!

E# -> EN, E# -> JC for the achema EMPL:
D# -> MGR, D# -> LOC for the schema DEPT; and
E# -> D#, E# -> TASK, E# -> ST_DATE for achema EMPL_DEPT.

Note that if we did NOT know the n/1 functionality in this laat
relationship, then we could only assume an arbitrary many-related
indicator ‘n’ on both connectors between EMPL and DEPT, with the
conasequence being in that case: the only deducible key (from this
information) would be (E#,D#). Also, if an k-ary relation has
two or more entities (say Pl thru Pa) with ‘n’ indicators, and



all othera marked “1’, then the indicated key is Pl....Ps. This
makes sense if one thinks of the arrows as showing the many-one
functionality from the several n-related arquments, Pi, to the
other attributes, a unique tuple of values of which ia determined
by fixing an a-tuple of values for the key.

We shall call all relationship schemas with at least one
n-related entity n-RELs: if they have any unmarked entities

{(‘n’, by default) we alsoc call them n-RELs. In either case the
indicated Key would be the union of all the n-related entities’
primary keys. In practice an "all n" case is rare. Lessas rare is
the case of all entities being mutually determining keys, i.e.
Ei ->» Ej, all i and 3. When this happens we call the relationship
achema 1-REL, because all its Ei should be marked “1°’.

RULES FOR THE BASIC FDs GIVEN BY A (REGULAR) E-R DIAGRAM:

For each entity set relation scheme ENT(PK, Al, ....,Ae), where PK
is the pre-chosen primary key, we have theae ’basic’ FD’a

RULE 1: F(ENT) = {PK -> Ak ! 1<=k<=e.)}

For each 1-REL relation ascheme, the set of ‘basic’ FD’s is

RULE 2: F(1-REL) = {Ei -> A3 : Ei1 l-related, A3 any attributel}.

Finally, for any n-REL relation scheme, where Pl,...,Pa are the
primary keys of the n-related entities, the ’basic’ FD’a are

RULE 3: F(n-REL) = {P1...Pa -> Ai : Ai any other attribute}.

The "canonical relational (database) achema'" of an ERD ia the azaet
of all ita associated relation achemes. E.g., for Example 0, it
can be denoted IR = { EMPL, DEPT; EMPL_DEPT }.

DEFINITION: . If an ERD haas only relationahip aschemea of the

typea 1-REL and/or of the type n-REL, with the basic FDs for each
of ite entity and relationship schemes aas defined above in Rules
1 - 3, then we call the ERD, and its canonical relational schema

IR, regular.

NOTE: Since all these rule-given FD’a are the only ones clearly
vieible from the ERD itself, as the database design, and because
the ERD ia preaumed to have clear semantica, the set of all the
basic FDa is assumed to be a cover for all (the known) FDas of IR.
This assumption is implicit in the definition of "regular" ERD.

Clearly, the ERD of Figure 0, with the FDa we have deduced from
it as above, ia a regular ERD.
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DEFINITION: A relation schema R is said to be in Boyce-Codd
Normal Form (BCNF) with respect to a set F of FDs if, for any FD
X -> A embedded in R, either A is in X (i.e., this FD is trivial)
or elase X contains a key of R (with respect to the =set F).

We also may that a relational schema <IR, IF> ia in BCNF,
("globally") where IR is a set of relation schemea <Ri, Fi> with
FD sets Fi over Ri, i1f each Ri is in BCNF with reapect to all the
FDa derivable from IF = Ui Fi. We informally say that a regular
ERD IE is in "BCNF" iff its canonical relational schema <IR, IF>
ia, where IF is8 the family of all ites baasic FDs.

As examples showing the range of such conditions, we exhibit an
(upper conceptual domain of an) ERD which is not in BCNF and a
larger diagram which is.

—

Example 1. In this ERD of an Employee/Department/Project
relationship, each EMPL can work in more than one DEPT, and only
the combination of DEPT and EMPL determines the Project now being
worked on by that employee in that department. Each Project

is wholly contained in a single Department. The ERD is NOT in
BCNF, because PROJ -> DEPT is a violating FD.

ENPL DEPT

PROJ

FIGURE 1. Regular ERD not in BCNF

Example 2. This is from a real-world case study of a business
enterprise’s sccounting functiona, of a complicated and very
inter-related nature [(Ulm82bl. (The sample subdiagram shown here
representa lesa than a third of the original!) With applications
of this complexity being common, some very realistic databases
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can be seen to be in BCNF, as long as they are well atructured.
In thia case the achema ias in BCNF because all relationships are
in fact binary: cf. Proposition 1 of Section. 1l.

m n_| n
PURCHASE INVENTORY
line : m
n item
SALE 1 n ORDER
n n
‘made to madé by
CASH
RECEIPT
CUSTOMER
FIGURE 2. Enterprise’s schema, in BCNF
EiLes SUFFICIENT CONDITIONS FOR BCNF

In this section we shall describe some general conditions
that are sufficient to imply BCNF. This preface to our Section
I1I diacussion of the acenario is needed for two purposes: a’) to
help orient the reader to terminology used later, and b) to show
the power of certain general conditions by exhibiting their
desirable consequence when assumed as a '"package', namely BCNF.

We aasume that the reader ia familiar with the principles
of database dependencies, as found in (Ulm82al. We shall adopt
the notation and terminology there. Below we shall assume that
IE iz a regular ERD whose canonical relational scheme can be
denoted

IR = (S1, S2, ...., Sn), and that these n relation schemes
have their basic sets of FDa, as defined in Section I, denoted
Fi, F2, ...., Fn. Let the set of all basic FDa of |E be denoted

FCIE) = F1 U F2 U ...U Fn. By the nature of Rules 1-3,°
each FD K -> A in an Fi muat enjoy thease properties:

1. be embedded in an Si: KA &€ Si:
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2. have in K only primary key attributes of entity setsa:
3. have a aingle attribute of Si as itas right-hand side A;

4. have a key (or superkey) of Si aa ite left-hand aide K.

A. MANY RELATION SCHEMES FOR REGULAR ERDs ARE ALWAYS IN BCNF

Indeed, the title of this subsection ias true for any entity set
relation scheme. For & relationship-set of the type 1-REL, its
relation scheme is also in BCNF.

THEOREM 1. "LET IE be any regular ERD, and let ENT represent
the relation scheme of an entity-set in I|E. Then ENT i=s in BCNF
with reapect to F(IE).

Formal proof of this fundamental fact can be found in [JNS83al.
But it should be intuitively clear that any FD of the form X -> A
that ia embedded in ENT must be derivable from F(ENT) alone,
which only has FDea of the form PK -> Ak, Ak any other attribute
of ENT. One reason for thia ia that the attributes Ak are not
found in any other sascheme. It followa that the primary key PK
nmuast be contained in X.

There is little syntactic distinction, at root, between ENT
relation achemes with different, equivalent candidate keysa and
the relstion schemes of type 1-REL. O0Often, the choice of
entity-zset or l-related relationship to represent an "object"
like Department, is arbitrary. This suggests that Theorem 1 may
bhe extendable to relation schemea of 1-REL type. We find this
tc bhe the case.

THEQOREM 2. Let REL be a relationship-set relation acheme, in
a regular ERD |E, which haa entity-setse El1, ..., Et all
i1-related. Then REL is in BCNF with respect to F(IE).

Again, a formal proof can be found in [JNS 83al, based on the
simple observation that if X -> A is in any nontrivial FD true in
REL, then by regularity it must be derivable from F(REL). Thus, X
muat contain the primary key of some Ej, 1<=3<=t, any of which is
a key of REL.

By exhauative conaideration of the caaea of keya for any binary
relationship R(A, B), we can also conclude the following
proposition, which ia the baaia for the claim that Example 2,
degpite its complex inter-connectiona, in in BCNF. In the "worat
case'", where R ia a many-to-many relation, even if some external
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connections imply the FD A -> B, we simply conclude that the key
A of R must be included on the left-side of any non-trivial FDs
derivable from F(R). (Another FD B -> A means B is algo a kevy.)

PROPOSITION 1: 1If REL is a binary relationship in a regular ERD
IE, then REL ia in BCNF with respect to F(IE).

B. LOOP-FREE ERDs HAVE ALL RELATION SCHEMAS IN RCNF

The relationahip-aset relation achema E_D_P (EMPL, DEPT, PROJ)

of Example 1 is not in BCNF, because by Rule 3 applied to
D_P(DEPT, PROJ), the FD PROJ -> DEPT becomes embedded in the
achema E_D_P, where PROJ is NOT a key. We seek a condition to
rule cut auch cases. Note that there is no way to decompose
E_D_P into two binary relationships without losing some semantic
information.

We conclude that the problem in Example 1 arises from the fact
that this ERD contains a loop involving at least two distinct
relationahip seta. Below we define formally what we mean by
*"loop" and "loop-free' for an arbitrary regular ERD. Note that,
as in this example, it asuffices to conaider only the entites and
relationships, the "upper conceptual domain'" of the ERD, rather
than the low-level attributeas, because the latter do not affect
the existence of loopa’ OR of BCNF-violating FDe in the ERD.

DEFINITION: Let the upper conceptual domain UCIE) of an ERD IE
be identified aas the hypergraph whoae nodea are all the entity
seta E1 of |E and whoae (hyper)edges are all the relationship
aete R3 of IE. Each Rj as an edge ia the set of distinct
entity aseta related by Rj. (Thia notion of poasibly non-binary
edges generalizea the usual edge notion in graphe [Bergl.)

Suppoae E and E’ denote entity sets in IE. A path from E to E~’

is a sequence of distinct relationahipa R1, ..., Ra such that:
E ia in R1, E’ ie in Re, and Ri A Ri+1 .# {f, "1¢<=i¢=a,

The length of the above path ia a. A loop based at E ia a path

from E to E of length at leaast two. We shall call IE loop-{free

if there does not exist a loop based at any node in UC(CIE).

PROPOSITION 2: An ERD IE is loop-free if and only if there is no
sequence in UCIE) of the form

(R1, E1, R2, E2, +++.» Ra, Ea, Ra+l), where

: El, E2, ..., Ea are diastinct entity sets:

2. R1l, R2, ..., Ra are diatinct relationahips:

C I a8 ia at least two, and Ra+l = R1l:

. Ei 1ia in (and ao related by) both Ri and Ri+1l, 1<=i<=ag.
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Thia Propoaition shows that |E is loop-free if and only if its
hypergraph is Berge-acyclic [Bergl, equivalent here to 1-4, and
itas proof followsa directly from the definitions.

THEQOREM 3: Let !E be a regular ERD that is alsc loop-free. Then
every relation acheme S in the canonical relational schema IR of
IE 12 in BCNF with reapect to F(IiE).

[The formal proof of Theorem 3 is too long to include here, but
is based on the intuitive idea that if no loopa exiat in the ERD,
then no "externally implied"™ FDs can become embedded even in a
non-binary, n-REL type relation scheme S. Notice that we already
know, by Theoremsa 1 and 2 and Proposition 1, that all other types
of relation schemes in IR are in BCNF with reapect to F(IE).]

Example 3: The ERD in Figure 3 is the upper domain of the COMPUCO
database (from the manual of a popular DBMS), and it is clearly
loop-free. If we assume it is also regular, then we can write
down the important, inter-entity FDs simply by following Rulesa
1-3. However, even before seeing the FDs, we know by Theorem 3
that none of them will vioclate the BCNF conditiona for the
relationship TRANSAX, which records daily tranaactions involving
customers, vended products, and salea repreasentativea of a
value-added-reseller, where each product contains a certain type
of computer. For example, we asee that the key transactid of
TRANSAX cannot be determined by any combination of the primary
entity keys: empid, custid, prodid.

CUSTOMER PRODUCT
custid prodid
=
TRANSACT_FORM
transactid
1
SALESREP COMPUTER
empid compid

FIGURE 3. The upper ERD of the COMPUCO database.
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NOTE: Although Theorem 3 can sometimes be used to conclude that
an entire database schema will bhe in BCNF, even before all the
FDa are explicitly seen, the loop-free condition is very much
astronger than the BCNF condition. That is, the former ies naot a
necesgsary condition for the latter, azs the following example
showas. Also, cf. Example 2, which is in BCNF by Propoaition 1,
but contains many loops.

Example 4: The entities are Contract, Supplier, Part, and pRice.
The parts and their prices are dependent by bid on the contract,
but not on the supplier. There is only one supplier for each
contract, but a supplier can charge different pricee on different
contracts. The explicit keys are underlined:

IR = [ CSPR; CS; CP: CR; SR 1J.
Theorem 3 doea not apply to thia IR, because its easily
diagrammed UC(IE) has loops, but it is clearly in BCNF.

PROPOSITION 3: There are P-time algorithms to determine whether
any ERD IE ia: (1) regular, for a given set I|F of FDa, or (2)
loop-free.

Proof: One can teat regularity, given the seta I|F and F(IE) of
FDa, by teating if F(IE)>* = |F by use of the closure-membership
algorithm [Ulm82bl, in time linear in the product of the aizes of
the aseta. By Proposition 2, the loop-free test can be done by
standard algorithma for cycle-checking in P-time; cf. [Fag81].I11l

III. SPECIAL CONDITIONS MAKING BCNF P-TIME TESTABLE

A. THE MASTER-FILE SCENARIOQO FORMALIZED

Many modeat-aized databases have regular ERDa with cenonical
relational achemaa that exemplify the "“unique masterfile®™
scenario, mentioned in the Introduction. For convenience we
continue to astudy their ERD models here wvia the asimplified
canonical relational schema which ignorea the lower conceptual
domaina’ proper parta: dependent attributeas of entity and
relationship seta. That ia, we consider only the entities - as
basic units - and the relationships between them, the "upper
conceptual domain', in order to focus on the open queation of
testing BCNF. We can do so without loas of generelity because
the BCNF conditionas can only be violated in regular ERD’as by
certain functional dependencies between entities. i.e. between
their primary key attributes. Thua, entities are here
repreasnted solely by primary keya, the only attributea kept.
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For our real-world-oriented class of ERDa we can formalize the
masterfile scenario as follows, assuming regularity. The class
includesa all ERDs having cancnical relational achemas of form:

(#) IR = (EdciesaspERS RlsssspRDe 53, where:
a. the Ei are all the entity set relation achemes;

b. S ia the only relationship scheme which can relate one or
more m-related entities, except for the binary relationshipsa;

<. the Ri are the other relationahips’ schemes, either
binary relationahips (posaibly n-to-1, n-to-n, or 1l-to-1) or else
"equivalence'" relationahipa where all entitieas are l-related:
1-RELa.

d. furthermore, the m-related entitieas of S, say Pl,...,Ps,
include a key or a determiner of a key for each entity set Ej,
i.e., Pi1...Pa -> Ej, 1<=3<=m. Thua, S containas a "databaase key"
{AtPal.

While another type of Ri would be logically consiatent, one that
has only one n-related entity and two or more l-related entities,
for simplicity we asssume thias type decomposed into two or more
binary relationshipa, without losing generality. Thias 1is a
valid simplification when the ERD ia regular. For example, the
relationship R(ABC) with FD’a A -> B and A -> C for A n-related
and B,C l-related. By standard methoda, R(ABC)> ia decomposable
into R’ (AB) and R"(AC), losalessly, aince A = AB ~ AC -> BC
[Ulm82al.

B. TRANSFORMATION METHOD: UNIT FDs and KEY EQUIVALENCES

The masterfile scenaric (#) desribed above can be subjected to
the snalysia of a tranaformational method that may reduce its set
IK of key dependencies to a "linear" set (of unit FDa), whose
full set of keys can be discovered in P-time. Since the methodic
discovery of a new key, even for a asingle relation scheme, is the
NP-complete problem at the source of the intractibility of BCNF
{O=sb]l, such a transformation would solve the BCNF problem in this
case. To solve it in more general casea seems impossible by this
special method, because the needed assumptiona are rather closely
fitted to our formal deacription of the given scenario.

The assumed acenario IR modelas a type of well-deaigned databaza:
there is one maaterfile, S, which containa at leaat a determiner
of a8 key for each of the other filea, the latter files having
either one key or elase several equivalent keya. Some
well-designed, regular ERD’& have canonical relationsl schemata
that can be deacribed by the acenario above: Exampleas 3 and 4 are
auch casea '"in the amsall'", but many others can be imagined, where
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one file like the Transact _Form file determinea a key of &ll the
other files.

The main contribution of this section of the paper is chiefly
the insight that a fairly obscure theorem, published by the Czech
reaearcher J. Pokorny, applies to thia subclass of the regular
ERD’s [Pokl. We use it to help test BCNF: to do so when normsal
forma are untreated in Pokorny‘s paper, takes some mathematicsl
manipulation, but the "key" machinery is available in hie work!

Application to thia special acenario (#) will show the logical
power of Pokorny‘sas theorem, but it is impossible within the
constraints here even to outline its long proof. Essentially. the
result here can be applied to relational schemas other than as
depicted in the scenario, as long as their non-binary relation
schemes having m-related entities are losslessly 3joinable into a
aingle scheme, S. The exact conditions under which such 3j0ining
is possible is worthy of further research but is beyond the scope
of this work, which only seeks to clarify the basic approach.

Concerning the masterfile S, the basic Rule 3 FD’s of S are in:
Fe¢Syed PYo. JPES-3"Ej, "1<¢s3<4=¢t);

where the Pi are the m-related and the Ej the l-related entities
of S. [We may assume by renumbering that these entities are the
firset t in IR,3 0f course, Pl...Pa is not necessarily a minimal
key of S, which ia part of our problem. If we knew that Pl...Pr,
r<s, say were a minimal key then we would retain only Pl,....,Pr
a2 the m-related entities in S and relegate the other P3’s to be
among ita l-related entities. Since the minimal left-hand sidesa
of the t FDs in F(S) can be determined easily., by standard
algorithms, we shall assume that F(S) is minimal.

Another assumption needed for using Pokorny’s Theorem is the
non-redundancy of left-hand side attributeas in the FDa of F(IR).
But thia i1s trivial for the unit FDa in the other schemes, and we
have just quaranteed by the minimality of F(S) that we do not
have either Pi->P3 or P3->Pi.

Note that all the fundamental FD’as in I|F - F(S) are of the form

K -> A where K and A are entity-set primary (key) attributes,
and K is the key of a relation scheme other than S. FD’s in this
simple form, with both left and right sides a8 aingle attribute,
are called "linear™ by Pokorny; following common usage, we call
them "unit FDs" (BB79].

DEFINITION (ASSOCIATED SET OF UNIT FDs): Let us denote by

UFDCIRY = [ FCIR) - F¢8) 3 U { P1 -> Ej: 8ll i<=a,j<=t),



- 164 -

the "set of unit FDs associated with"™ F(IR). The set UFD(IR)
cannot be expected to be FD-equivalent to F(IR), but, under
certain further conditions, it may be "S-key-equivalent', meaning
that the sets of keys of S with respect to either F(IR) or
UFD(IR) would be identical. Thie is a desirable atate: it would
enable testing S5 for the BCNF-ness! Indeed, Pokorny givesa such
conditione that are a) easily P-time testable, b) necessary when
BCNF doea in fact hold, and ¢) in any case satrong enocugh to make
the determination of BCNF posasible in P-time.

To employ Pokorny’s theorem in our setting, we define the
directed graph

G(IR) = <(El1,...,Em}; UFDC(IR) >, where each unit FD

"Ei->E3 in UFD(IR) ia conaidered as an edge joining node Ei to
node Ej. Thua G(IR) is the directed graph with nodea all the
entity sets in |R and edges the unit FD’s associated with F(IR).
Since IR can be asaumed to be a connected ERD (via the database
key), it is eaasy to see that the strongly connected components of
G(!R), hereafter called components, determine what sets of
attributes are the keya of S under the FD constraints in
UFD(IR). By one other assumption, Pokorny’a theorem ashowa us
how to determine that the same seta are also the keys of S under
the FD’s in 8ll of F(IR)! We ghall explain that other
assumption, which is easy to check in our scenarioc case.

Recall that any key of S is a key/determiner of any entity-set
Ei. By a source component in G(IR) we shall mean, as in [Pokl, a
component whoase entities (all equivalent under unit f£d’a) have
in-degree zero: there are no unit FDs from other components of
which they are the right-hand side. Clearly, any key of S muat
conaist of attributes Pi that are in sepsarate source components.
All source components are easily computable in (amall) polynomial
time, using Tarjan’s algorithm [AHUJ].

Let the source components of G(IR) be denoted as S1i,...,Sk.

DEFINITION? Let £f: Al.....An -> E be any FD in F(IR).

Let C be any non-source component in G(IR). We say that f is
hierarchial for C 1if: (a) E is in C, and (b) none of the Aj are
in C, for 1<=3<=n.

THEOREM 4: For the defined UFD(IR), the masterfile S of IR with
the assumptiona above, and F(IR) the aet of basic FDs of IR
having the minimality assumptions made above:
the sets of keys of S with reaspect to either F(IR) or
UFD(IR) are identicsl, if and only 1if:
(») for each non-source component C in G(IR), there is at least
one FD £ in F(IR) that ia hierarchial for C.




NOTE: This is a restatement and application of Pokorny’as Theorem
2 to our scenaric. When this theorem is applicable, it will be
tractable to check the BCNF conditions for S, because finding
keye with respect to a set of unit FDs is solvble in P-time
[Pokl].

Suppose that the condition (=) of Theorem 4 is true. Then, in
particular for any non-source component C holding an Ej of S:
there is at least one FD in F(S) of the form Pl...Ps -> E3j such
that Ej-da in"€ and  no P11 is in €, 1.e. Ej-Pi 1= NAQT Inl F ¢lIR)X
Indeed, this is case, because, as we next show, for our special
scenarioc, this desirable condition (») is in fact true!

LEMMA: For relational schema IR of the special form (#), with
the minimality of F(IR) assumed above, the condition (=) of
Theorem 4 is always true.

PROOF : In the acenario case (#), recall, the minimal left-sides
cf basic FDs in F(S) contain Pi that can be found in source
componenta of G(IR). Now, each non-source component C lies at
the end of an incoming edge (a unit FD) from some other component
B. Let E in C be the right-aide of asuch a unit FD. By the
nature of the two kinda of unit FDa in G(IR), asaociated with the
baaic FDa in F(IR), there are two main caaes:

(1> B is & source component, and the unit FD can be
taken to be P -> E. Then either this is a basic FD of F(IR) or
else, when E is in S and P is gsome Pi, & minimal FD Pl...Pas -> E
is in F(IR). In either subcase, none of the left side P’s ia in C
because C is non-aocurce;

(2) B ia a non-aource component distinct from C, and the
connecting unit FD in G(IR) ia say D -> E, where D is in B. But
this implies that D -> E is a basic FD in F(IR), and that D is
not in C because distinct componenta are disjoint.

Thua, in either main caae for C an arbitrary non-aource
component, there ia an FD in F(IR) which is hierarchial for C.I[]

COROLLARY. For a relational achema of a regular ERD, in the form
(#) IR = (E1,...,Em; R1,...,Rn; S), aa deacribed above,
the property of being in BCNF can be decided algorithmically
in polynomial time.

PROOF: Recall that all achemea in |R, except possibly S, are
already in BCNF, by Theorema 1 and 2. Because Theorem 4’s
condition (=) is true for IR, it can be applied to verify whether
S is in BCNF wrt F(IR) by finding the keya of S with reaspect to
the unit FD’a in UFD(IR). (Pokorny alaso showed that the
key-finding problem for a set of unit FD’e ia solvable in
P-time). Then, for any FD X -> A in the acope of S, on€ will
know whether X containa a key of S wrt F(IR), and a0 whether S
is in BCNF. Since the baaic FDa of F(IR) form a cover of all
FDa, the whole process can be done in time polynomisal in the size
af 'FCIRY. I3



= 166 =
IV. CONCLUDING REMARKS

We have aeen two posaible approaches to the problem of whether a
relational database achema |R ias in BCNF, where we caonaider IR
the canonical achema of a regular ERD IE. In the first approach,
that of finding sufficient conditions to imply BCNF, we saw
incidentally that many relation schemes in IR are in fact in BCNF
with respect to F(IE) due to the regularity of |E: namely, the
aschemes of entity sets (Theorem 1), of any binary relationships
(Proposition 1), and of any purely l-related relationship sets
(Theorem 2). To ensure that every relation scheme in IR is in
BCNF, we defined the loop-free condition for an ERD; this
condition, in addition to regularity, obtains the desired result
(Theorem 3). There are P-time algorithmas to determine the
regularity or loop-freeness of arbitrary ERDs (Proposition 3).

However, loop-freeness is equivalent to Berge acyclicity of IR,
which is the atrongest notion of acyclicity usually studied for
relational schema ([(Fag8l1ll. It is also a fairly reatrictive
condition: an ERD with two different relationships that share at
least two entity sets (as in Example 1) violates it. Fagin’s
results on Berge acyclicity show it eliminates ambiguity in
navigational paths to answer gueriea, and a0 it ia nonetheleasa a
deairable property, both from thias aspect and from the fact that
the implied BCNF condition preventa certain of the clasasical
update and insertion anomalies [LePal.

For our second approach to the BCNF problem, we poaited an
ERD-based design scenario suggested by aeveral examples that
makes it possible to teast for the condition. To asee that thi=s
teat can be done in the scenario setting, it was helpful to use
the "key-equivalence via unit FDsa" result of Pokorny (Theorem 4).
In its corollary, we have given a method that determinea truth or
falsity of BCNF, under quite feasible conditiona. Theae
conditions include the non-existence of peairs of redundant
attributes Pl....Ps in the primary key of S, which holds a
database key, implying all other attributea. To reduce the
seeming "restriction'" of thia deaign requirement, note that the
DBA can avoid redundancy by combining equivalent attributes into
one entity, with separate fielda for the attributes.

Overall, we have aseen that when the Section III relational nmodel
IR of the scenario is used as a guide, a specialized database
design methodology ia obtained that has the desired property: ita
specific cases, various relational schemata, can be teated for
BCNF in polynomial time. The scenario deaign model also has
other pleasing propertiea, e.g, that ita most complex relation
acheme 5 acta aa a "maaterfile'™ for the database, and that ita
own minimal keys are easy to find. While this model ia clearly
not univeraally applicable, in many casea (e.g., where a databaae
key can be given) it may turn out to be useful, at leaat as a
gquide. eenfiiifinnn
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A restricted design methodology to allow testing for

BCNF in polynomial time

F.N. Springsteel

Summary

In a relational database it is important to be able
to test a proposed database design for the Boyce-Codd
Hormal Form (BCNF) condition. In the paper conditions
are given that are either sufficient for BCNF or show
that BCNF cannot be tested in polynomial time. There
are two sets of conditions. The first one logically
imply BCNF and it provide a setting which helps to
suggest the second one in which it is easier to test
for BCNF. The proposed methodology works for many data-
bases expressible by E-R diacrams which have a
"database key".
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Egy korldtozott tervezési metodika BCNA tesztelésére

polinomialis iddben

F.N. Springsteel

Osszefoglald

A relacids adatbazis modell esetén igen fontos kitesz-
telni a javasolt adatbazis tervet, vajon teljesiti-e a
Boyce-Codd-féle Normal Alak /BCNA/ feltételt. A cikkben
olyan feltételek vannak megadva, amelyek vagy elégsége-
sek a BCNA-hoz, vagy megmutatjak, hogy a BCNA-t nem
lehet polinom idd alatt kitesztelni. Kétfajta feltétel-
rendszer van. Az elsdnek logikai k&vetkezménye a BCNA
és egyben megmutatja hogyan néz ki a masodik, amelyben a
BCNA-t mar konnyebben lehet tesztelni. A javasolt meto-
dika kiiléntsen alkalmas azokra az adatbazisokra, amelye-
ket "adatbazis kulcs"-al rendelkezd E-R diagramm segit-
ségével lehet leirni.



	F. N. Springsteel: A restricted design methodology to allow testing for BCNF in polynomial time������������������������������������������������������������������������������������������������������
	Oldalszámok������������������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������


