TA Szdmitdstechnikai és Automatizdldsi Kutato Intézete, Kozlemények 27/1982

FORMALIZATION OF CONCURRENCY CONTROL IN DISTRIBUTED
DATA SYSTEMS(.

Serge M. MIRANDA

CERISS-INRIA
Universit& des Sciences Sociales
Place Anatole France
31040 Toulouse Cedex
France

Tel (61) 23 11 45 ext 395

ABSTRACT

Synchronization issues in distributed data bases were heavily invested

n recent literature and many synchronization protocols. have been designed.

However much work is still to be done in the areas of ROBUSTNESS and
ECOVERY, FORMAL PERFORMANCE ANALYSIS, FORMAL SPECIFICATION AND VALIDATION,
IGOROUS UNIFORMIZATION. '

This paper is a contribution to the two latter points} we propose a
ormal approach based on abstract data types (algebraic methodology) and
evelop a uniform rigorous framework in which the synchronization protocols

an be specified and validated.

We illustrate our approach on a basic protocol which is representative

f a major class of solutions.

EY-WORDS: protocol formalization (specification and validation),
synchronization protocol, distributed data bases, duplicated

data, abstract data types.

—

This research is sponsored by INRIA-ADI (SIRIUS project) under contract
80003. °

1. INTRODUCTION

Many researchers have recently presented solutions to concurrency con-
trol for distributed data systems. These solutions take form of synchro-
nization protocols which have been designed to coordinate the remote proc-
esses in charge of local data (called "controllers") during an update ses-—

sion.

Very few proposals have been made to formally specify and validate

("formalize") these protocols.

This paper is primarily concerned with this crucial aspect; we intro-
duce a formal methodology based on algebraically-specified data types to

formalize existing protocols.

This article encompasses two major sections:

- the first one presents a clear definition of mutual integrity which
turns out to be the basic requirement which must be verified by a
synchronization protocol and introduces our formalism,

This concept is translated in terms of our model through mutual-in-

tegrity theorems which are recalled.
- the second section illustrates our approach with a synchronization

protocol (for duplicated entities) which has been largely refer-

enced in the literature (namely THOMAS' one).

2. INTEGRITY CONCEPTS

We shall in turn examine the integrity concept in centralized and

distributed data base management systems (DBMS).

2.1 INTEGRITY IN A CENTRALIZED DBMS

A data base can be viewed as a collection of entities and constraints
whose values define VALID states of the data base. The concept of integrity

(consistency) of a DBMS is twofold (MIRA80O-b):

- internal integrity.

- external integrity.

Internal integrity is associated with integrity constraints defined on

data to meet real-world restricitons.

The concept of transaction (GRAY78) has been introduced in centralized DBMS
- (and naturally extended to distributed DBMS (GRAY79)) to represent the atom—
ic interaction of the user with the data base which preserves internal in-

tegrity.

External integrity corresponds to the control of concurrent transac-

tions which may conflict in sharing common data (problems of "lost update",
"dirty read", ...) A serialization mechanism (locking is the one which has
been almost exclusively elected) must be defined to ensure external in-

tegrity.

2.2 INTEGRITY IN A DISTRIBUTED DBMS

Internal integrity in a distributed DBMS is called MUTUAL INTEGRITY

when remote entities are involved in a (global) transaction; identity is a
particular case of an integrity constraint which leads to the well-studied
problem of duplicated entities. There on, we shall mainly consider the

latter aspect.

We say that a synchronization protocol ensures MUTUAL INTEGRITY when
the manipulated entities converge to the same state should update activity
cease, (THOM75)...

A distinction between STRONG and WEAK mutual integrity has been pro-
posed by several authors (SEGU78), (LELA79)...

However this distinction has been rather vague or incorrect since the
underlying concept was itself vague or incorrect; for example in (LELA79)
or (SEGU78) the distinction is based upon the SIMULTANEITY concept among
remote states and this turns out to be delicate since no site can ever know

the state of the entire distributed system (}MONT78),(GRAY79),...

- 76 -

We propose a distinction based on the AVAILABILITY concept; an entity

is said to be available when it is stable (no modification in progress) and

open to a retrieval access,

Mutual integrity is said to be WEAK whenever a synchronization protocol
enables to have two TEMPORARILY different available versions of the same
copy at a given time (a transaction may retrieve consistent entities which
are not the most current); it is said to be STRONG otherwise (the retrieved

data are the most current),

We can make a parallel between this definition of mutual integrity
(strong and weak) and the levels of consistency defined in centralized DBMS
like SYSTEM-R (GRAY75); in this latter case, strong integrity correspond to
the third level, weak integrity to the second level while the first level
of consistency can be considered as a "weaker" form of integrity (access to
dirty data is possible at that level)., Our definition of availability pre-

cludes this latter type of consistency.

External integrity refers to the control of concurrent confliciting

transactions which can be initiated anywhere in the underlying network.

In centralized systems there exists a control locus where shared

COMMON memory is used for coordinating concurrent conflicting transactions.

Let us consider the type of control we may have in distributed data

systems,

In a distributed system, which can be defined as a collection of proc-
esses communicating only through message-passing, three types of CONTROL

LOCI have been chosen for synchronization protocols:

(i) WITHIN A SITE; the concurrency control is said to be CENTRALIZED
(or VERTICAL) by analogy with local systems (MENA77), (GARC79)...

(ii)

(iii)

- 77 -

WITHIN A PROCESS; there is no privileged site. Each site is func-

tionnaly homogeneous. There exists a given process (which we call
MASTER CONTROLLER) responsible for the whole synchronization
session,

The control is said to be "PARTIALLY DECENTRALIZED"; the proto-
cols of ELLIS (ELLI77)..., LE LANN (LELA76)..., BUSTA (BUST78),
POPEK/MIRANDA (POPE79) ... are of this type.

WITHIN A MESSAGE; the initiator of the synchronization session

and the initiator of the global update are (generally) different
controllers. A special synchronization message propagates cont-
rol data from controller to controller (like OK votes in THOMAS'
protocol (THOM75)).

The control is said to be "FULLY DECENTRALIZED".

In the last two cases, the control is said to be HORIZONTAL; from

point (i) to point (iii), the tendency is towards a reduction of the time

for which a host has control over the progress of a protocol,

A "primary update token" that moves around the network and symbolizes

control 1is

a particular case of centralized control technique ("circulating

centralized control") which has been proposed by several authors (WILM79-b),

The protocol we formalize in this paper presents the following charac-

teristics:

PROTOCOL
]
INTEGRITY THOMAS
| Mutual integrity WEAK
External integrity Fully-decentralized
(type of control) control
(type of consensus) (majority)

Figure 1.

Major characteristics of THOMAS's protocol.

3. ABSTRACT DATA TYPES

3.1 ABSTRACT-DATA TYPE CONCEPT

A data abstraction is a behavioural representation-free description

often using formal notation of a data object and the operations upon it.

Data abstractions are realized in programming languages by abstract
data types (ADT) which isolate the representational detail from other prog-

rams units.

Although the ADT concept has largely been adopted by language desig-
ners (WULF76), (TARD77), (GUTT78),... the concept is really language-inde-
pendent and can very naturally be carried over in layered systems (opera-

ting systems, data base management systems,...).

There are two properties of ADT which appear to be appealing for dis-

tributed systems:

(i) enclosure and implementation hiding (data independence; user

transparency).

(ii) abstractional power (separability of functioms; flexibility).

Two families of object-oriented languages (encompassing ADT's) have
been proposed, the propositional one (MILN71), (HOAR72), (WULF76) and the
algebraic one (BURST77), (GOGU78), (GUTT78).

We elected the algebraic approach which seems to be more adequate to com—

plex structure formalization (PAOL77), (LOCK78), (MELK78),...

3.2 ALGEBRAIC APPROACH (GOGU76), (TARD77), (GUTT78).

We briefly recall the major features of the algebraic approach for
ADT's as presented in (GOGU76).
An ADT can be defined as a MANY-SORTED ALGEBRA:

= JY =

- an algebra of ONE SORT is roughly speaking a set of objects and a
family of operators on the set; the set is called the carrier of the

algebra,

- MANY-SORTED ALGEBRA extends this definition by allowing the carrier
of the algebra to consist of several disjoint sets; each of these
sets is said to have a SORT; the operators are sorted and typed but

must be closed with respect to the carrier.

Two basic kinds of sorts are involved in an ADT specification: the sort
being defined and any number of sorts assumed previously defined in a simi-
lar fashion (i.e. the Boolean sort includes the usuals constants T and F,
and is assumed to have been defined in its own right with the same method-

ology; other built-in ADT's we may use are INTEGER, QUEUE,...)

Operators of the algebra are indexed by pairs (w,s) where wes” (sort of
the operand) and s€S (sort of the results); the symbol IZw,s will be used for
the set of all operations with index (w,s); L is used for the union of all

the sets Zw,s and is called the "signature" of the algebra.

A I-algebra A is a family of sets (As), s€S, called CARRIERS of A which
is determined by a triple <S, I, E> where:

S 1is the set of "sorts", S : {sl, s2,...si,...sn} denoting the

various types of objects which are required for that definition.

Y is the set of operations £ = {Z,w,s}, whose operands and results

are objects making up the sorts in S (SYNTAX description)

E is the set of equations which describe the semantics of each Iw,s
of I; each algebraic equation (or axiom) defines the results of

various combinations of operators applied upon various operands.

For every (w,s)ES*x S and every 1€Lw,s the function TA : Asl X As2 X

x Asn = As with w = sl1,82,...sn is called "A-operation named by t"

- 80 -

Two many-sorted algebras are called I-algebras if they have the same

signature,

A very important concept is the one of I-homomorphism; Definition: given

two Z-algebras A and B, a L-homomorphism, h:A - B, is a family of functions
< hs:As + Bs, s€S > mapping each carrier in A into the corresponding carrier

in B while preserving the operations, i.e.

VT1€ELw,s with w=sl,s2,...sn and (al,...an) €Asl xAs2 x ..Asn we have

hs(TA(al,...an)) = hs1(al),...hsn(an)); this can be visualized by the

T
B
following diagram commutation:

TA
Aw ~>As

hw hs

Bw i —>Bs

We shall use the I-homomorphism concept to express:
(i) parallelism among remote operators (Z-homomorphism)

(ii) layered abstractions between the distributed data base and the
underlying transmission facility on one hand; between the distri-

buted data base and the local DBMS on the other hand.

It is important to note that the ADT definitions of a particular type

is not unique; however, it should meet the following goals:

(1) The operators should not be redundant.

(2) The equations must not be contradictory.

(3) The operators and axioms should be as simple as possible.

(4) The equations should be constructed in such a way that leads
forcibly to unique reduction.

(5) We shall use a formalism close to OBJ-O (TARD77), (GOGU78),
(GoGU76), (TARD79).

Which represents one of the basic language encompassing algebrai-

cally-specified data types; Guttag' systems for symbolic execution

_81-

of ADT's seems to suffer some inadequacies mainly at the sintactic

level (TARD79).
3.3 OBJ-0
OBJ-0 is an object-oriented language defined by GOGUEN(GOGU76) and
implemented by TARDO (TARD77); this language is very close to NPL language,
now called HOPE defined in (BURS77-b). In OBJ-0, an algebra is a 4-tuple:

< SORTS, OPS, VARS, SPECS > where

SORTS, OPS, SPECS correspond respectively to S,I,E and VARS includes the

definition of the working variables used in the axioms.

The error-operators ("ERROR-OPS") and their semantics ("ERROR-SPECS")
may be naturally defined in this language; an extensive discussion of "er-

ror algebras" is presented in (GOGU77).

The general syntax of an operator is given by:

oP : S .BE . v SN —» Sp
— . e ey S - y
Operator name Operand sorts results sort
(under bars are (N: arity of the OP
used for place- operator)
holders)

Prefix, infix, postfix, distributed-fix declarations are possible in

OBJ-0.

Each sort has an equality relation which is built-in with syntax:

-i=-:8 s———S

Hidden operators may be declared with the key-word "HIDDEN" placed af-

ter the result sort.

- 82 -

We shall often use conditional equations in the algebraic specification;

a formal theory of conditional equations in ADT's is developed in (THAT76).

In the specifications of a synchronization controller using ADT's, we

shall neither use place-holders in OPS nor consider ERROR operators.

4. FORMALIZATION OF A SYNCHRONIZATION PROTOCOL

The concept of ADT should be the lowest common denominator which maxi-
mizes every one's naturalness at some level of expression. In the area of
sycnhronization protocols, the three basic operators (framework for unifor-

mization/abstraction) which may receive a general consensus, are:

- PREPAREG; this operator corresponds;

(i) to the local initialization which consists of all the actions

needed for the transaction to start consistency enforcement:
time-stamp acquisition (THOM75), new-value computation (THOM75),
ticket allocation (LELA78), priority definition (ELLI77),
(BUST78), (POPE79),...

(ii) to the global initialization which includes the strategy to re-

solve conflicts: first revolution in the virtual ring (ELLI77),
first step of synchronization (POPE79),..., to check security

(POPE79), to perform temporary update (LELA78), (POPE79),....

- SETG; this operator consists of the propagation or broadcasting

of the (permanent) update.

- UNSETG; this operator concerns the (robust) commitment phase (log

synchronization (POPE79),...)

The work on reliability is much less developed than that on external
consistency and in many proposals, UNSETG is embedded in SETG, as in
(THOM75)... This corresponds to the fact that there exists a clear dichotomy

between performance-oriented and robustness-oriented protocols.

- 83 -

The above operators apply to a '"global virtual object'"; the global
virtual object consists of each local object semantically tied during a ma-
nipulation. A duplicated entity may be seen as a logical entity (the global

virtual object) physically stored in several remote sites.

This "locality" concept receives a formal development in (BILL79).

The global virtual object is characterized by a set of (global) states
in each participating controller. Each operator maps an input global state
and a set of input messages into an output state and a set of output mes-

sages.

Protocols are said to be message-driven: reception of a synchronization
message causes a series of actions (and eventually a message transmission)

to be executed.

This concept of (global) STATE enables us to express the semantics of
the attached manipulation operators in a simple way. A change of state is
the result of the execution of an operator bound to the occurence of an

event (here a synchronization-message).

These states enable us to specify the different protocol steps; they

allow:
(1) The simplification of operator semantics.
(11) The simplification of the validation process.

(111 The setting of clear re-entry points for the recovery
procedure.
(iv) The expression of parallelism among remote controllers by

using homomorphisms among remote states.,

Our model encapsulates the functionning of a controller with a £-al-
gebra, called SYNCH, whose carrier is the global-entity state and operators,
(PREPAREG, SETG, UNSETG), a reduced set of primitives attached to particular

message receptions.

- R

A synchronization protocol is depicted as a set of I-homomorphism

ALGEBRAS.

This approach offers the same advantages as Petri-nets (representation

independence...) with additional ones such as:
- simple rigorous formalism for inferring proofs of correctness.

- semantic framework from which correct implementations can be derived

(automatically) (GUTT78), (TARD77), (NOUR79),...
- ROBUSTNESS integration in a natural way (in (POPLE79), we define the
semantics of a message reception indicating the failure of a coope-

rating controller).

4.1 GLOBAL ENTITY STATES

For each of the three generic operators indicated previously we attach
an input and an output (global) state. Among these states two of them appear

to be important;

- the available state, noted F, before the actual modification (initi-

al state) an F' after (final state); the local entity (copy) can be
retrieved.

F represents the input state of PREPAREG and F' the output state of
UNSETG.

- the unstable (unavailable) state noted U which corresponds to a

current modification of the local entity which cannot be retrieved.

4.2 CANONICAL REDUCTION; SERIALIZATION

Every sequence of operators of SYNC is reduced to a sequence

(PREPAREG)-(SETG) - (UNSETG), called canonical reduction.

A transaction is said to be ATOMIC if canonical reductions of this
transaction are identical in each controller involved in the synchronization

session,

- 86 =

Two confliciting transactions are said to be SERIALIZED if their
respective canonical reductions do not interfere in the modification phase

(SETG) .

4.3 MUTUAL-INTEGRITY THEOREMS

Before recalling the two mutual-integrity theorems (whose proofs are
given in (MIRA79)), let us give an extension of the I-homomorphism defini-
tion; we say we have a TOTAL I-homomorphism in a synchronization protocol

whose each controller is specified by a -algebra SYNC if:

Vi, Vj SYNCi and SYNCj are L-homomorphic, i,j€(l,n) with n number of

duplicated entities.
THEOREM 1: Strong-mutual integrity theorem
A synchronization protocol ensures strong-mutual integrity if:

(1) transactions are atomic and there exists a TOTAL I-homomorphism

(on output states).
(ii) conflicting transactions are serialized.
THEOREM 2: Weak-mutual integrity theorem
A synchronisation protocol ensures weak-mutual integrity if:

(1) transactions are atomic and there exists a PARTIAL Z-homomorphism

(on input states).

(ii) for every unstable state, there is a transition U——>F' on each

controller.

(iii) for the Z-algebras SYNC which are not IL-homomorphic there exists

a morphism ¢s ensuring the following diagram commutation.

ith controller: (F)i >(U)1i [v (F)i]
jth controller: (F)j > (0)i (v (F)ijl
—

rejection case

(iv) conflicting transactions are serialized

NOTE: A morphism ¢s between two global-entity states represents a
FUNCTIONAL CORRESPONDENCE (not necessarily a simultaneity) between the ope-
rators generating these states; as a matter of fact, the morphism is asso-
ciated with the synchronization message sent during the generation of the
considered state. The successive morphisms represent an event-sequencing

scheme.

5. FORMALIZATION OF THOMAS' PROTOCOL

Interested readers are urged to get a look at the quoted references

concerning this protocol since we shall only sum up their basic properties.

5.1 PRINCIPLE OF THOMAS' SOLUTION (THOM75), (THOM77)

THOMAS' protocol is based on a MAJORITY CONSENSUS mechanism. Each Data

Base Manager Process (DBMP) - there is one DBMP in every site - VOTES on the
acceptability of update requests, For a request to be accepted and applied
to all data base copies, only a majority of DBMP's need to aprove it. The
request is said to be RESOLVED when a majority of DBMP's accepted or rejec-

ted it,

The initical step of this protocol concerns the acquisition of the

BASE-VARIABLES (BV's) by the originator of the request (called application

AP (BVTS message) by sending it the BV values along with the attached time-
stamps (a time-stamp represents the last modification date of a given BV).
The AP calculates the new values of the BV called the UPDATE-VARIABLES

(uv's).

~ 87 =~

The global update session is initialized by the sending of the update

time-stamps and the set of UV's,

The initial version of this protocol (THOM75) used a DAISY-CHAIN during
the resolution phase: each DBMP votes when receiving an EXTREQ, and forwards
the request along with the accumulated votes to another DBMP that hasn't
voted yet if a consensus is not reached. This procedure continues until the

" "

request is resolved (a request is said to be ''pending" till this resolution).

The voting rules basically amount to voting:

0 (0K): Each BV is eurrent and there is no conflict;
If a majority consensus is attained (on OK votes) the request

is globally accepted; the acceptation is notified to each DBMP

by the sending of the UPD message.

R (Rejected): There is an obsolete BV. The rejection is notified to each
DBMP with the REJ message (one reject vote is enough to
globally reject a request which could be later resubmitted).

A weak form of rejection not considered here, is proposed in (THOM77).

P (pass): Each BV is current but there exists a conflict with a higher

priority pending request (which received an OK vote).
A conflict between Ti and Tj correspond to (BV's)i N (UV's)j#d.

If a majority consensus is obtained on PASS votes the request

is globally rejected.
D (defer): defer voting when:

- either each BV is current but there exists a conflict with a

lower-prority pending request.

- 88 -

- or request-BV time-stamps are more current than the local

ones which are obsolete (a previous update was not yet

performed).

This case corresponds to the weak integrity feature.

These deferred request are queued (in Q).

5.2 THOMAS' PROTOCOL FORMALIZATION

A controller is formalized by an ADT named SYNC whose signature is

indicated in the following figure.

OBJECT

OPERATORS

COMMENTS

Global entity (GE)

PREPAREG (M, GES);
SETG (M, GES);

UNSETG (GES) ;
ID (GES) ;

M : Messages

GES: Global entity
state

ID: Identity operator

Fig. 2s
SYNC Signature

OBJECTS

OPERATORS

- COMMENTS

Message (M)

ME (EXTREQ, UPD,
REJ)

TRANSMIT (M, PR,DBMPL, I,J);

BROADCAST (M, PR, LIST);

RECEIVE (M,PR,DBMPL,I,J,
GES, PR);

WAIT (M,PR);

DBMPL: List of control-
lers which voted

IJ: counters

LIST: identification of
receiving controllers
(may be "ALL")

GES,PR: local parame-
ters
PR: priority

we indicate the para-
meters of importance in
a message transmission/
reception

Status (LRS)
LRSE (OK,D,PS,RJ)

Copy status (CS) ID (CS)

CS (STB,USTB)

Global Request

Status (GRS) ID(GRS) A : none

GRSE(A,P,A,R) P : pending
A : accepted
R : rejected

Local Request ID (LRS) OK : OK vote

D : deferred
PS : pass
RJ : rejected

Local entity (LE)

PREPAREL (LE); SETL (LE);
UNSETL (LE);

TRANSACTION (T)

PROCESS (T)

Fig.3.

Signatures of other involved types

G

Other basic operators used in the specifications are those attached to:

INT, BOOL, like TEST (A,B): = IF A = B THEN TRUE ELSE FALSE
SUP (A,B): = IF A > B THEN TRUE ELSE FALSE

LIST (L) like APPEND (i,L),...

QUEUE (Q) like ENQ,DEQ,EMPTY?,...

A global entity state (GES) is a 3-tuple <CS, GRS, LRS> which may take

4 basic forms:
(STB,A, -), (STB,P,-), (STB,R,-),(USTE,A,-)
where " - " represents a non-specified local parameter (OK,RJ,D, or PS).
The specifications of SYNC for THOMAS' protocol are given in Annex 1,
Parallelism
We want to express the parallelism between two participating cont-
rollers namely SYNCi and SYNCj; parallelism between controllers i and j

will be depicted by a I~homomorphism between SYNCi and SYNCj.

In order to do so we introduce the following morphism ¢ associated

with synchronization messages which defines a correspondance between remote

global states:

v

(STB,A,-) elnpmal >(STB, A ,-)
(STB,P,-) [EXTREQ] >(STB,P,~)
(USTB, A, -) o[UPD] >(USTB, A, -)

 Assertion l: In an environment without concurrency conflicts, the protocol

ensures weak mutual consistency

The verification of theorem 2 is straight-forward with (STB,A,-) = F
and (USTB,A,-) = U. As a matter of fact we get the following diagram com-
mutations (attached to a given transaction) by making use of the I-algebras

equations,

-]

NOTE: We represent the three types of controllers which may exist in the

distributed system,

ith (STB, A, ~)—ZREPAREG _ rp . ok)—LUERL, ((s18,4,-)1-SETS usTB, A5)

s A A A
<controller
which voted © ©(EXTREQ) ©(UPD)
without obtai-
ning the con-
sensus>

MJ
|
(STBYP, Ok)—Leached }sTB

.4 PREPAREG 4 SET

ith (STB, N ,~)—"—m0E 5 LA, 0K) } 218 (ysTB, Ar)
e A

<controller §
where the [0 ©(UPD)
consensus 1s

obtained>

v v SETG
kth (STB,A,-) (s) {(STB,A,-)}——=(USTB,A;)
<controller
which did not
vote>

notation: [M] : reception of message M

In the following diagrams, we shall not represent the intermediate

states (between {}) to alleviate the representations.

NOTE: If we integrate internal-integrity violatior in this scheme we get the
following commutation which ensures that the final global state (available

for retrieval/update) is identical to the initial one.

©(REJ)

We introduce the following morphism (STB,R,-) >(STB,R,-)

e

PREPAREG REJECT UNSETG

ith (STB,A,—)——(STB,P,OK)——(STB,R,-)_—(STB,A,-)
(controller 1 N
which voted ® ©[EXTREQ] ¢ (REJ)
OK; the con-
sensus is not
reached) L BV
jth (STB,A’_)_LEEIBEgl,(STB’p’_);!lglffigf*(STB’R’RJ)-EE§EEE&T,(STB,A,-)
(controller A
which voted (0
REJ)
v
kth (STB,A,-) notation [M] : reception of message M
(controller
which did
not vote)

No SETG has been performed; therefore, the final states correspond to
the initial ones (before the synchronization session). The mutual consis-

tency is then verified.

Assertion 2:

The protocol ensures weak mutual consistency when there is a finite set of

concurrent conflicting transactions

Proof:

The proof of this assertion may be reduced to two concurrent transac-
tion Ti and Tj (with PRi > PRj) since there is a total ordering of transac-

tions.

Two major cases may occur depending on the fact that:

(i) The lower priority transaction (Tj) gets the majority consensus

on OK before Ti.

(ii) Tj gets the majority consensus on PASS votes and is rejected.

We will use the indices i and j for ¢ to indicate the belonging of a
correspondence to the ith or jth session. In ANNEX 2 Figure 4 (rejection of T

and Figure 5 (rejection of Tj) depict the most general situations which can

arise and show the weak mutual consistency.

6. CONCLUSION

The difference between this model and the others are a reflection of

different goals; our model is an attempt to provide:

(1)

(ii)

(iii)

(iv)

(v)

a minimization of the primitive concepts: a framework for proto-
col uniformization/abstraction leading to the concept of
synchronization-protocol transparency (this introduces a new
degree of transparency to the four types of transparency presen-
ted in (TRAI79). Whatever the synchronization protocol is, we
pointed out three generic primitive operators which represent

the only knowledge of the inner and outer layers where the pro-
tocol is used; the operator semantics (depending on the protocol)
is hidden and can be switched according to the suitability (strong

or weak-mutual integrity,...) of the chosen protocol.

a way to express synchronization protocols clearly such that the

effects of failures are formally specified (POPE79).

a basis from which SIMPLE (visualisable) and RIGOROUS proofs of

correctness can be inferred.

a global architecture for a distributed-data-base integrity
system; a synchronization protocol corresponds to a functional
layer with a clear mapping to a local DBMS and to an END-to-END
communication protocol.

The formalism is extendable to the functional-layer specification
of a data-base-management system (models and manipulation lan-
guages) and a computer network (entities and protocols); our
formalism is not constrained to synchronization protocols.

This represents a salient feature of the ADT-based approach.

the expression of basic integrity concepts (mutual integrity

theorems; serialization; atomicity,...).

- 94 -

Those points are not addresed in the other existing proposal made by
ELLIS (ELLI77-b); ELLIS proposes a formalism based on L-SYSTEM for his
protocol (in a fail-safe environment only); the specifications are visual-
izable and simple; however the proofs are very complex and dependent on the

size of the network (small preferably).

There is another proposal made by WILMS (WILM79-a) with a formalism
based on NUTT's networks but only concerned with the specification aspect.
This article presents a new application of abstract data types; it aims at
demonstrating that the ADT concept can be applied with a good profit to a

typical distributed-data-base problem.

ACKNOWLEDGEMENTS

Special thanks are due to Gerry POPEK for invaluable discussions on
this topic and to the numbers of the SIRIUS-INRIA group (animated by G. LE

LANN) in which the ideas presented here were freely discussed and explored.

7. REFERENCES

(ALSB76)

(BILL79)

(BURST77-a)

(BURST77-b)

(BUST78)

(ELLI77-a)

(ELL1I77-b)

(GARC79)

ALSBERG,P.A. "Multi-copy resiliency techniques"
University of Illinois research report, CCTC-VAD-6-505,May 76.

BILLER,H., EBERHARD,L. "On the evaluation of architectures and
applications of distributed data base management system".

Seminar on distributed data sharing, Aix en Provence; France,

May 15-17-1979.

BURSTALL,R.M., GOGUEN,J.A. "Putting theories together to make
specifications".

Proc. 5th Int. Conference on aritifical intelligence.

Mit/1977, pp 1045-1058.

BURSTALL,R.M. '"Design considerations for a functional prog-
ramming language".

Proc. Infotech Symposium, Copenhaguen, Oct. 1977.

BUSTA,J.M. "Integridad externa da una base de datos repertida
en una red de ordenadores general heterogénea'.

PH-D Thesis, Univ.de Santiago de Compostela, Spain 1978,

(CITEMA award of the best doctoral thesis in Spain.)

ELLIS,C.A. "A robust algorithm for updating duplicated data
bases",

Workshop on distributed systems, Berkeley, 1977, pp.l46-160.

ELLIS,C.A. "Consistency and correctness of duplicate data
systems'.

Proc. of the 6th Symposium on OS principles, 16-18.

GARCIA-MOLINA,H. "Performance of update algorithms for repli-
cated data in a distributed data base".

PH-D Thesis Univ. of Stanford, June 1977 (report n° STAN-CS,

79-744)

e ggr—
(GRAY75) GRAY,J. et al. "Granularity of locks and degrees of consisten-
cy in a shared data base".
Modelling in DBMS, G.M. Nijssen editor, North Holland, pp.365-
394 (also IBM research report RJ 1606, 1975).

(GRAY78) GRAY,J. "Notes on data base operating systems"

Lecture notes in computer science, edited by J.Hartmanis,

Springer Verlag, Berlin, New York, 1978, pp. 394-481.

(GRAY79) GRAY,J. "A discussion of distributed systems".
Proc. AICA, Bari, Oct. 10-13, 1979, pp. 204-211.

(GOGU76) GOGUEN,J.A. et al."An initial algebra approach to the speci-
fication, correctness and implementation of abstract data
types".

IBM research report RC-6487, Oct. 1976.

(GOGU78) GOGUEN,J.A. "Some design principles and theory for OBJ-0 a
language for expressing and executing algebraic specifications
of programs".

Proc. Int., Conference on Mathematical studies of Information

processing, Kyoto, Japan, 1978, pp. 429-475.

(GOGU78-a) GOGUEN,J.A., BURSTALL,R.M. "Some fundamental properties of
algeraic theories: a tool for semantics of computation".

UCLA research report, July 1978..

(GOGU78-Db) GOGUEN,J.A., TATCHER,J.W., WAGNER,E.G. "An initial algebra
approach to the specification, correctness and implementation
of ADT".

Current trends in Programming Methodology, Vol n° 4, Data

Structuring (Ed. by R.Yeh) Prentice Hall 1978, pp.80-149.

(GUTT78) GUTTAG,J.V. et al. "Abstract data types and software validation"
CACM, Dec. 1978, Vol 21, number 12, pp. 1048-1064,

(HOAR72)

(LELA76)

(LELA77)

(LELA78-a)

(LELA78-b)

(LELA79)

(MENA77)

(MILN71)

(MIRA79)

T

HOARE,C.A.R. "Proof of correctness of data representations".
Acta Informatica, 1,4 (1972) pp. 271-281.

Le LANN,G. "Introduction 4 1l'analyse des systémes multi-
référentiels"

Thése d'Etat, Univ, de Rennes, France, Mai 1976, 198. p.

LE LANN,G. "A protocol to achieve distributed control in
failure tolerant multi-computer systems".

SIRIUS research report, IRIA, CTRI 002-1977.

LE LANN,G. "Algorithms for distributed data sharing systems
which use tickets"

SIRIUS research report, SYN 1003, 1978. (Proc. 3rd Berkeley

Workshop, San Francisco, August 1978, pp. 259-272,

LE LANN,G. "Pseudo-dynamic resource allocation in distributed
data bases"

Proc, of the ICC, Kyoto, Japan, Sept. 1978

LE LANN,G. "Consistency and concurrency control in distributed
data base systems'".

Presented at the ECC course on distributed data base Sheffield
(U.K.) July 9-20, 1979 (SIRIUS Report, INT 1-1007.)

MENASCE,D., MUNTZ,R., POPEK,G. "A locking protocol for
resource coordination in distributed systems"

UCLA research report, 1977

MILNER,R. "An algebraic definition of simulation between prog-
ramms'',

Stanford AI project, Memo AIM - 143, Feb 1971, 21 pp.

MIRANDA,S., BUSTA,J. "Interference problem in distributed data
systems".

Proc.5th Conf. on the theory of operating systems

Visegrad, Hungary, Jan 31. Feb 3, 1979.

(MIRA80-a)

(MIRA80-b)

(MIRA80-c)

(MIRA80-d)

(MONT78)

(NOUR79)

(PAOL77-a)

(PAOL77-b)

(POPE79)

g @

MIRANDA,S. "Specificafion and validation of two ring-structure
synchronization protocols for distributed data bases".

Proc.Int, Symposium on distributed data bases, Paris,

March, 12-14, 1980.

MIRANDA,S. "Aspects of data security in general-purpose data
base management systems".

Proc. 1980 Symp. on data security and privacy, IEEE, April

14-16, 1980, Berkeley, CA.

MIRANDA,S. "Architecture formelle d'un systéme d'intégrité

pour une base de données répartie".

Thése d'Etat, Univ. Paul Sabatier, Toulouse, France, Sept.1980.

MIRANDA,S. "DLP:a fault-tolerant decentralized locking protocol
for distributed data bases".

Proc. FTCS,10,Kyoto, Japan. Oct. 1980.

MONTGOMERY,W.A. '""Robust concurrency control for a distributed

information system"

PH-D Thesis, MIT/LOCS/TR-207, Dec 1978.

NOURANI,F."Constructive extension and implementation of ab-

stract data types and algorithms"

PH-D Thesis, UCLA,ENG-7945, 172 p. August 1979,

PAOLINI,P.,PELAGATTI,V. "Formal definition of mappings in a
data base"

Proc. ACM SIGMOND Conference, Toronto, 1977, pp. 40-46.

PAOLINI,P.,PELAGATTI,V. "Formal definition of data models'.
Instituto d'"Ellectrotecnica-Politecnico de Milano,

Research report, n° 77-2, Feb. 1977.

POPEK,G., MIRANDA,S. "Formal solution to the external integrity
problem in distributed systems using abstract data types'.

UCLA and CERISS research report,n® 79038, May 79 (revised

version forthcoming).

(SEGU78)

(TARD77)

(TARD79)

(THAT76)

(THOM75)

(THOM77)

(TRAI79)

(WILM79-a)

- 99 =

SEGUIN,S. "Traitement distribué d'informations réparties dans

un réseau d'ordinateurs"

Thése d.Etat, INPG, Marc 1980.

TARDO,J. "OBJ and the automatic implenetation of abstract
data types".
PH-D Thesis, UCLA 1977

TARDO,J. et al."A practical method for testing algebraic
specifications".

UCLA quarterly report, Dept, of computer science, UCLA, pp.
59-71.

THATCHER,J.N. et al. "Specification of ADT using conditional
axioms".

IBM research report, RC 6214, Sept. 1976,

THOMAS,R.H. "A solution to the update problem for multiple
copy data bases which use distributed control"

BBN report # # 3340, July 1975.

THOMAS, R.H. "A majority consensus approach to concurrency
control for multiple copy data bases"

BBN report,n’ 3733, Dec. 1977, 51.p.

TRAIGER,I.L. et al. "Transactions and consistency in distrib-
uteddata systems"

IBM research report, 1979, (to appear)

WILMS,P. "Etudes d'algorithmes de cohérence d'informations
dupliquées et réparties'" -Formalization 4 1'aide des réseaux

de Nutt",

o

Research report, INP Grenoble, RR n 160, 160 bis, Feb. 79.

(WILM79-b)

(WULF76)

- 100 -

WILMS,P. et Al "A majority consensus algorithm for the
consistendy of duplicated and distributed data"

Research report, Univ. of Grenoble, March 79, (Proc.lst Int.

Conf. on DCS, Huntsville, Alabama, Oct. 1-5, 1979).

WULF, W.A. et Al "Abstraction and verification in ALPHARD"
Internal Report, 1976, CACM, Vol n° 20,8, pp. 553-563,

August 1977,

= 101 =~

ANNEX 1: Specifications of THOMAS' protocol in an OBJ- close language

OBJECT SYNC (ith controller)
SORTS GES,LE,INT,BOOL,T,M, PR,LIST,QUEUE,GRS,LRS,CS

OPS PREPAREG

g SETG
UNSETG
1D

M X GES—> GES
M x GES —>GES
GES >GES
GES >GES

VARS PR : INT <priority (PR,i) will be noted Pi>
o1 INT <controller number>
STB: CS ; USTB CS ;
P : GRS;A : GRS; R ¢ GRS; : GRS;
OK : LRS;D LRS; PS : LRS; RJ : LRS;

EXTREQ : M < the EXTREQ is built by the AP with the BVTS
message>

UPD : M < the updata message is broadcasted to each DBMP>

REJ : M < the REJECTION message>

We do not consider the messages exchanged with the AP
PS# : INT <counter of pass votes>

OK# : INT <counter of Ok votes>

MJ : INT <majority number>

DMPL : LIST <list of DBMPs which voted>

Q : QUEUE <queue of deferred conflicting requests>

SPECS
<EXTREQ, reception>
RECEIVE (EXTREQ, PRk,DBMPL,PS #, OK#,; (STB,A,-),-):=ID(GRS)=P;ID(GES)=(STB,P,-);
IF <current base variables>
THEN PREPAREG((EXTREQ,PRk,PS#,0K#), (STB,P,-));
ELSE BROADCAST (REJ,PRk,DBMPL) ;
ID(LRS)=RJ; ID(GRS)=R; ID(GES)=(STB,R,RJ);
UNSETG (REJ,PRk; (STB,R,RJ));

- 102 -

RECEIVE (EXTREQ,PRk,DBMPL,PS#,0K#; (STB,P,-);PRj):=ID(GRS)=P;ID(GES)=(STB,P,-);
IF <current base variables>
THEN IF <conflicting updates>; <(BV's)k N (UV's)j#6>
THEN IF SUP (PRk,PRj) = TRUE

THEN ID(LRS) = D; ID(GES) = (STB,P,D);
ENQ (Q, (EXTREQ,PRk));
TRANSMIT (EXTREQ,PRk,DBMPL,PS#,0K#); WAIT (EXTREQyUPDyREJ,PRK);

ELSE IF TEST (PRk,PRj) = TRUE revote
THEN PREPAREG ((ESTREQ,PRk,-,0K#),(STB,P,-));
ELSE ID(LRS) = PS; INCR(PS#); APPEND (i,DBMPL);
IF TEST (PS#,MJ) = TRUE
THEN ID(GRS) = R; ID(GES) = (STB,R,PS);
BROADCAST (REJ,PRk,DBMPL) ;
UNSETG ((EXTREQ,PRk), (STB,R,PS));
ELSE TRANSMIT (EXTREQ,PR,DBMPL,PS#,0K#),
ENQ(Q, (EXTREQ,PRk)); WAIT (UPDVREJ,PRK);
ELSE PREPAREG((EXTREQ,PRk,PS#,0K#), (STB,P,-));
ELSE ID (LRS) = RJ; ID(GRS) = R; ID(GES) = (STB,R,Rj);
BROADCAST (REJ,PRk,DBMPL) ;
UNSETG((EXTREQ, PRk) , (STB,R,RJ));

RECEIVE (EXTREQ,PRk,DBMPL,PS#,0K#); (STBvVUSTAB,A,-),PRJ):=ID(LRS)=RJ;
ID(GES)=(STBVUST,R,-) ID(GRS)=R;
BROADCAST (REJ,PRk ,DBMPL) ;
UNSETG ((EXTREQ, PRk) ; (STBVUSTB,R,RJ)) ;

<UPD reception>
RECEIVE (UPD,PRk,-,-,-; (STB,AvP,-),PRj) :=
IF TEST (GRS,A) = TRUE
THEN PREPAREL(LE); <the DBMP did not participate in the voting>
ELSE (DEQ(Q, (EXTREQ,PRk)); IF Test (PRj,PRk)=FALSE THEN (ID(GRS)=R;
UNSETG ((EXTREQ,PRj), (STB,R,=)))};

= 103 =

ID(GRS) = A; ID(GES) = (STB,A,-);
SETG(UPD, (STB,A,=)) ;)
LOOP WHILE EMPTY ? (Q) = FALSE
DEQ (Q, (EXTREQ,PRi)); ID(GRS)=R; ID(GES) = (STB,R,-);
UNSETG ((EXTREQ,PRi), (STB,R,-)); <all conflicting transactions

are rejected>

ENDLOOP

<REJ reception>
RECEIVE (REJ,PRk,-,-,-,;(STB,P,-),PRk) : =
ID(GRS) = R; ID(GES) = (STB,R,-);
UNSETG (REJ,PRk;(STB,R,-));
IF EMPTY? (Q) = FALSE
THEN WAIT (EXTREQ,PRj); <for revote>
<This set of operations will be referred in the diagrams as
REJECT>
PREPAREG ((EXTREQ, PRk ,PS#,0K#) , (STB,P,-)) :=INCR(OK#) ; ID(LRS)=0K ; APPEND (i , DBMPL)
ID(GRS) = P; PREPAREL(LE);
IF TEST (OK#,Mi) = TRUE
THEN ID(GRS) = A; ID(GES) = (STB,A,O0K);
BROADCAST (UPD, PRk ,ALL) ;
SETG (UPD,PRk;(STB,A,O0K));
ELSE TRANSMIT (EXTREQ,PRk,DBMPL,PS#,0K#);
ENQ(Q, (EXTREQ,PRk) ; WAIT (UPDVREJ,PRk);

SETG(UPD, PRk, (STB,-,-) := SETL(LE<PROCESS(T),...>; ID(CS)=USTB; ID(GRS)=A;
ID(GES) = (USTB,A,-);

UNSETG(',", ; (USTB ’A’_)) H

UNSETG(,-,-;(=,=)) : = UNSETL(LE); ID(CS) = STB; ID(GRS)=A; ID(GES)=(STB,A,-);

TCEJBO

(ii)

(iii)

- 104 -

received messages are ignored in other configurations

(in fact they could be treated like error conditions)

We do not consider local tests made on current BVs before
local update is performed; these tests are related to

robustness.

BROADCAST is here equivalent to TRANSMIT [(n-i) messages]
The REj message is broadcasted to the DBMP's which voted
(whose identification is in DBMPL) while the UPD message

is broadcasted to every concerned DBMP.

jth(controller

which voted

OK on Tj (OKj)

without obtain-
ing the consen-
sus

kth(controller
which voted OK
on Tj without
obtaining the
consensus and
received
EXTREQ (Tj))

lth(controller
which voted OK
on Tj and
obtainst the
consensus)

nth(controller
which voted OK
on Ti (OKi) and
received
EXTREQ(Tj))

nth(controller
which did not
vote yet)

Note: [Mi] : message attached to tramsaction Ti

(STB, A,-)-REPARECG) ; (sTB,P,0Kj) — >(USTB, A, j)—oE1C)_5(STB, A, ~)
W\
®] ©j ®j
| . . ,
(STB, A ,-)——REPAREG] _ orp p, OKj) SETe >(USTB, A, j) —DSETC) o (gTR,A,-)
[EXTREQi] 1
- 2 N(STB, P, Di)b heribus(STB, A, 1) | ¥
A
oi wF[UPDj]
v
e v . .
(STB, A, -)—REPAREC] +(STB,P,0Kj) Lritad USTB, A, OKj)—20L1Cls (TR A, -)
(OKj# =Mi)
1
©j ©J
(STB,A,-)~£§§£é5EE%VWW*NVNWMMm~KSTB’P,OKi) UN. ETGl-XSTB,A,i)
" [EXTREQj] . Y)
.. UNSETG
(STB, B, PS5) SETC) (USTAB, A, j) ————L >(STB, A,~)
l ®j @]
. J/ ETG]
(STB, A,-) L >(USTB, A, j) — DETC) 5(STB, A, -)

Note: Ti is rejected when
Tj is accepted

Fig.4. Diagram commutations corresponding to the cases where T.
gets a majority consensus on OKj (votes OK assciated

with Tj)

JUSWUOITAUS 3OTTJUOD

Adoua1anduod ® ur 102030ad ,SYWOHL 10J SUOTIBINUNOD JO STSATBUY :Z XANNV

S0T

STB,.P,Di).eo (1)

jth(controller which
voted OK in Tj (OKj)
without obtaining
the consensus and

[EXTREQi]

PREPAREG UNSETG]

received EXTREQi) (STB,A,-) »(STB, P,0Kj) —2JECT] (518, R,-)
A
©j @

UNSETG]

>(STB,A,J)

(STB,P,PSj) REJECT) >(STB,R,~)
A~ A

®j [EXTREQ]]
®J

kth(controller) !} .
which voted (STB, A, -)~k AREGL (s TB, P, 0Ki) . . . (1)

OK on Ti (OKi)
and received

®j

PS# = Mj

—>(STB,A,j)

>(STB, A, j)

- v .
»P,PSj) >(STB,R,Rj)

EXTREQi)

l1th(controller)
which voted

OK on Ti (OKi) and
received EXTREQ]
with a consensus
on PASS votes)

(1)

mth (controller
which voted OK on

Ti (OKi))
|+

o6l

nth(controller
which did not vote
yet

(STB; A=) ewi 1)

=001 =

Notes: (1) As soon as majority consensus is obtained on OK votes for Ti, we shall get the

same diagram commutations as in the assertion 1,

(2) Here we introduced the morphism: (STB,R,—)-ELEEEA.

REJ niessage.

Figure 5l

on PSj (Pass votes associated with Tj).

(STB,R,-) corresponding to the

Diagram commutations corresponding to the case where Tj gets a majority consensus

= 107 =

Osszefoglalas

Az irodalom kiterjedten foglalkozik osztott adatbazisok szinkronizdciés probl¢ maival
és sok szinkronizacios protokolt terveztek mar. A cikkben absztrakt adattipusokon (algeb-
rai modszeren) alapulé formalis megk6zelitést mutatunk be és kidolgozunk egy egységes
moédszert a szinkronizaciés protokolok leirdsira és ellendrzésére. Az eredményeinket egy

alapvet6 protokolon mutatjuk be, amely a megoldasok egy széles osztalyat reprezentalja.

PE3IKOME

dopMasibHOE OIIMCaHHe CHHXPOHH3allUd pa3nesjibHHX 6a3 IJaHHHX

B nuTepaType OBMWHPHO H3NnararwnTcsa CHUHXPOHH3ALHOHHHE 3anavH
pa3nelyleHHHX 6a3 OaHHHX. MHOI'OYHCJIEHHHE IMIPOTOKOJIH OHJIH NMPOEeKTH-
poBaHH. B HacTosmen pa6oTe npemjiaraeTrcsa (opMalJibHHM nogxon,
OCHOBAHHHM Ha abCTpaKTHHX THNAaxX NOaHHHX /Ha anrebpanyeckKoM Me-
Tone/ U pa3pabaTHBaeTCHA eOUHHH MeTOO IJIA ONHCaHUA U NPOBEPKH
CHHXPOHH3ALIHOHHHX NMPOTOKOJIOB. Pe3ylnbTaTH HIUINCTPHPYKWTCHA OCHOB-—

HEIM TNIPOTOKOJIOM, IpPpenCcTaBJIANIHUM ULWHPOKHUH KJIaCcC pemeHHH.

	Serge M. Miranda: Osztott adatbázisok konkurrenciájának formális leírása���
	Oldalszámok������������������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������

