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THROUGHPUT OPTIMIZATION OF MULTISTAGE: QUEUEING
*
SYSTEMS WITH FINITE INTERMEDIATE STORAGE
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1. Introduction .

Multistage Queueing Systems /MQS/, that is such systems where
every demand has to be served consecutively, in a predefined order,
by several servers receive recently a lot of attention, being an
important tool for modelling several kinds of industrial systems.
For example such structure have production lines [6] and computer
communication systems [12] .
If gervice times at different stages are not constant and equal then
unavoidably some queues form between conaecu%ive servers.In reality
this queues are not allowed to exceed some fixed values because of
storage facility constraints.If, upon completion of a service,no place
is available in a consecutive buffer for depositing the demand
involved, this very demand may perhaps be lost,and abandon the system

never to return again.
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More frequently however, no losses are permitted and server which
completed the "fatal" service is used as an additional storage place
being of course unable to process other demands /the blocking pheno-
menon/.

In fact different possible types of blocking may occure, like
repeating the service of demand which couldn’t have been placed in
the consecutive buffer, or even forcing this demand to return to the
very beginning of the system and have all the so far achieved servic
repeated / cf [11] where also some equivalence rules between differe
types of blocking where discussed and [31] /.

Numerous papers were concerned with the analysis of MQS.It has
to be stressed that exact analytical toole generally fail when the
number of consecutive servers exceeds three, and even for smaller
systems only some special cases / or some special system features/
are fully investigated.Thus a great affort is being done to obtain
approximate solutions either by means of specially developed methods
like diffusion approximation /cf [24] /, numerical methods /eg [19]
or simulation.

Other, equally important area of research is optimization of
MQS operational features, like throughput, servers utilization,
queue length e.t.c.For these studies usually the following way was
chosen by numerous researchers: First the special cases of two and
three stage sysfema were investigated /preferably analytically/ and
afterwards, basing on conclusions obtained there some hypothesis of
more general applicability were formulated.These in turn were subjec
to verification using- most frequently - simulation as the tool.

The purpose of this paper is to present state of the art in the
area of throughput optimization in MQS with the classical type of

blocking mentioned above.In authors opinion there is a need for such
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survey as in a number of papers several optimization rules have been
developed /usually each for some special ca504 being sometimes non-
consistent or even contradictory.

In consecutive sections,after dealing with some general properties
including the formal statement of the optimization problem and with
the special case of systems having constant service times, outlines
for optimal choice of each of the parameters influencing the through-
put of MQS with single servers at every stage will be considered in
turn.This will be followed by considerations concerning the use of
multiservers at some stages, and some remarks about optimization goals
other than throughput maximization.The whole paper is completed by
a set of final cenclusions,

The list of references compiled in this paper, although not aimed
as a complete bibligraphy includes, in author’s opinion, the vast ma-
Jjority of papers concerned with optimization problems in unpaced MQS
/i.e. such where no external synchronization in operation of different
stages exists/.Papers dealing with paced systems were mentioned only
if the results presented there were in strong connection with the inve-
stigated system, while papers covering the problems of system analysis
exclusively, have been intentionally omitted.

As production lines are one of the common technical systems being
modelled as MQS, it is worth mentioning, that a wide range of both
analysis and optimizatioqbroblem- connected with designing of pro-
duction lines was reviewed by Buxey, Slack and Wild [ 6] establishing
also their connection with topics discussed here.

It is hoped that the unified approach presented here will be of
some help in directing the future research, simultaneously providing

practicians with a set of directly applicable optimization rules.
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20 Cogcepts and Definitions .

Further in this paper MQS of the type presented in Fig. 1

will be considered.

Identical demands originating from a source W with intensity A,
are to be served consecutively on "M" stages /each of them consi-
sting of several, not necesserily similar service facilities/ in

a strict order.A queue Si with Ni places is allowed to build up
in front of the i-th service stage.The service time of demands on
server Ai are independent,identically distributed nonnegative

random variables bJ, with arbitrary distribution functions B3 (x).

Let E (bg) denote the mean service time and /Lg its recipro-
. -4
cal /service intensity/, /p,g = [E (bg)] +Random variables bi and

% are statistically independent if j#k or i#l.

b
It is assumed, that only one demand can be served by a server
at any time.
Eachktage is preceded by a buffer.Intermediate buffers

S, s eee s Sy are of finite size /Ni<fa>, i=2, 3, eee M/,

cauging the blocking phenomenon to occure.

Each server AJ , J =1, 2, ... Ry 1w 1y 2 wee s W1 1s
always in one of three possible stages:

- busy 1if it is serving a demand,

- blocked, when it has completed a service but cannot pass on the
demand to the next stage,because the consecutive buffer Si+1 is
full,

- idle when it is neither busy nor blocked.

We shall assume that the server Ag may be idle if and only if there

are no demands waiting for service in the queue Si'
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Let us now introduce some classification of MQS.

A MQS will be called gueueing line if every stage consistis of one
server, exclusively /ni =13 1=1,2, s y B/ &« Then Bl(x) will
be denoted briefly Bi(x) .

If all servers installed at any stage are identical
/Bl(x) =B{(&x) ; §=1,2 oo yng31=1,2 oo M/ then the
MQS is called homogeneous otherwise it will be referred to as
non-homogeneous .

If the joint service intensity of all servers installed at
stage "i" , i=1, 2, ¢ee 4 M is constant,

n

-

ST | j
L/Li =D’ i=1,2’ LN M; (1)
J#1

then the system is called balanced, otherwise it is unbalanced .
In order to preserve a measure of gystem unbalancing, we shall

further assume that the following holds:

ng

M ) oA
;[(;M)] =M (2)
Thug for the balanced case

;/13-4. (3)

Naturally for homogeneaus, balanced systems ;

J * :
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Comparing the service time distribution effect on the system
throughput we shall frequently utilize the variability coefficient,

defined for a service time distribution B (x) as

(- =]

" fxadB(x)
= 2 —
[ [xdBo:]® ¢

(5)

A
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and being a suitable measure for the variability of service time.
Naturally (=0 for the constant service time and (= 1 for expo-
nentially distributed service time.

In some queueing lines the transfer of demands from all servere
to consecutive buffers takes place simultaneously, being externally
synchronized, no matter if all service processes where completed or
not.This occurs for example in automated transfer / moving belt/
production lines.Such queueing lines will be called paced .

Thus in the paced aystems a predetermined time quantum,

/called cycle/ is imposed for every service.In the case of constant
service times the cycle should be equal to the longest service time.
If service times are variable then the line should be designed so
as to minimize the probability of one or more stations exceeding
the cycle.

Methods for designing paced queueing lines were surveyed
in [6:], while the case of variable service times is treated for
example in [43] .

Further in this paper we shall be interested only in the cases
when no external synchronization / no pacing effect/ in the flow
of demands through the system is introduced, called unpaced systems.

An important feature of any queueing system is its throughput
/frequently called production rate/ defined as the mean number
of demands leaving the system in a time unit /completly served/.

We shalllbe specially interested in the maximal chroughput
/ capacity/ which a given system may achieve.

The MQS*is called open if the buffer S, preceding the first
service stage is unlimited, /N1 =co /, and the input stream of demanc

is a renewal stream.
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On the other hand if the input stream is such, that the
queue S1 is never empty, then the gystem is called saturated.
Certainly for saturated systems both the maximal queue size N1
and the detailed characteristics of the input stream are of neo
importance.

Two MQS : an open one and a saturated one are called corregpon-
ding if they are identical, up to the specification of the input
stream,

Let us consider some MQS. If we define another system in which
the order of service is reversed, that means every demand passes
through the system beginning with stage M and ending at stage 1,
buffer sizes being exactly preserved, then such two systems are
called dual systems .

Finally we shall introduce the concept of saturated system
accumulation ,being equal to the maximal number of demands which
are allowed in the system simultaneously.

System accumulation V is given by the following formula

M
L=ZHL*Z’ (6)

o4

where M

is the total number of storage places /total buffer size/-available
in the system. '

It is evident that dual systems have equal accumulation.
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3. General considerations .

In this section we shall present some theorems and remarks
concerning some large classes of MQS. ‘

Lavenberg [28 ] proved / as a special case of more general
dependences discussed in his paper/ an important connection between
the throughputs of corresponding open and saturated multistage syste
If only all service stations in a MQS have Coxian service time distr
butionn*)and all intermediate buffers are finite, then throughput
of the saturated system Ts is equal to the maximal throughput
/capacity/ V of a corresponding open system.

More precisely, the throughput T of the open system can be defined
as follows:

Ty H Jes

T <
Ty if Ao>Tg
where A, denotes /cf Fig.1/ the intensity of demands arrival in
the open system. Thus V = T, .
Additionally in the case when 3} > Ts, the stationary distribution o
the number of demands waiting in the queue S1 doesn’t exist, contr
ry to the case when A < Tge

Thus in order to find the capacity of multistage queueing syste

it is necessary to investigate the proper saturated case.

*)Coxian distribution means any distribution having a rational Laplace

transform of the distribution function.In fact it is possible to
approximate any distribution function fairly well with a Coxian
distribution, thus the constraints are not restrictive.The case of
congtant service times, however also possible to approach as a limi-
ting case of Erlangian distribution, will be further in this paper

treated seperately.
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Let us notice that without loss of generality it is enough to
consider MQS without intermediate buffers. ([ 2] L841).

It is quite evident, that any buffer of size N can be replaced by
N servers, each having a null service time / B(x) =1{(x) ,
1 (x) being the Heaviside function/ .This property simplifies

many proofs.

It is also worth stressing, that the capacity of a MQS is
almost independent of the service disciplines applied.In fact, as long
as no server Ai ¢ 3 =Yy 2% sve 3 n; 4 i=1, 2, eee M may remain
idle if the queue Si is not empty, and the service is of nonprempti-
ve type,all queueing disciplines / possibly not identical at different
stages/ yield equal system capacity.

Another important result of quite general applicability is the
80 called reversibility property for saturated MQS with finite
intermediate buffers.

Yamazaki and Sakasegawa [54] demonstrated that the capacity of

a8 queueing line with general service time distribution is invariant
for reversal ordering of the servers.That means, dual systems have
equal capacity.

The reversibility property is important for the throughput opti-
nization considerations as it makes us expect optimization rules
calling for queueing line structures being in some sense "gymmetric".
This feature will become more meaningfull in further sections.

Recently independent proofs of the reversibility property were
ziven in [13] and [32] .
fawashima [22] generalized this property, stating that also both the
listributions of service completion times for every customer and the

iumber of service completions in the time interval /0 , t / are

invariant for reordering the servers reversely.
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Yamazaki, Sakasegawa and Kawashima [55] proved, that the reversibility
property holds also for the case when, at some stages,there are insta-
lled homogeneous multiservers, having however constant service times
/notice that this is not a queueing line any wmore/.

Wolisz [527] verified, that this property holds also for two-stage
homogeneous systems with arbitrary numbers of exponential servers

at each stage.

The occurance of blocking phenomenon causes a decrease of system
throughput in comparison with systems without such effect. |
In fact Muth [31] pointed out, that the capacity V; of any queueing
line with finite intermediate buffers has two bounds:

- The upper bound V{
Vi = Minu, (1)
Sl

being equal to the service intensity ol the slowest server,

The throughput of a gqueueing line would tend to thia value if all

queues were allowed to build up without any restrictions.

This is a direct result from Sachs [44] theorems concerning the
- ergodicity of tandem queueing systems.

- The lower bound Vi

3" 1 (8)
VL Elmax (b, b, ...b.)

4522 M

It is easy to see that VI = VI = VL in the case of constant service

times ;

In his paper Muth compared also the values of +the difference

Vz - VI for various queueing lines.
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The capacity of a MQS may be, generally speaking,influenced by the
number of stages as well as following parameters describing indivi-
dual stages:

-service intensity,

-gervice time distribution,

-buffer size allocation to the stages,

-gervers reliability,

-number of servers installed at the stage,

~homogenity of servers installed at one stage.

Notice the common assumption, that a server may break-down only when
gervice is in progress.Thus assuming that the preempted by some break-
down service is resumed after repairing of the proper server we can
under some simple additional assumptions, treat the breakdown process
together with the service process, describing them jointly with a
modified service duration distribution function.Thus if we shall
further assume, that some service time distributions are identical
that will mean identicity of both the real service and break-=down
processes.

A MQS is defined by specifying the parameters of all stages which
are - generally speaking - entirely different for individual stages.
Let us point out that two main types of optimization problems are
asually formulated: :

a/ the improvement problem
Given an M stage system, increase its capacity through modifying
the parameters of some stages.
Usually it is demanded to point out which possible modification
/ in the context of real process being modelled/ would be most

profitable in terms of throughput increase.
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b/ the rearrangement problem

Given’an M stage system arrange all the facilities so as to

maximize its throughput.This problem can be solved through one

of the following actions:

- different dividing of processing among stages, thus influencing
the mean service times of the stages involved / like for example
in the case of two-stand rolling mills/,

--changing the sequence of stages / this is permitted in some
processes like for example equipment maintenance,testing
or tuning/,

- different allocation of buffers to individual stages with regard
to the fixed total buffer size Z,.

It was demonstrated / for example using approximate calculations in
{191 and simulation in [41]/that MQS capacity decreases generally

with the increase of number of stages.Further an attempt is done to

present outlines for optimization in both of the above precised

contexts with respect to parameters of individual stages.

4. MQS with constant service times .

We shall start our considerations on throughput optimization in MQS
with the special type of systems,having constant service times.
Such systems have been considered in papers [9] , [16] , [27] ,
(311 , [49] .
As the Lavenberg theorem mentioned in the previous section does not
directly apply to this case,the open systems have to be considered.
It has been proved, that for any open system of homogeneous type
with i-th stage consisting of ny parallel channels, each having the

same' constant service time b{‘: Cy » neither the sujourn time of
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demands nor the stream of demands leaving the system depend on the
sequence of stages and the capacity of intermediate queues.This re-
sult remains valid also for arbitrary input streams,and in the case
of intermediate queues allowed to build up to infinity [497] .

Friedman [16] has introduced the concept of domi ce,assuming
that stage k dominates stage p if no demand ever waité at stage »p
if it is preceded by stagé kK » : _

He proved also that such property holds if and only if °p'$ K Cy »
where X = [np/nk] /greatest integer notation/.

For example when one stage dominates all other, then the

only waiting in the system occurs before this very stage, which can
be easily demonstrated through proper rearrangement.

Using thise concept Friedman suggested,while: Suzuki and Kawashima [ 49]
developed further, a method for reducing a multi-stage system to an
equivg}ent system with smaller number of stages, sometimes even to
one stage succeded by a ¢/D/xo systeﬁ.Aa the stability condition

of the equivalent G/D/n system can be easily established, it is
possible in such special cases,to compare using the presented above
methodology, the changes of the original system's capacity for
different parameters of individual stages, eventuallj chosing the best
one,This method is however of strongly restricted use.

Generally valid results may be found on this basis only for que~
ueing lines.Muth [31] pointed out, that the capacity of such line T
is given by (7) (8) ' :
N LT o P )]-‘ (9)
Evidently the maximal capacity is achieved, independently from the
buffer size, for the balanced case.

The problem of unreliable servers leads in fact to considera=-

tion of systems having variable service times,and as such will be

discussed in further sectionse.
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5. Unbalanci of queuei ines .

Let us assume a M stage queueing line with service time distri-
butions Bi(x) SR YRR, RN
According to (2) we shall assume that

e A
A -M

= -1
where /u'._‘[fxd.B‘.(X)_]
0

a/ The case of identical service time distributions.

We shall temporarily constrain ourselves to the case of identicai
/up to the mean value/ service time distributions.Thus the only para-
meter which will be changed are the service time intensities . ,
however with respect to (10) .Also the size of intermediate buffers is
assumed to be fixed and equal for all stages: Ni =N, 1 =2, 3,e00,Ms

For the case of two-stage systems, the reversibility property

leads to a conclusion that the balanced case is optimal.

Fig. 2 presents system capacity versus its unbalancing in the case

of exponential service time distributions / data taken from [18] /.
Notice that losses due to unbalancing increase rapidly with the incre-
agse of intermediate buffer size N,Thus proper system balancing becomes
more crucial for bigger values of N,

Hillier and Boling [18] investigated also the case of M = 3, 4
again for exponential service time distributions.They proved that the
balanced case is not optimal any longer, and suggested the existence
of so called "bowl phenomenon", asking for higher service intensity
being assigned to middle stations.

The optimal solution is "symmetric" / B(b,) = E(b3) for M=3 ;
E(b1) = E(b,) , E(bz) = E(b3) for M=4 / as it should have been
expected due to the reversibility property.Proper unbalancing not

necesserily very precise, leads to some gain, while inproper unbalan=
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cing leads to significant losses.Some remarkable data are given

in Table 1.

It is worth noticing that applying E(bz) = 1.15 for the case M=3,N=0;
leads to the capacity equal to 98.7% of the balanced case.

As previously,the system sensitivity to inproper balancing
increases with the increase of N,

Patterson [ 35] analysed three stage systems by weans of numerical
methods obtaining similar results.He suggested however, that for M> 3
the optimal arrangement should be such, where the quick stations sepa-
rate the slow ones.He suggested also,that the gain obtained from such
a procedure should decrease with the decrease of service time variabi-
lity.

A simulational study of queueing lines with M = 3, 4, 12;N>0was
presented by El-Rayah [41] who compared the above given strategies
with the balanced case.In fact he tested also a third strategy of
assigning to the consecutive stations low- medium=- high service times,
respectively.Such strategy was suggested by Davis [14],for a system
with losses /without blocking/, and it was improbable that it will be
adequate for the considered case.This strategy is however also sugge-
sted sometimes as reasonable,

Experiments with exponential service time fully confirmed the ' bowl
phenomenon' hypothesis.Furthermore, also for normal*) and lognormal
service time distributions the bowl-~type arrangement of mean service
times was found to be the best one, leading always to improvement over
the balanced case.

Ag for the case M=12 one could suggest various possibilities of defi=--
ning the bowl - type arrangement, some of them have been tested.

The arrangement with two middle stages having the smallest service

time, which increased stepwise with equal quantum up to the longest
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values /symmetrically/ on the ends,was found better than those where
"bowl' was formed from groups of 3-4 servers having equal service
intensity in every group.This arrangement applied for the exponential

service time distributions 1eadq&o the solution given in Table 2 .

The bowl-type unbalancing is always efficient.It was demonstrate
that both the possible gain from proper unbalancing,and the imbalance
itself, increase with : greater variability in operation times, smaller
interastage queueing capacity and larger number of stages in the line.
The gain in capacity, possible to achieve due to unbalancing is never
high. The possible gain for M=12 /which perhaps could be a little bit
improved chosing non-identical quanta while unbealancing the system/
is only marginally highsr then that for M=4.

The unbalancing method suggested by Patterson is very unreliable,
and leads frecuently to system capacity lower then the balanced case.
The low-medium-high arrangement was definitely found to fail
generally, and was significantly worse /as a rule/ than the balanced

case,

The study of El-Rayah, based on solid statistical methods, shows
however how one should be cautious in assessing the results of simu-
lation.Mean values of capacity for dual systems were usually different.
but the difference was assessed to be statistically insignificant =
a correct result in view of the reversibility property.Curiously
enough for the three stage system /p.66 of [41] / the author state-
"It was also verified that a low-medium-high arrangement is superior
to a high-medium=low arrangement in terms of expected output rate"

which is obviously wrong!.

Naturally here and furtheron the trunctated normal distribution

is considered, ( p 45).
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Y/ The case of different service time distributions.

Rao [ 39] presented a methodology for establishing the capacity
of two-stage lines with exponential service time distribution at one
of the stages,and general service time distribution at the other stage,
calling for solution of a system of linear equations which order was
dependent on the buffer size N, _

Calculations for Erlang and normal distribution with variability
coefficient (<1 1lead to the conclusion that system capacity is
optimized if the server having greater variability is assigned slightly
higher speed.Both the gain and optimal imbalance increase with increase
of the difference in variability coefficients and decrease gignifican=-
tly for larger values of N.

‘Similar systems have been considered by Wolisz [ 52] where closed
form expressions for system capacity have been given.The earlier re-
sults for (G < 1 have been confirmed, but surprisingly quite different
obgervations appeared for (> 1, investigated with second - order
hyperexponential distribution.The optimal capacity was in this case
obtained for slightly quicker exponential server, which however this
time was the one having emaller variability coefficient.Also the incre-
ase of N led initially to the increase of gaih /and unbalancing/,
and only further increase of N reduced this effects.

Sample results are plotted in Fig 3.

Typical optimal unbalancing in the two-stage line lies in the
range E(b1) = 0,92 -0.96 1leading to a gain of 0.2 = 0.3 % over the
balanced case,

Rao [40] investigated also analytically the case of M=3 without
intermediate buffers, assuming all possible combinations of exponential

and deterministic service time distributions.
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Table 3 contains the results of optimal unbalancing /notice
the existence of dual systems/. Rao introduced the term "variability
imbalance" calling for assigning shorter service times to the more
variable stations.The "wariability imbalance"™ effect may either
coincide /eg pattern f/ or contradict /cf pattern ¢/ with the "bowl
phenomenon",.

It was suggested that the astrength of the variability imbalance
effecf depends on the difference in variabilities.Rao verified that
if a server with uniform service time distribution and variability
coefficient equal to 0.5 is located between two exponential servers

then the balanced case becomes optimal.

Concluding we can establish the existence of both the "bowl
phenomenon®™ and the "variability imbalance",effect of the later being
clear for (< 1 ,while the case of (> 1 needs further research.
Joint effect of the two phenomena given above can be significant

/cf the 6.79% gain in patterns d,e,f of Table 3/,

6. The effect of_ service time distribution on sygtem capacity .

The irregularity of service time is caused by two main reasons:

- the inavoidable stochastic differences among demands as well as
stochastic disturbances in the service procese.Those lead usually
to small changes of service time - lying in the range of variabilit
coefficients less than unity / or more frequently less than 0.5,
as for example a value of € = 0,27 was found typical for the pro-
duction lines by Slack (47] .Values of & approaching one are repor-
ted in some data transwission applications/,

= break-down of the server.Such situations occure rarely, but it
takes usually a mean repair period several times longer than mean

service time to resume server’s operation.Thus the resulting joint

= Awas o Ve s 2 AL 2 o -—amema - L2 VY amaa.tolVv2n 2A..
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'he effects of those two reasons for service irregularity are usually
studied seperately : either perfectly reliable servers are assumed
or the service times are assumed to be constant, while in random
periods break-downs of random duration are assumed.

In queueing systems for the sake of simplicity, there is a strong
trend to characterize the random variables involved, only with two
first stochastic moments.Let us first assess what error does such

attitude introeduce in the case of MQS.

a/ The effect of ignoring service time distribution higher moments,

Fig 4, based on data from [ 38] compares system capacity for
U=2,N=0 versus C for different /Erlang and normal/ service time
jistributions at both stages, suggesting that the differences are of
quantitative type only, and increase with the increase of £ .

Rao [ 39] demonstrated, that this effect becomes even more visible when
quite different types of distributions are compared; like Erlang and
niform distributions with identical values of ( .He provided also
examples that if, in a two-stage system one of the stages has some
fixed distribution, then with the increase of its variability coeffi-
cient the influence of higher moments at the other atagé will be
creater.This influence becomes stronger in the case of small knter-

mediate buffer /Table 4/.

Anderson and Moodie [ 1] used in a simulation study of multi-
stage balanced lines aiming at optimization of buffer size from the
point of view of some complex criterion /cf section 9/ both the expo-
nential and mermal service time distributions, finding the results
qualitatively identical and quantitatively similar, however different.

Such conclusions were also presented by E1l Rayah [ 41] who used
both normal and lognormal distributions in his simulation studies of

unbalanced queueing lines with M=3,4.
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Thus we conclude, that for (< 1 no example of qualitative difference
inkptimization rules due to the higher moments are known, while condi=
tions when the quantitative differences can be expected to be small
where listed above.In practical cases,for simulational studies where
the choice of distribution functions is unrestricted,some afford is
made to preserve the shape of this function, using for example posi-

tively skewed Weibull distributions, eg [10] , [47] .

b/ The influence of service time variability on system capacity.

From Fig. 2,3,4 and Tables 3,4 it is evident, that system capaci:
decreases with the increase of service time variability coefficient at
any stage.This loss becomes however significantly smaller when larger
buffers are applied.Similar conclusion was achieved by Barten [ 24 ]
for a simulation study of six-~stage systems with normal service time
distributions, who stressed specially the beneficial role of buffers i
canceling the bad influence of service time variability.Data supportin
this property can be found also in a simulation study with Weibull
type distributions [10] .

On the other hand it has been observed that a similar effect is
visible in queueing lines with constant service times and unreliable
servers.Studies of such systems where reported [71[33] 1341 for
paced queueing lines, Buzacott [9] demonstrated however their direct
applicability for the unpaced case as well.He investigated analyticall;
a balanced.two-stage system with N> O and exponential service times,
in which stochastic breakdowns of random duration occured.

It was pointed out that the decrease of system capacity in cowmpa-
rison with the fully reliable - constant service time case,can be very
precisely approximated by a sum of losses due to either service time
variability itself or nonperfect reliability.

Such superposition was expected to hold also for larger systems.
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/ Arrangement of balanced queueing lines due to service time

variability.

Some data on a balaneed three-stage queueing line with different
rdering of servers having unequal variability coefficients are given
s a result of a simulation study by Smith and Brumbaugh [46] .
hey suggested that allocation of a station with highest variability
n the middle of the line led to the worst results,as everage calcu-
ated over different buffer allocation patterns.The data presented
n Table 1 of [46]/in terms of means only/ violate however signifi-
antly the reversibility property, thus it is not possible to draw
sing them any more detailed conclusions.

Systems with M=4,10 and different values of N have been simulated
y Carnall and Wild [10] .Service times where assumed to be either
onstant or variable, described by the positively skewed Weibull type
istribution.In every experiment it was essumed that variable stations
re identical,

It was found that for M=4, and two variable stations significantly
igher capacity has a system with varisble stations located at the
nds of the line, in comparison with the case of their location at the
iddle. The gain from such strategy increases with the increase of
arigbility coefficient and decreases with the increase of buffer sizeN,
or example in the case (= 0,5, M=1 the gain approaches 4% .

Experiments with M=10 lead also t; a conclusibn that locating
ariable stations at the ends is justifi?d, resulting in a 1.33% gain
ver a random sequencing of stages, and 3% gain over allocation of
ariable stages in the middle of the line.

Thus the authors suggested the existence of something like the
bowl phenomenon" concerning the service time variability for balanced

ines.
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An extensive simulation study with normally distributed service

times and no intermediate storage was reported by El-Rayah [42] .
For M=3 the bad effect of allocating highest variability to the
middle station was confirmed.Also for M=4 the above given suggestions
were verified to be true.Further the author demonstrated that this

queueing line with equal mean service times and "unbalanced"
variability coefficients /the sum of them over all servers being
constant/ may yield higher capacity then a line with identical servers.
It was demonstrated for this case, and also for M=12 that something
like the "bowl phenomenon" exists also for the service time variabilit;
In the investigated range of (<0.3 it was found that increasing of
some gservers variability coefficient, and decreasing its mean service
time yield hirhly similar results.For example if 4 out of 12 servers
had C= 0,15, while other had & =0.3 then locating the servwrs with
smaller variability in the middle of the line, instead of locating ther
/ in one group/ either at the beginning or at the end of the system
/both of these cases being equivalent/ ledtean improvement in capacity

of over 2.5%.

T. The effect of intermediate buffers on system capacity .

In previoﬁs sections it was several times mentioned, that the
intermediate buffers may increase or decrease the above discussed
effects.Now we shall discuss directly the influence of intermediate
buffers on system capacity.

In section 3 it was mentioned that intermediate buffers eliminate
/ to some extent/ the blocking and idleness of individual stages.

Thus it iy clear that both the preceding and consecutive buffer size

influence the operation of any stage.
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urthermore as it yields from (7) that for the unlimited intermediate
uffers always the balanced system yields the maximal throughput, we
onclude /cf (7] ,[31] / that buffers cannot reduce that portion of
roduction line inefficiency which is caused by unequal mean service
imes at different stations.

Buzacott [8] points out, that if due to long term imbalance
etween stages a buffer is permanently full / or permanently empty/
t is serving no usefull purpose.Thus the magnitude of queue length
ariations may serve as a measure of the buffer effectivness.
hese remarks are consistent with results cited in section 5, where
'or large enough buffer sizes the balanced case was demonstrated to
e optimal. J

Certainly as it is visible from the previous section,buffers may
jignificantly decrease the bad results of service time irregularities.

Using the upper bound V£ given by (7) , one can suggest, that
he ratio VL / V{ is some measure of buffer efficiency.lLet us notice
hat in all the figures and tables presented so far V{ = 1.

Fig, 2 gives a good example of buffer size N influence on system
apacity.This influence can be presented ;n a simple, analytical form.
Junt [20_ found that for a two-stage balanced system with exponential
iervice times and E(bi) = 1; i=1,2 system capacity can be expressed

Yy a simple formula

N +2
V= P (11)

'hus adding an additional waiting place to a buffer of size N leads

.0 a rela*tive gain of E,

E s chaiity o T (12)
N2+6N + 8

'alues of both V and E for different N are printed in Table 5.
[t is evident that increasing the buffer size by one leads always to

jome gain being however significant for small’ N and only marginal for

emwaes AT
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Thus Hunt concluded that using buffers of size larger than 5
doesn't, generally,pay.

Similar conclusions can be drown for unbalanced two=stage queuein,
lines with nonexponential servers from Fig 3, and for three-stage
exnonential lines from Table 1.

Barten [4] simulated systems with normal service time distribu=
tions, M=4,6,10 and different values of variability coefficient, de=-
monstrating that the above given vremarks remain generally true.

This was also confirmed by Slack and Wild [48] for M=5,10,15.

Evidently,however,idorder to achieve some predetermined system
capacity, the buffer sizes applied should be larger, if service time
variability increases /cf Table 4/.

The situation changes significantly when servers break-downs are
included into consideration.

In this case,as pointed out‘by Buzacott [7],the minimal size of buffer
should be equal to the mean number of services completed during the
mean repair time, while 2-3 times larger buffers seem to be thereaso=
nable choice.The typical buffer size would be rather 30-~50 this time.

The problem of allocating the proper joint buffer size Z to
a queueing line and dividing it inbetween different stages obtained
a lot of attention, eg. [15], [17], [23], [25], [26], [29] .
Unfortunately enough the majority of research was devoted to paced
queueing lines and thus the obtained results are not of direct use
in our case.let us present an example of the differences.

For paced lines it is stressed / [15], [29] / that the unreliable
stages /in other words :stages with high variability/ located at the
end of the line ask for more significant increase of buffer size in
order to achieve proper system capacity, than identical stages posi-
tioned in front of the line.This is obviously in disagreement with

the reversibility property.Also the suggestion / [15] / that the
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iivigion of total buffer size Z among different locations in the line

joesnt depend on the value of Z is not applicable for the unpaced case,
An extensive study of buffer allocation problems has been presen=-

ted by El-Rayah [42], The case of balanced queueing lines with M=3,4

nas been simulated, assuming identical variability coefficients of all

gservers.The objective of experiment was to verify, snovld the interme-

liate queues have identical maximal sizes, or should they be unequal,

oreserving during the experiment the condition
M
2 N, = 2 = const.
L=2

It was verified, that for " <(M-1)4 indeed equal buffers yield the
naximal system capacity, as what could have been anticipated - every
attempt foAdecrease any of the buffers significantly handicappes the
stages involved.

For larger values of Z it occured that the equal assignment leads
to almost optimal results; sometimes only assigning larger buffers
to middle stages yields some =~ almost negligible = gain.

Thus it occurs that increasing the buffer size at some stations
leads to similar, but considerably smaller, effect as increasing the
servers speed.

This effect being small enough does hardly lead to "unbalancing"
jueueing lines with identical servers in the sense of buffer capacities,
it may however be quite valuable when different servers are involved,

\ Swith and Brumbaugh [46] concluded, that service time variability
should be considered when allocating buffer sizes.They stated that
relatively greater buffers should be allocated around more variable
stages, while possible benefits from proper allocation are smaller than
losses incurred if the arrangement is improper.Departures from equal
uffer allocation were found to have grater impact when the total

uffer size Z was small.
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8¢ effect of introduci arallel servers .

In sections 5=7 only the case of queueing lines was discussed.
Let us now congider the effect of introducing multiservers at some
stages.

Wild and Slack [51] in a simulation study compared the operation
of two queueing lines with the case of a MQS having two servers at
each stage and the same buffer size per server.It was found that the
gsecond system is always more effective, the gain being high in the
case of large number of stages, low buffer size,and high service time
variability, and comparatively lower otherwise.

A systematic analytical study of homogeneous two-stage queueing
systems with exponential multiservers at both stages was published

by Wolisz [53] .

a/ Two-stage systems : the balanced case,

For the balanced case /as defined by equality (3) / the influence
of buffer size N and number of servers ny =n, = K onkystem capacity
was investigated.As presented in Fig,5 the influence of intermediate
buffer size is similar as inhhe queueing lines.It is worth stressing,
that system capacity increases with the increase of the parallel
servers number K, as the additional servers act also as additional
buffers.Thus in the case when the buffer capacity is strongly limited,
applying of many slow servers at every stage pays better then using

a few quick ones.

Also another experiment was reported there.The total system
accumulation L was assumed to be constant, it could however be diffe-

rently devided between servers and buffer with respect to an equality

2K + N = L
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Results for L < 10 are plotted in Pig.6 showing that it is evidently
better to have as large buffer as possible.Furthermore a system with
larger accumulation can have a lower capacity than another system
having smaller accumulation, but devided so as to favor buffers size
on expence of the nukber of servers / cases K=4,N=2 and K=2,N=4 compé-

red, may serve as example/.

Thus the following rule should be applied:
1k possible a queueing line with large buffers should be used.
If there is no possibility of intreducing buffers / or their size is
severly limited/ then the use of slow multiservers instead of quick
single~servers results in capacity increase.

Fig 7 demonstrates that systems having the equal number of servers
at both stages /buffer size being constant/ are always most efficient.
A comparison of a MQS and several queueing lines as presented
in Fig 8 was done resulting in an experiment similar to that reported

in [51] .The results are presented in Table b
The conclusions of[51] have been fully supported.Thus the system from
Fig 8b was always better

b/ Two-stage systems - the unbalanced case

Let us denote for the sake of simplicity
t >
F2T T M, g Mg SRy
According to (2) following equation is to be respected

A 4
S e

=2
pp T M

i

(

System capacity for ny =n, = K, N =0 is plotted in fig 9, showing
that in this case the balanced system is always optimal.Losses due

to unbalancing increase with the increase of K.
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If however the number of servers at both stages is unequal, then pro-
per unbalancing i.e. assigning higher service intensity to the stage
having larger number of servers leads to increase of system capacity.
Examples advocating this statement are plotted in Fig 10, where
a constant difference in numbers of servers ny = n, = 2 was assumed,
Both the gain over balanced case and optimal unbalancing decrease
with increase of either buffer size N or system accumulation L, and
increase with increase of the difference ny = n, .
However it was demonstrated that although for ny # h, an optimally
unbalanced system has higher capacity than a balanced one, it is
worse than a balanced..case where the identical total nurber of servers
ny P n2 would be equally devided between the stages.The loss is higher
for small nq + n, and smal N,
Thus to optimize the capacity of Bucﬁ systems one should try to
apply equal numbers of servers at both stages and balance the system,
only if this is impossible, the loss resulting from the unequal numbers

of servers may be minimized by prober unbalancing.

9. Remarks on other optimization criteria .

Throughout this paper we were concerned with a unique optimization
goal : system capacity maximization.In this section we shall mention
briefly other characteristics which are also frequently considered
ag important design factors.

The most commonly used characteristics are:

- The expected number of demands in the system
= The idle time of individual stages

- The mean in- system time /sujourn time/ of demands.

It should be mentioned that those characteristics are of significant

interest both for open and saturated systems, as well as for systems

with infinite intermediate queues.
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It has been proved / for example [427 ,[46] / that optimal system
parameters chosen for different of this characteristics do not coin-
cide.Also the sensitivity of this factors on parameter changes is
quite different.

For example for e queueing line with M=3,Z=8 changing the buffer
allocation pattern from N2 =3, N3 =950 N2 =5, N3 =3 increases the
expected number of wnits in system from 6.3 up to 7.6 not influencing
thg system capacity at all - systems being dual "42] .

The buffer allocation from small to large along the line was
advocated, as decreasing significantly the expected number of units
in ~ystem,with only marginal loss of capacity for larger M as well.

Optimal sequencing of open two-stage gueueing lines minimizing the
delay was studied analytically by Tembe and Wolff [50] for infinite,
and by Kawashima [ 22] for finite intermediate queues.

Simulation studies of queueing lines with infinite intermediate
queues together with optimization outlines were reported for 1=2 in

[30] and [45] while lines with li=4 and l=20 were studied in[21](30]
respectively. _

Complex optimization criteria are often used for determining the
proper: bu’fer size [5], [1]1, [23] .

It is suggested that buffer size should be chosen with regard to
following factors:

- costs of servers idle time

- costs of decreasing systems throughput due to limited storage
- costs of holding the inventory of demands in system

- cost of storage space

Closer ciscussion of these problems exceeds however the scope

of this paper.
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10. Copclusions .

In view of the statesments presented above, some general conclu-
sions can be made.
Let us introduce informally the concept of individual stage efficiency
described as following: if the efficiency of any stage increases,
while other stages remain unchanged, then the capacity of the whole
gsystem will be increased.We shall also assume that the efficiency of
icentical stages is equal.

The reviewed in this paper results demonstrated, that the
efficiency of individual stages may be increased by:
- decreasing service time / i.e. increasing service intensity/,
- reducing service variability,
- improving servers reliability,
- increasing the size of buffer belonging to this stage,
- replacing a single server with a multiserver wifh identical

service intensity,

Generally queueing line achieve the maximal throughput, when the
stages efficiency is unequal, most efficient stages being located
in the middle of the line, and less efficient being gradually moved
in the direction of its ends.This can be,essentially, obtained by
changing any of the above listed parameters, however with quite
different sensitivitye. Some illustrative data were given in previous
chapters.

It should be gtrongly stressed, that the value of results review
here lies by far more in their qualitative than quantitative part.
In practice neither bbtaining strictly equal nor optimally unequal
stage parameters is possible with high precision.
The most important thing is to know, in which direction should the
unevoidable discrepences from the ideal case be permitted, in order t

ranas aerinna lnasesa.
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Notice that in all the optimization outlines, as a rule the
possible gain from observing the optimization pattern was significantly
smaller than the loss caused by a wrong decision , although sometimes
the gain itself was also worth approaching .

In this sense the exact knowledge of service time distribution is not
esgential, as long as their variability coefficient does not exceed
unity.All the results remain qualitatively similar in this case,

and gquantitative discrepences are,usually, small.

The case of C> 1 received very few attention so far.

This occurs if the breakdown process is treated jointly with the service
Also in the case if at some stages one of several non-identical

servers is used alternatively for a given demand / because of its
spechal, individual features/ such situation occurs, leading for
example to hyperexponential service time distribution.

Such situations are not uncommon while modelling production systems.

As some irregularities have been noticed /cf. section 5/ for C¢>1

this area needs further research.

Similarly further research is needed in order to verify to what
extent the results of introducing parallel servers discussed in .
gection 8 may be generalized for the system with larger number of
stages.

It is essential while using optimization rules suggested in
some papers to make sure, that the modzls are quite identical in
the referred report and in the application considered.
Misunderstandings caused by some rules suggested for paced systems
in application to the unpaced case where mentioned earlier.
Similarly the Davis [14] conjecture about unbalancing pattern is fre-
quently cited without noticing that it was'orginally formulated for
a system with losses /eg [10] / !

Seemingly small differences in the investigated models lead some-

times to quite different ontimization rnles.



Ag it was illustrated by figures and tables the gain in capacity
obtained through system optimization is sometimes small.

Thus there is an essential difficulty in optimization studies for
gystems where no exact analytical results are available / the error
introduced by approximate methods may deform the conclusions obtained/

Using simulation,a great afford must be done to verify the stati-
stical significance of the obtained resulis, erroneous statesments
being by far not uncommon.

In this paper figures and tables were constructed mainly for
the models investigated by use of analytical tools, to avoid quoting
gome mean values, being meaningless without citing also the backing
them statistical reasoning.

Finally it has to be stressed that factors other than system
capacity generally react differently to the optimization rules pre-
sented here.However the information about effects of individual stages
parameter changes or system capacity remains important also if other
optimization goals are chosen, making it possible to decide on

a reasonable policy for the occurin; tredeoffs.
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Fig. 5. The influence of buffer size N and number of

stations K on system capacity. Data taken from [53].
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Comparison of system capacity in the case of
constant system accumulation L . and different
buffer size N as well as number of servers

K,L = 2K + N. Data taken from [53].
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Comparison of system capacity in the case of constant
buffer size N and different number of servers at
individual stages, n,y #z Mgy N, * n, = const.

Data taken from [531].
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ter direction preser-
ing the throughput

bf the balanced case

M=3 M=4
N=0 N=2 N=4 N=0
Pptimal unbalancing
0.82 0.92 0.94 0.86
E(b,)
/0.83Y
ek
*hroughput increase
100.5 100.4 100.3 100.9
pver the balanced :
/100.54/
page | % ]
hange of unbalancing
breserving maximal 0.74-0.92 | 0.86-0.96 h0.92-0.98 0.82-0.92
bain -0.1%
nbalancing /in pro-
0.66 0.82 0.88 0.72

Table 1.The capacity of unbalanced three and four- stage

queueing lines.Based upon data from [18] , data

in parenthesis taken from(41]
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E(b1) = 1.1 Efb)=1.06 E(bj)a 1.02

Optimal unbalancing
E(b4) =0,98 E(b5)= 0.94 E(Ei)a 0.9

Unbalancing /in proper/

direction preserving the E(b) = 1.2 E(d) = 1.12 E(bj) = 1.04
throughput of the balan- E(b4) =0,96 E(b5)= 0.88 E(bg) = 0.80
ced case

Throughput increase over

the balanced case [ %]

Table 2. Some data characterizing the capacity of an unbalanced
queueing line with M=12, N=0, according to [41] .
An equality E(by) = E(by,_,) holds.
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The pattern Capacity of Gain from Optimal unbalancing
considered balanced case | unbalancing E(b,) F(v,) E(b3)
Y %—

a/ EED. 0.6160 102.80 1.00 0.73 1.27
=g

b/ D EE 0.6160 102,80 127 0.73 1.00
-

¢/ EDE  0.6167 100,35 0.945 1.110  0.945

d/ EDD 0.7311 106.79 0.62 1.19 1.19

e/ DDE 0.7311 106.79 1.19 1.19 0.62

f/ DED 0.7311 106.79 1.19 0.62 1.19

g/ DDD 1 No =

h/ EE E 0.5641 100.5 1.09 0.82 1.09

Table 3., Optimal unbalancing of three-stage systems with

different service time distributions /based on (40] /.

The last pattern utilizes data from (18]

E stands for exponential and D for deterministic

gervice time distribution.



Service time distribution at the

second stage

Uniform Erlang

€2

€,=0, N=0 Ci=1, N=0 C,=1, N=1 C,=0, N=0 C =1, N=0 Cy=1, N=1
0.00 1.0 0.73106 0.82366 1.0 0.73106 0.82366
0.10 0.95850 0.73008 0.82263 0.91670 0.73008 0.82263
0.20 0.92030 0.72712 0.81954 0.92633 0.72721 0.81960
0.30 0.88503 0.72220 0.81443 0.89372 0.72262 0.81471
0.40 0.85237 0.71530 0.80730 0.86530 0.71635 0.80773
0.50 0.82203 0.70640 0.79824 0.83655 0.70942 0.,80029

Zable 4, Capacity of a two-stage, balanced queueing line with either regular /C1 =0/

or exponential /C1 =1/ service time distributions at the first stage and two

different service time distributions with variability coefficien 02 at the

second stege. Data taken from [39] .

= Al =



N 0 1 2 3 e 5 6 E 8 9 10
\ 0.66 0.75 0.8 0.833 | 0.857] 0.876 | 0.889 | 0.9 0.909 | 0.917 |'0.924
?“Iﬁ 12.5 6.66 4,17 2.86 2.08 1 1.59 1.25 1.01 0.834 | 0.7 0.595

=
Na= 0 Naa 1 Na= 2
K queueing lines 0.6667 0.7500 0.8000
= 2 0.7500 0.8333 0.8750
Multistage Queueing 4TV
Systems with = 3 0.7900 0.8714 0.9072
MG sorvers . 4 0.8161 0.8940 0.9256

Table 6., Comparison of the capacity achieved by a MQS and corresponding

set of queueing lines.Data taken from t53] .

{
1 Table 5. Values of V and E versus N for the two-stage system with exponential servers,

= BLs~
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Osszefoglalas

Véges tarolokapacitasu tobblépcsds sorbandllasi modellek dtbocsatoképességének

optimalizdlasa

A tobblépcsds sorbandllasi modellek mostandban nagy figyelemnek 6rvendenek, mert
jol hasznalhatok szamos ipari rendszer modellezésére. Ha a kulonb6zo 1épcsSk kiszolgalasi
ideje eltérs, akkor kozottik sorok johetnek létre és a sorok hossza a gyakorlatban korla-
tozott. A sorhossz tallépése az igény elvesztését eredményezi. Ezt a jelenséget ~blokkolva-
sassal”’ keriilik el.

Sok cikk foglalkozott mér a tobblépcsés rendszerekkel, de még nem dallnak rendelke-
zésre egzakt analitikus eszk6zok arra az esetre, ha a kiszolgalok szama haromnal t&bb, és
kisebb rendszerekben is csak egyes specidlis eseteket vizsgiltak részletesen. A cikk célja
az atbocsatoképesség-optimalizdlas jelenlegi helyzetének bemutatdsa. A feladat formalis
feldllitasa utan a cikk felvdzolja az atbocsatoképességet befolydsold egyes paraméterek opti-
malis kivalasztédsat.

PES3IOME

06 OMNTUMHU3ALMH NPOMNYCKHOH CIOCOBHOCTHU MHOTOQA3HHX CHCTEM

MacCcOBOTO OBCJNIYXMBaAHHUA C KOHEUYHOH ouepenpl B OTHEJNIbHHX ¢daszax

MHorodasHHE CHCTEeMu MaCCOBOI'O OOCJHIYyXHWBaHHUA HMENT 6osibuoe
3HayeHHe, TakKk KakK HX XOpouwo MOXHO HCIOJIb30BaTh HHH.MOHeﬂHpOBa-
HUA pa3JIMYHHX [MPOMBLIJIEHHHX cuUcTeM. HecmoTps Ha TO, YTO BHHMAa-
HUe psalda MaTeMaTHKOB O6paTHJ/IOChL Ha npobJjiemMu CUCTEeM, B HacToOA-—
mee BpeMa HeT TOYHHX aHaAJIUTHUECKUX CpencTB OJIf UCCJIeOOBAaHUA
CUCTEeM, B KOTOPHX YHUCJIO OOCIyXHUBaAWWUX NPUOOPOB 6OJibll€ TpexX.
IO/ cUCTeM, B KOTOPHX 3TO YHCJIO He 6oJjipmie TpexX, TOJIbKO YaCTHHE

cJlyyal paccMaTPUBAKWNTCA MNOOPO6GHO.

enpw ODaHHOM paboTH ABJIAETCH IOKa3 IOOCTHUHXEHUH B O6J1acTH
ONITHMH3AllUd NPONYCKHOW CNnocCo6HOCTH. Ilocyie NMOCTaHOBKH 3amayvyd B
cTaThe MOAOPOBHO HM3YyYaWTCHA OCHOBHHE MMapamMeTphH, OT KOTOPHX 3aBH-

CHUT NPONyCKHas CIOCOOHOCTbL CHCTEeM.
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