MTA Számítástechnikai és Automatizálási Kutató Intézete, **Közlemények 23/1979. ON THE CARDINALITY OF SELF-DUAL CLOSED CLASSES IN k-VALUED LOGICS**

J. Demetrovics — L. Hannák

Introduction

Let $E_k = \{0, 1, ..., k-1\}$. By a k-valued function we shall mean a function f: $E^{\text{n}}_k \rightarrow E^{\text{n}}_k$, and by P^{n}_k we denote the set of all those functions. If A is a subset of P_k, [A] will denote the set of all superpositions over A. The de**finition of a superposition over A is the following:**

1. f *e* **A is a superposition over A**

2. If $g_o(x_1 \ldots x_n)$, $g_1(x_{11}, \ldots, x_{1m_1}), \ldots, g_n(x_{n1}, \ldots, x_{nm_n})$ are either **superpositions over A, or** then $g_0(g_1(x_{11},...,x_{1m})$... $g_n(x_{n1},...,x_{nm})$ is a superposition **over A.** $g_i(x_{i1},...,x_{im_i}) = x_{ij}$ **n**

The set A is closed if $A = [A]$. Let s be a permutation of $0,1,\ldots,k-1$. We say, that $f \in P^R$ preserves s, if

$$
f(x_1,...,x_n) = s^{-1}
$$
 [f(s(x₁) ... s(x_n))]

Vie shall denote by f the cardinality of the continuum.

Ju. I. Janov and A.A. Mucnik [5] have proved, that if k>3, then the cardinality of the set of all closed sets in P_k is continuum. E.Post's general result implies that there are countably many closed sets in $P_k^{\phantom i}$ for k = 2.

It is well known, [see C43, C83 3, that there exist 6 types of maximal closed sets in P_k . The characterisation of these sets can be found in [8]. **J.Demetrovics and J.Bagyinszki have proved in C23 that the linear classes** in P_k (k prime) contain a finite number of closed classes. J.Bagyinszki **and A.Szendrei C13, C93 have proved that if к is square-free, then there are also finitely many closed linear classes in P^. D.Lau in C63 have shown,** **that the cardinality of the so-called quasi-linear closed classes is countable. In C31 the authors have proved, that the so-called central, k-regular,** monotonous and equivalence-preserving maximal classes in P₁, for k₂3 contain as many as \int closed classes. In this paper it is also shown that the maxi**mal classes, which preserve a permutation s, conatain** *t* **closed classes provided к is not prime. Marcenkov in C 71 has proved that for all ke {** 13,14,16,17, 3 and for all permutation $s : E_k^- \to E_k$ there exist a set of **closed classes preserving s with cardinalityf . In the case k=2. E.Post's result (C103) implies that there are finitely many closed classes pereser**ving a permutation of E₂.

The purpose of this paper is to show that for all k₂3 and for all per**mutation s:** $E^{}_{k}$ – $E^{}_{k}$ /except for two cases, namely k=3 and s = (012) or $k=4$, $s = (0123) /$ there exist \uparrow closed sets in P_k preserving s. We shall also prove that for all k₂3 there is at least a countable number of closed sets preserving s, for all permutation s: $E^{\text{r}} \rightarrow E^{\text{r}}$.

5.1.

A permutation s of $E^{\text{}}_k$ can be written as a product of disjoint cycles. Such a cycle will be denoted by C₁. If

$$
s = C_1.C_2 \dots C_m \qquad \text{and} \qquad C_1 = (a_{11}, \dots, a_{n_1})
$$

\n
$$
\vdots
$$

\n
$$
C_m = (a_{1m}, \dots, a_{n_m}) \text{ then}
$$

\n
$$
C_i|will denote the number of the elements of the set
$$

 $\{a_{1i}, \ldots, a_{n,i}\}$

Lemma 1. Let $k \ge 3$, s a permutation in the form $s = C_1 \cdot C_2 \cdot \cdots \cdot C_m$. If $m > 1$ and there are $i, j \le m$ such that $i \ne j$, $|C_i| = k_1$, $|C_i| = k_2$ and k_1/k_2 then it can be constructed ι closed classes preserving s.

<u>Proof.</u> We can assume that s = C₁.C₂.....C_m, where

 $C_1 = (0, \dots, a_{m_1})$ $C_2 = (1, 2, \dots, a_{m_2})$ and $|C_1|/|C_2|$ We shall prove, that there is a set $\{f_i\} = F$ of functions such that for all $f_i \in F$, $f_i \notin [F \setminus f_i]$ and all f_i preserve s. This is sufficient since in this case all subsets of F generate a closed class, and $H_1 \subset F$, $H_2 \subset F H_1 \neq H_2$ implies $[H_1] \neq [H_2]$.

Let
$$
f_m(x_1, x_2, ..., x_m)
$$
, $m \ge 3$ be defined as follows:
\n
$$
f_m(a_1, ..., a_m) = \begin{cases}\n\begin{cases}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{cases} & \begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{cases} & \begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{cases} & \begin{cases}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{cases} & \begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{cases} & \begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{aligned}\n\end{cases} & \begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{aligned}\n\begin{
$$

One can easily see that since $/C_1//C_2/$, $f_m(x_1,...,x_n)$ preserves s. Let us suppose, that $f_k(x_1,...x_k) \in \Gamma \backslash f_k$. This means that

$$
f_k(x_1, \ldots, x_k) = \mathbf{0} \ (x_1, \ldots, x_k)
$$

where $\mathbf{0}$ is a superposition over $\mathbf{F} \setminus \mathbf{f}_k$. Let $f_s(x_{i_1},...,x_{i_n})$ be a function in \emptyset . If $s < k$, then we can find an x_{ℓ} such that $x_{\ell} \notin \{x_{i_1},...,x_{i_l}\}$ If $x_{\ell} = 1$, and all $x_i = 2$ (i $\neq \ell$), then - by the definition - $f_k(x_1, \ldots, x_k) = 1$. If we choose $(x_1, ..., x_k)$ as above, then $f_s(x_{i_1}, ..., x_{i_n}) \in C_1$ that is \emptyset cannot be equal to 1. (f_m preserves the set $C_1 \cup C_2$ and if $\{a_1, \ldots, a_m\} \cap C_1 \neq \emptyset$ then $f_m(a_1, ..., a_m) \in C_1$.) If $s > k$, then we have at least one pair x_{i_1} , x_{i_2} such that $i_k = i_\ell$.

Let $x_{i_k} = x_{i_\rho} = 1$, and all $x_j = 2$ (j $\neq i_k$). In this case $f_s(x_{i_1},...,x_{i_n}) \in C_1$ and $f_k(x_1,...,x_k) = 1$. This is a contradiction, thus Lemma 1 is proved.

Corollary:

1. if k is not prime, then in the maximal closed class S_k of P_k there exists \int closed classes. (S_k denotes the class of all functions preserving a permutation π ; π is the product of cycles C_i of length p, **where p is prime.)**

2. if π is a permutation of the form $\pi = (1)$ C_1 C_m then there is a **continuum cardinality set of closed classes pereserving л.**

Lemma 2. Let k>5, let s be a permutation consisting of one cycle of length k. Then we can construct a set of closed classes in P_k of cardinality Γ **which preserves s.**

Proof, We can assume, that

s = (01234 ...).

Analogously to the proof of Lemma 1 we shall give a set ${g_i}$ = G of functions so that $g_i \notin E G \backslash g_i$ and g_i preserves s.

We define g_i , i>3 on the set ${0,1,2}^i$. It can be easily verified that the **definition does not contradict the assumption that g^ preserves s.**

Let:

 $g_{1r} (a, \ldots, a) = a$ g_k ({{0,1}^k \ (1,...,1)}) = 0 g_k ({ { 0, 2}^k \ (2, ..., 2)}) = 0 g_k ({ { 1, 2}^k \ (2, ..., 2)}) = 1

and for ${0,1,2}^k \setminus {0,1}^k \setminus {0,2}^k \setminus {1,2}^k$:

$$
g_{k}(a_{1},...,a_{k}) = \begin{cases} 1, & \text{if } |a_{i}/a_{i} = 0|/ = 1 \\ |a_{i}/a_{i} = 2|/ = 1 \\ |a_{i}/a_{i} = 1|/ = k-2; \\ 0, & \text{in all other cases.} \end{cases}
$$

A vector $(a_1, ..., a_k) = \underline{a} \in \{0,1,2\}^k$ is called characteristic if

- 10 -

 $/(a_i/a_i = 0)/ = 1,$ $/ {a_i/a_i} = 2}/ = 1$, and $\frac{1}{a_i/a_i} = 1$ = 1 = k-2.

Let us suppose $g_k \in \text{G}(g_k)$, that is $g_k(x_1,...,x_k) = \mathcal{R}(x_1,...,x_k)$.

If $g_k(x_1,...,x_k) = \mathbf{0}$ then there exists at least one superposition over $G \setminus g_k$ such that $g_k(x_1, \ldots, x_k)$ is equal to this superposition on the characteristic vectors. Hence we can choose a minimal formula α^* which equals $g_k(x_1, \ldots, x_k)$ on the characteristic vectors. The minimality of α^k means that if $\mathbf{w}^* = g_m(\mathcal{L}_1, \dots, \mathcal{L}_m)$ then $\mathcal{L}_1, \dots, \mathcal{L}_m$ cannot be equal to $g_k(x_1, \dots, x_k)$ on the characteristic vectors.

We shall prove that such an \mathfrak{A}^* cannot exist. \mathfrak{A}^* can be written in the form $g_m(\mathcal{L}_1,\ldots,\mathcal{L}_m)$ where $\mathcal{L}_i = x_{i,j}$ or \mathcal{L}_i is a superposition over $G\backslash g_k$.

- a./ if all \mathcal{L}_i are superpositions over $G \setminus g_k$ then all \mathcal{L}_i equal 1 or 0 on the characteristic vectors. $g_{\rho}(\{\{0,1,2\}^{\ell} \ (2,\ldots,2)\}) \subseteq \{0,1\}$ Since \mathfrak{R}^* is minimal /in the above sence/, there is exists a characteristic vector $\frac{c}{c}$ such that $\mathcal{L}_1(\underline{c}) = 0$ that is $\mathfrak{R}^k(\underline{c}) = 0$. On the other hand $g_p(c) = 1$ holds. This is a contradiction;
- b./ We have seen, that there is a $\mathcal{L}_{\ell} = x_{q}$ in the superposition $\mathfrak{K}^* = \mathsf{g}_{\mathsf{m}}(\mathcal{L}_1, \ldots, \mathcal{L}_{\mathsf{m}}).$ Let $\underline{x} = x_1, ..., x_k$ be a characteristic vector so that $x_a = 0$, and $x_n = 2$. If $x_n \neq \varphi_1$, $x_n \neq \varphi_2$,... $x_n \neq \varphi_m$ then all φ_i are equal to 1 or 0 on this characteristic vector, and hence $\mathfrak{R}^{\dot{\pi}}(x) = 0$. $L(\mathcal{L}_1(x),..., \mathcal{L}_m(x)) \neq (1,1,...,1)$ and by the definition $g_m(\{\{0,1\}^m \setminus (1,\ldots,1)\}) = 0.$ This is also a contradiction.

c./ By a/ and b/\mathcal{W}^* can be written in the form

 $g_m(\mathcal{L}_1,\ldots,\mathcal{L}_q,\mathbf{x}_1,\ldots,\mathbf{x}_k)$.

The assumption that \mathbf{w}^k is minimal implies that \mathcal{L}_1 cannot be equal to 1 on all characteristic vectors. Let x be a characteristic vector so that $\mathcal{L}_1 = 0$.

 $-11-$

In this case, $\mathcal{L}_2, \ldots, \mathcal{L}_q = 0$ or 1, and there is one $x_j = 0$. Since $(\mathcal{L}_1, \ldots, \mathcal{L}_q, x_1, \ldots, x_k) \nsubseteq \{1,2\}^m$ and it cannot be characteristic, **=** \emptyset **.** This implies that $\mathfrak{R}^n = g_n(x_1, \ldots, x_n)$. If $m \&$, then **1 m** there is a $x_q \notin \{x_1, \ldots, x_k\}$. On the characteristic vector $x_q = 2$, $x_{i} = 0$, $x_{j} = 1$ (j $\neq q$, j $\neq i_{1}$), the statements $g_{k} = 1$ and $\alpha^{i} = 0$ hold. If $m > k$ then there exists at least one pair i_{ℓ} , i_i such that i_{ℓ} = i_{j} . In this case let $x_{i_{\ell}}$ = 0, x_{j} = 2 (j $\neq i_{\ell}$) and $x^2_t = 1$ (t $\neq j$, t $\neq i_\ell$). On this characteristic vector $g^k(x^1, \dots, x^k) = 1$ **and** *i9i"* **= 0 hold. This is also a contradiction, thus lemma 2 is completely proved.**

Lemma 3. Let $k = 5$ and π a permutation of the form $C_1 \cdot C_2$ where $/C_1 / = 2$, $\sqrt{C_2}$ = 3 or let k = 7 and π be a permutation of the form C_1 . C_2 where $/C_1$ / = 3, $/C_2$ / = 4. Then there is a set of closed sets in P₅ or in P₇ pre**serving it which has cardinality £ .**

It is easy to see that it is sufficient to consider the cases when

 $\pi = (03)(124)$ and $\pi = (034)(1256)$

The definition of g_m in Lemma 2 does not contradict the property g_m **preserves it.**

If we define h_m so that $h_m(a_1, \ldots, a_n) = g_m(a_1, \ldots, a_n)$ on the set ${o,1,2}^m$ and h^m preserves π , then $H = {h^m \times 3}$ is a set with the property $h_m \notin \text{CH}(h_m)$. Thus analogously to Lemma 1 $H^* = \{\text{CSI}/\text{SCH}\}$ is a set consisting of closed classes preserving π , and the cardinality of H^{*} is \hat{L} .

Theorem 1: Let $k \geq 2$ and π be a permutation of E^k . If

 $\pi \neq (a_1 a_2 a_3)$ for k=3 and $\pi \neq (a_1a_2a_3a_4)$ for k=4

then there are as many as \flat closed classes in $P_{\rm k}$ preserving π .

Proof.: If и contains a cycle C such that |cl^ 5, the statement is implied by Lemma 2.

If π contains a cycle C such that $|C| = 1$ or two cycles with equal lengths, then the statement follows from Lemma 1. If π contains at least 4 **cycles with lengths 2,3,4 then two of them have equal lengths.**

Thus we have the following cases:

$$
π = C_1 \cdot C_2
$$
, $/C_1/ = 2$, $/C_2/ = 3$ or
\n $/C_1/ = 3$, $/C_2/ = 4$
\n $π = C_1 \cdot C_2 \cdot C_3$, $/C_1/ = 2$, $/C_2/ = 3$, $/C_3/ = 4$

The first case is treated in Lemma 3.
In the second case
$$
/C_1/ / C_3/
$$
, therefore the assumptions of Lemma 1 hold.
Thus the proof of Theorem 1 is complete.

§. 2 .

In \S .1. we have seen, that for all but three permutations $\pi \uparrow$ closed sets in P_k (k>2) preserving π can be constructed.

In the case $k=2$ there is only a finite number of closed sets in P_2 which preserve (01) ($[10]$). In the cases k=3, $\pi = (012)$ and k=4, $\pi = (0123)$ we cannot give an "independent" set of functions with cardinality γ_{0} . How**ever we can prove.**

Theorem 2: For all $k>2$ and all permutations π there is at least a countably many closed sets in P_k that preserve π .

Proof: It is sufficient to consider the following two cases: k=3 and $\pi = (012)$; k=4 and $\pi = (0123)$. We will construct a set $\{t^i\}$ = T of functions such that $t_i \notin [U \cup \{t_j\}] = T_i$, and t_i preserves π .
 $j > i$

If we have such a family of functions, then the set $\{T^{\dagger}_{i}\}\$ i $\epsilon \omega\}$ **contains countably many closed classes, and it can be ordered as**

$$
\mathbf{T}_1 \supset \mathbf{T}_2 \supset \mathbf{T}_3 \supset \dots
$$

We define t_i as follows:

$$
t_{m}(a_{1},...,a_{m}) = \begin{cases} b, \text{ if } (a_{1},...,a_{m}) = b \text{ or } a_{1},...,a_{j-1},a_{j+1}...a_{m} = b \text{ and } a_{j} = \pi^{-1}(b); \\ a_{j} = \pi^{-1}(b); \\ a_{1},...,a_{m} \in {\pi^{-1}(b),b}^{m} \text{ and } a_{1},...,a_{m} \in {\pi^{-1}(b),b}^{m} \text{ and } a_{1} \text{ otherwise.} \end{cases}
$$

A vector $\underline{a} = (a_{\underline{p}}, a_{\underline{m}})$ is called characteristic, if $|\{i/a_{\underline{i}} = 0\}| = 1$ and $|\{i/a_{i}|=1\}|$ = m-1. The definition implies that t_{m} preserves π . Let us suppose, that

$$
t_{m}(x_{1},\ldots,x_{m})=\vartheta_{\ell},
$$

where \Re is a superposition over T_i .

We can choose - analogously to Lemma 2 - a minimal formula \mathfrak{R}^n which equals 1 on all characteristic vectors. This $\mathfrak{M}^{\dot{\kappa}}$ cannot be equal to x_i , that is \mathfrak{R}^k can be written in the form

$$
t_s(\mathcal{L}_1, ..., \mathcal{L}_s)
$$
 where $s > m$

Denote by y_i the characteristic vector with $x_i = 0$. Let us consider the matrix

By the minimality of \mathfrak{R}^k every column of the matrix contains at least one $0. s > m$ implies, that at least one row in the matrix contains two or

 $-14-$

more O's. If the e'th row in the matrix contains at least two 0 - elements then $\mathfrak{R}^*(y_{\ell}) = 0$. This is a contradiction, since $t_m(y_i) = 1$ for all i ϵ {1,2,...,m}. Thus Theorem 2 is proved.

REFERENCES

- [1] J.Bagyinszki, The lattice of closed classes of linear func**tions over a finite ring of square free order. Pep,of Mat. Karl Marx University of Economics 1979.**
- **£21 J.Demetrovics, J.Bagyinszki, The lattice of linear classe in prime-valued logics. Banach Center Publications, Warsaw, PWN, 8/1979 (in press)**
- **£31 J.Demetrovics, L.Hannák, The cardinality of closed sets in pre-complete classes in к-valued logics. Acta Cybernetcia (in press).**
- **£ 4 1 S.V.Jablonski, Functional constructions in к-valued logics (Russian) Trudy Mat.Inst,Steklov. 51/1958. 5-142.**
- **£51 Ju.I.Janov, A.A.Mucnik, Existence of к-valued classes without a finite bases. Doki.Akad.Nauk SSSR (Russian) 127, 1 (1959), 44-46.**
- **£61 D.Lau, Über die Anzahl von abgescholossenen Mengen von linearen Funktionen der n-wertigen Logik, EIK 14(1978) 11.**
- **£71 S . S .Marcenkov, On closed classes of self-dual functions in к-valued logics (Russian) Prob.Kibern, 36/1979/ (in press).**
- **£81 I.G.Rosenberg, Structure des fonctions de plusieurs variables sur un ensemble fini. C.R. Acad. Sei. Paris, 260/1965/ 3817-19.**
- **£91 A.Szendrei, On closed sets of linear operations over a finite set of square-free cardinality. EIK 14(1978) 11,553-565.**
- **£101 E.Post, Introduction to a generel theory of elementary propositions. Amer.J.Math. 93/1921/ 163-185.**

Összefoglaló

A k-értékü logika önduális osztályairól

J.Demetrovics - L. Hannák

A jelen dolgozatban a szerzök bebizonyitják, hogy ₩s(x) ϵ P_k, k≥3 **kivéve, ha s(x) =(012) ill. s(x) =(0123),- (s(x)-permutáció) az önduális zárt osztályok száma kontinuum.**

Ha s(x) =(012) ill. s(x) =(0123), akkor is legalább megszámlálható sok önduális osztály van.

Резюме

0 мощностях самодейственных заминутных классов в

Я. Деметрович, Л. Ханнак

В настоящей работе авторы изучают самодвойственные замкнутные классы в P_k ($k \ge 3$). Они доказывают, что

- а/ для любого $S(x)ep_k$ /где $S(x)$ -перестановка; $S(x) \neq (0 1);$ $S(x) \neq (0 1 2)$ и $S(x) \neq (0 1 2 3) /$, существует континуум самодвойственных замкнутых классов относительно s(x);
- б/ если S(x) = (0 1 2) из Р₃ или S(x) = (0 1 2 3) из Р₄, то существует по крайней мере счетное число самодвойственных замкнутых классов относительно S(x).