MTA Számitástechnikai és Automatizálási Kutató Intézete, Közlemények 23/1979. ON THE CARDINALITY OF SELF-DUAL CLOSED CLASSES IN k-VALUED LOGICS

J. Demetrovics - L. Hannák

Introduction

Let $E_k = \{0, 1, \dots, k-1\}$. By a k-valued function we shall mean a function f: $E_k^n \to E_k$, and by P_k we denote the set of all those functions. If A is a subset of P_k , [A] will denote the set of all superpositions over A. The definition of a superposition over A is the following:

1. f ϵ A is a superposition over A

2. If $g_0(x_1...x_n)$, $g_1(x_{11},...,x_{1m_1})$,..., $g_n(x_{n1},...,x_{nm_n})$ are either superpositions over A, or $g_i(x_{11},...,x_{im_1}) = x_{ij}$ then $g_0(g_1(x_{11},...,x_{1m_1}) \dots g_n(x_{n1},...,x_{nm_n}))$ is a superposition over A.

The set A is closed if A = [A]. Let s be a permutation of $0, 1, \dots, k-1$. We say, that $f \in P_k$ preserves s, if

$$f(x_1,...,x_n) = s^{-1} [f(s(x_1) ... s(x_n))]$$
.

We shall denote by the cardinality of the continuum.

Ju. I. Janov and A.A. Mučnik [5] have proved, that if $k \ge 3$, then the cardinality of the set of all closed sets in P_k is continuum. E.Post's general result implies that there are countably many closed sets in P_k for k = 2.

It is well known, [see [4], [8]], that there exist 6 types of maximal closed sets in P_k . The characterisation of these sets can be found in [8]. J.Demetrovics and J.Bagyinszki have proved in [2] that the linear classes in P_k (k prime) contain a finite number of closed classes. J.Bagyinszki and A.Szendrei [1], [9] have proved that if k is square-free, then there are also finitely many closed linear classes in P_k . D.Lau in [6] have shown,

that the cardinality of the so-called quasi-linear closed classes is countable. In [3] the authors have proved, that the so-called central, k-regular, monotonous and equivalence-preserving maximal classes in P_k , for $k \ge 3$ contain as many as l closed classes. In this paper it is also shown that the maximal classes, which preserve a permutation s, conatain l closed classes provided k is not prime. Marcenkov in [7] has proved that for all $k \in \{$ 13,14,16,17, $\}$ and for all permutation $s : E_k \rightarrow E_k$ there exist a set of closed classes preserving s with cardinality l. In the case k=2. E.Post's result ([10]) implies that there are finitely many closed classes pereserving a permutation of E_2 .

The purpose of this paper is to show that for all $k\geq 3$ and for all permutation s: $E_k \rightarrow E_k$ /except for two cases, namely k=3 and s = (012) or k=4, s = (0123)/ there exist : closed sets in P_k preserving s. We shall also prove that for all $k\geq 3$ there is at least a countable number of closed sets preserving s, for all permutation s: $E_k \rightarrow E_k$.

§.1.

A permutation s of E_k can be written as a product of disjoint cycles. Such a cycle will be denoted by C_i . If

$$s = C_1 . C_2 ... C_m$$
 and $C_1 = (a_{11}, ..., a_{n_1})$
 \vdots
 $C_m = (a_{1m}, ..., a_{n_m})$, then
 $|C_1|$ will denote the number of the elements of the set

{a_{li},...,a_{n,i}}

Lemma 1. Let $k \ge 3$, s a permutation in the form $s = C_1 \cdot C_2 \cdot \ldots \cdot C_m$. If m > 1and there are i, $j \le m$ such that $i \ne j$, $|C_1| = k_1$, $|C_j| = k_2$ and k_1/k_2 then it can be constructed l closed classes preserving s.

<u>Proof.</u> We can assume that $s = C_1 \cdot C_2 \cdot \dots \cdot C_m$, where

 $C_{1} = (0, \dots, a_{m_{1}}) \qquad C_{2} = (1, 2, \dots, a_{m_{2}}) \text{ and } |C_{1}| / |C_{2}|$ We shall prove, that there is a set { f₁ } = F of functions such that for all f₁ ϵ F, f₁ ϵ [F\f₁] and all f₁ preserve s. This is sufficient since in this case all subsets of F generate a closed class, and H₁ \subset F, H₂ \subset F H₁ \neq H₂ implies [H₁] \neq [H₂].

Let
$$f_m(x_1, x_2, \dots, x_m)$$
, $m \ge 3$ be defined as follows:

$$\begin{cases}
b \in C_2, \text{ if } (a_1, \dots, a_m) \subset C_2 \mid \{i/a_i = b\} \mid = 1 \\
and all a_i \neq b \text{ are equal to } s(b); \\
d \in C_1, \text{ if } \{a_1, \dots, a_m\} \subset C_1 \cup C_2 \text{ and the previous} \\
condition does not hold; \\
a_1, \text{ in all other cases.}
\end{cases}$$

One can easily see that since $/C_1///C_2/$, $f_m(x_1,...,x_n)$ preserves s. Let us suppose, that $f_k(x_1,...,x_k) \in [F \setminus f_k]$. This means that

$$f_k(x_1,...,x_k) = Q(x_1,...,x_k)$$

where **Q** is a superposition over $F \setminus f_k$. Let $f_s(x_{i_1}, \ldots, x_{i_s})$ be a function in **Q**. If s < k, then we can find an x_ℓ such that $x_\ell \notin \{x_{i_1}, \ldots, x_{i_s}\}$ If $x_\ell = 1$, and all $x_i = 2$ ($i \neq \ell$), then - by the definition - $f_k(x_1, \ldots, x_k)=1$. If we choose (x_1, \ldots, x_k) as above, then $f_s(x_1, \ldots, x_i) \in C_1$ that is **Q** cannot be equal to 1. (f_m preserves the set $C_1 \cup C_2$ and if $\{a_1, \ldots, a_m\} \cap C_1 \neq \emptyset$ then $f_m(a_1, \ldots, a_m) \in C_1$.) If s > k, then we have at least one pair x_i, x_i such that $i_k = i_\ell$.

Let $x_i = x_i = 1$, and all $x_j = 2$ ($j \neq i_k$). In this case $f_s(x_{i_1}, \dots, x_{i_s}) \in C_1$ and $f_k(x_1, \dots, x_k) = 1$. This is a contradiction, thus Lemma 1 is proved.

Corollary:

1. if k is not prime, then in the maximal closed class S_k of P_k there exists Closed classes. (S_k denotes the class of all functions preserving a permutation π ; π is the product of cycles C_i of length p, where p is prime.)

2. if π is a permutation of the form $\pi = (1) C_1 \dots C_m$ then there is a continuum cardinality set of closed classes pereserving π .

Lemma 2. Let $k \ge 5$, let s be a permutation consisting of one cycle of length k. Then we can construct a set of closed classes in P_k of cardinality [which preserves s.

Proof. We can assume, that

s = (01234 ...).

Analogously to the proof of Lemma 1 we shall give a set $\{g_i\} = G$ of functions so that $g_i \notin [G \setminus g_i]$ and g_i preserves s.

We define g_i , i>3 on the set $\{0,1,2\}^i$. It can be easily verified that the definition does not contradict the assumption that g_i preserves s.

Let:

 $g_{k}(a,...,a) = a$ $g_{k}(\{\{0,1\}^{k} \setminus (1,...,1)\}) = 0$ $g_{k}(\{\{0,2\}^{k} \setminus (2,...,2)\}) = 0$ $g_{k}(\{\{1,2\}^{k} \setminus (2,...,2)\}) = 1$

and for $\{0,1,2\}^k \setminus \{0,1\}^k \setminus \{0,2\}^k \setminus \{1,2\}^k$:

$$g_{k}(a_{1},...,a_{k}) = \begin{cases} 1, \text{ if } /\{a_{i}/a_{i} = 0\}/ = 1 \\ /\{a_{i}/a_{i} = 2\}/ = 1 \\ /\{a_{i}/a_{i} = 1\}/ = k-2; \\ 0, \text{ in all other cases.} \end{cases}$$

A vector $(a_1, \ldots, a_k) = \underline{a} \in \{0, 1, 2\}^k$ is called characteristic if

- 10 -

 $/\{a_i/a_i = 0\}/ = 1,$ $/\{a_i/a_i = 2\}/ = 1,$ and $/\{a_i/a_i = 1\}/ = k-2.$

Let us suppose $g_k^{\epsilon} [G \setminus g_k]$, that is $g_k(x_1, \dots, x_k) = \mathcal{A}(x_1, \dots, x_k)$.

If $g_k(x_1, \ldots, x_k) = \mathcal{A}$ then there exists at least one superposition over $G \setminus g_k$ such that $g_k(x_1, \ldots, x_k)$ is equal to this superposition on the characteristic vectors. Hence we can choose a minimal formula \mathcal{A}^* which equals $g_k(x_1, \ldots, x_k)$ on the characteristic vectors. The minimality of \mathcal{A}^* means that if $\mathcal{A}^* = g_m(\mathcal{L}_1, \ldots, \mathcal{L}_m)$ then $\mathcal{L}_1, \ldots, \mathcal{L}_m$ cannot be equal to $g_k(x_1, \ldots, x_k)$ on the characteristic vectors.

We shall prove that such an \mathfrak{A}^* cannot exist. \mathfrak{A}^* can be written in the form $g_m(\mathscr{L}_1, \ldots, \mathscr{L}_m)$ where $\mathscr{L}_i = x_{ij}$ or \mathscr{L}_i is a superposition over $G \setminus g_k$.

- a./ if all \mathscr{L}_i are superpositions over $G \setminus g_k$ then all \mathscr{L}_i equal 1 or 0 on the characteristic vectors. $g_{\ell}(\{\{0,1,2\}^{\ell} \ (2,\ldots,2)\}) \subseteq \{0,1\}$ Since \mathscr{R}^* is minimal /in the above sence/, there is exists a characteristic vector <u>c</u> such that $\mathscr{L}_1(\underline{c}) = 0$ that is $\mathscr{R}^*(\underline{c}) = 0$. On the other hand $g_{\ell}(\underline{c}) = 1$ holds. This is a contradiction;
- b./ We have seen, that there is a $\mathscr{L}_{\ell} = x_q$ in the superposition $\mathscr{R}^* = g_m(\mathscr{L}_1, \dots, \mathscr{L}_m)$. Let $\underline{x} = x_1, \dots, x_k$ be a characteristic vector so that $x_q = 0$, and $x_n = 2$. If $x_n \neq \mathscr{L}_1$, $x_n \neq \mathscr{L}_2$,... $x_n \neq \mathscr{L}_m$ then all \mathscr{L}_1 are equal to 1 or 0 on this characteristic vector, and hence $\mathscr{R}^*(\underline{x}) = 0$. $[(\mathscr{L}_1(x), \dots, \mathscr{L}_m(x))] \neq (1, 1, \dots, 1)$ and by the definition $g_m(\{\{0,1\}^m \setminus (1, \dots, 1)\}) = 0$.) This is also a contradiction.

c./ By a/ and b/92* can be written in the form

 $g_m(\mathcal{L}_1,\ldots,\mathcal{L}_q, x_1,\ldots,x_k)$.

The assumption that \mathcal{Q}_{1}^{*} is minimal implies that \mathscr{L}_{1} cannot be equal to 1 on all characteristic vectors. Let <u>x</u> be a characteristic vector so that $\mathscr{L}_{1} = 0$.

- 11 -

In this case, $\mathscr{L}_2, \ldots, \mathscr{L}_q = 0$ or 1, and there is one $x_j = 0$. Since $(\mathscr{L}_1, \ldots, \mathscr{L}_q, x_1, \ldots, x_k) \notin \{1,2\}^m$ and it cannot be characteristic, $\mathfrak{R}(\underline{x}) = \emptyset$. This implies that $\mathfrak{R}^{\underline{x}} = g_m(x_{i_1}, \ldots, x_{i_m})$. If $\mathfrak{m} \mathscr{R}$, then there is a $x_q \notin \{x_{i_1}, \ldots, x_{i_m}\}$. On the characteristic vector $x_q = 2$, $x_{i_1} = 0, x_j = 1$ ($j \neq q, j \neq i_1$), the statements $g_k = 1$ and $\mathfrak{R}^{\underline{x}} = 0$ hold. If $\mathfrak{m} > k$ then there exists at least one pair i_{ℓ} , i_j such that $i_{\ell} = i_j$. In this case let $x_{i_{\ell}} = 0, x_j = 2$ ($j \neq i_{\ell}$) and $x_t = 1$ ($t \neq j, t \neq i_{\ell}$). On this characteristic vector $g_k(x_1, \ldots, x_k) = 1$ and $\mathfrak{R}^{\underline{x}} = 0$ hold. This is also a contradiction, thus lemma 2 is completely proved.

Lemma 3. Let k = 5 and π a permutation of the form $C_1 \cdot C_2$ where $/C_1 / = 2$, $/C_2 / = 3$ or let k = 7 and π be a permutation of the form $C_1 \cdot C_2$ where $/C_1 / = 3$, $/C_2 / = 4$. Then there is a set of closed sets in P_5 or in P_7 preserving π which has cardinality ζ .

It is easy to see that it is sufficient to consider the cases when

 $\pi = (03)(124)$ and $\pi = (034)(1256)$

The definition of g_m in Lemma 2 does not contradict the property g_m preserves π .

If we define h_m so that $h_m(a_1, \ldots, a_n) = g_m(a_1, \ldots, a_n)$ on the set $\{o, 1, 2\}^m$ and h_m preserves π , then $H = \{h_m/m \ge 3\}$ is a set with the property $h_m \notin [H \mid h_m]$. Thus analogously to Lemma 1 $H^{\bigstar} = \{ [S] / S \subset H \}$ is a set consisting of closed classes preserving π , and the cardinality of H^{\bigstar} is C.

Theorem 1: Let $k \ge 2$ and π be a permutation of E_k . If

 $\pi \neq (a_1 a_2 a_3)$ for k=3 and $\pi \neq (a_1 a_2 a_3 a_4)$ for k=4

then there are as many as \hat{L} closed classes in P_k preserving π .

<u>Proof.</u>: If π contains a cycle C such that $|C| \ge 5$, the statement is implied by Lemma 2.

If π contains a cycle C such that |C| = 1 or two cycles with equal lengths, then the statement follows from Lemma 1. If π contains at least 4 cycles with lengths 2,3,4 then two of them have equal lengths.

Thus we have the following cases:

$$\pi = C_1 \cdot C_2, /C_1 / = 2, /C_2 / = 3$$
 or
 $/C_1 / = 3, /C_2 / = 4$

$$\pi = c_1 \cdot c_2 \cdot c_3 / c_1 / = 2, / c_2 / = 3, / c_3 / = 4$$

The first case is treated in Lemma 3. In the second case $/C_1 / |/C_3 /$, therefore the assumptions of Lemma 1 hold. Thus the proof of Theorem 1 is complete.

§. 2.

In §.1. we have seen, that for all but three permutations π $(k\geq 2)$ preserving π can be constructed.

In the case k=2 there is only a finite number of closed sets in P₂ which preserve (01) ([10]). In the cases k=3, π = (012) and k=4, π = (0123) we cannot give an "independent" set of functions with cardinality \sim_0 . How-ever we can prove.

Theorem 2: For all k>2 and all permutations π there is at least a countably many closed sets in P_k that preserve π .

<u>Proof:</u> It is sufficient to consider the following two cases: k=3 and $\pi = (012)$; k=4 and $\pi = (0123)$. We will construct a set $\{t_i\} = T$ of functions such that $t_i \notin [\bigcup_{i>i} \{t_i\}] = T_i$, and t_i preserves π .

If we have such a family of functions, then the set $\{T_i \mid i \in \omega\}$ contains countably many closed classes, and it can be ordered as

$$T_1 \supset T_2 \supset T_3 \supset \dots$$

We define t; as follows:

$$t_{m}(a_{1},...,a_{m}) = \begin{cases} b, if (a_{1},...,a_{m}) = b \text{ or } \\ a_{1},...,a_{j-1},a_{j+1}...a_{m} = b \text{ and } \\ a_{j} = \pi^{-1}(b); \\ \\ \pi^{-1}(b), if \\ a_{1},...,a_{m} \in \{\pi^{-1}(b),b\}^{m} \text{ and } \\ \\ \{a_{i}/a_{i} = b\} < m-1; \\ a_{1} \text{ otherwise.} \end{cases}$$

A vector $\underline{a} = (a_1, \dots, a_m)$ is called characteristic, if $|\{i/a_i = 0\}| = 1$ and $|\{i/a_i|=1\}| = m-1$. The definition implies that t_m preserves π . Let us suppose, that

$$t_{m}(x_{1},\ldots,x_{m}) = 1\mathcal{H},$$

where \mathfrak{A} is a superposition over T_i .

We can choose - analogously to Lemma 2 - a minimal formula \mathscr{R}^* which equals 1 on all characteristic vectors. This \mathscr{R}^* cannot be equal to x_i , that is \mathscr{R}^* can be written in the form

$$t_{s}(\mathcal{L}_{1},\ldots,\mathcal{L}_{s})$$
 where $s > m$

Denote by y, the characteristic vector with $x_j = 0$. Let us consider the matrix

•••	$\mathcal{L}_{s}(y_{1})$	
•••	$\mathcal{L}_{s}(y_{2})$	
•••	$\mathcal{L}_{s}(y_{m})$	
	···· ···	$\dots \mathcal{L}_{s}(y_{1})$ $\dots \mathcal{L}_{s}(y_{2})$ $\dots \mathcal{L}_{s}(y_{m})$

By the minimality of \mathfrak{R}^* every column of the matrix contains at least one 0. s > m implies, that at least one row in the matrix contains two or

more 0's. If the e'th row in the matrix contains at least two 0 - elements then $(\mathfrak{Y}_{\ell}) = 0$. This is a contradiction, since $t_m(y_i) = 1$ for all $i \in \{1, 2, \dots, m\}$. Thus Theorem 2 is proved.

REFERENCES

- [1] J.Bagyinszki, The lattice of closed classes of linear functions over a finite ring of square free order. <u>Dep.of Mat.</u> Karl Marx University of Economics 1979.
- [2] J.Demetrovics, J.Bagyinszki, The lattice of linear classe in prime-valued logics. <u>Banach Center Publications</u>, Warsaw, PWN, 8/1979 (in press)
- [3] J.Demetrovics, L.Hannák, The cardinality of closed sets in pre-complete classes in k-valued logics. <u>Acta Cybernetcia</u> (in press).
- S.V.Jablonski, Functional constructions in k-valued logics
 (Russian) Trudy Mat.Inst.Steklov. 51/1958. 5-142.
- [5] Ju.I.Janov, A.A.Mučnik, Existence of k-valued classes without a finite bases. <u>Dokl.Akad.Nauk SSSR</u> (Russian) 127, 1 (1959), 44-46.
- D.Lau, Über die Anzahl von abgescholossenen Mengen von linearen Funktionen der n-wertigen Logik, EIK 14(1978) 11.
- [7] S.S.Marčenkov, On closed classes of self-dual functions in k-valued logics (Russian) Prob.Kibern. 36/1979/ (in press).
- [8] I.G.Rosenberg, Structure des fonctions de plusieurs variables sur un ensemble fini. <u>C.R. Acad. Sci. Paris</u>, 260/1965/ 3817-19.
- [9] A.Szendrei, On closed sets of linear operations over a finite set of square-free cardinality. EIK 14(1978) 11,553-565.
- [10] E.Post, Introduction to a generel theory of elementary propositions. Amer.J.Math. 93/1921/ 163-185.

Összefoglaló

A k-értékü logika önduális osztályairól

J.Demetrovics - L. Hannák

A jelen dolgozatban a szerzök bebizonyitják, hogy $\forall s(x) \in P_k$, $k \ge 3 - kivéve$, ha $s(x) = (0 \ 1 \ 2)$ ill. $s(x) = (0 \ 1 \ 2 \ 3)$, -(s(x)-permutáció) az önduális zárt osztályok száma kontinuum.

Ha s(x) = (0 1 2) ill. s(x) = (0 1 2 3), akkor is legalább megszámlálható sok önduális osztály van.

Резюме

О мощностях самодейственных заминутных классов в Р

Я. Деметрович, Л. Ханнак

В настоящей работе авторы изучают самодвойственные замкнутные классы в P_k ($k \ge 3$). Они доказывают, что

- а/ для любого $S(x) \in P_k$ /где S(x) перестановка; $S(x) \neq (0 1)$; $S(x) \neq (0 1 2)$ и $S(x) \neq (0 1 2 3)$ /, существует континуум самодвойственных замкнутых классов относительно S(x);
- б/ если $S(x) = (0 \ 1 \ 2)$ из P_3 или $S(x) = (0 \ 1 \ 2 \ 3)$ из P_4 , то существует по крайней мере счетное число самодвойственных замкнутых классов относительно S(x).