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|. Introduction and notation

This is the last paper in aseries of four. In (2) the author began studies in the following

direction.

Let & be an integer, kK = 2.
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Fora set K of Boolean functions we define the closure  |[M],  of M with respect to K.

Definition. Le¢f a sequence Mi. C Vk defined by

1Y M =M and
A MR U RK. XS A X P X

for = VN2 ..
T i : i
I'hen let | M|, ,'l“»".. M, .

We notice that the successor of M is a superset of M, and all members of this
sequence are subsets oV, . Hence, starting by some M‘I’< this sequence has to be constant.

This M{ is denoted by lim M;\, or by [M],, accordingly.
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We will investigate the following problems:

I. Find A-conditions for M such that M is K-complete, ie. [M], = V,.

2. Find the cardinality of a K-base, i.e. M is K-complete, but any proper subset of
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M is not K-complete. If there are K-bases of different cardinalities, find the minimal and
the maximal cardinality of K-bases.

In (2),(3) and (4) we solved these problems for some closed sets of Boolean functions,
namely for all closed sets of nonmonotonic functions. In (2), (3) and (4) we used M}(
for the closure of M with respect to K. Without loss of generality these restrictions are
possible, because M}< = [M]K was proved for closed sets K in (4). Moreover, in this paper
(section2) we will prove [M], = [M][ K] for arbitrary sets K of Boolean functions, where
[K] is the usual closure of functions. Hence, in order to solve our problems, we only have to
solve the problems for closed sets K. All closed sets of Boolean functions are known. For a
survey and notations of these closed sets see (1). '

In section 3 we give a survey of the results for all closed sets. In section 4 we prove
these results.

2. A theorem

In this section we will prove the following

Theorem 1. Let M be an arbitrary subset of Vi and let K be an arbitrary set of Boolean
functions.
Then [M]K - [M][K].

We give the following version of the definition of the closure [K] which we will use
_in the proof of Theorem 1.

If ideK, [K] is defined by (1), p.4, 1.,2.,3., and 4!:

Definition. Let ideK. Let K'(i=0,1,...) bea sequence of  sets of Boolean functions
as follows.

1 If a function f belongs to K' (i = 0,1, ...), all functions which can be
generated by [ by adding  fictive variables to f, identification of variables
belong to K' too.

2 K=K
_K{+1=KIU {fag’gl,...,gmGK':fz g(gl,.,gm)}
if i=0,1,:.. and
k= U K
(K] i=0

We notice that we only need a finite set of Boolean functions for the generation of
[M][K], i.e. there is an integer a with
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(1) (Mg = [M]Ka'

Moreover, we only need functions of K® with a finite number of variables. Finally it is
worthy of remark that only K° has to contain all functions obtained by 1°. This property

we will use.

Proof of Theorem 1.

a) Let ideK. First we prove [M][K] c [M]K. Let » be an integer, b= 1. Then
there is an integer ¢ satisfying

) Mzb o [M]Kb

by our remarks at the definition of the closure of M with respect to K.

We prove

@ M, 2M,

— l —
by induction on i(i > 1), for all integers b > 1.

1. i=1. Then Ml‘(b=M2bU (X: BAp 9X,... XM XX, ... X))

Let us assume there is a vector XeM.‘.b \[M] ,_,-
K K

Then there is a function fek? and there are vectors X yuisin ; X efm Ml(()b with

XXy X)) IE fek?~1 then Xe[M]Kb_ |» which is a contradiction to our assump-
tion. Hence, fek? \ K~ !. Then there are functions g8, ---,8,€k?~1 with

=80y, i By )i 16 X = 0@ g s v s X Vo v g Myans o i XD By ek
and X,eM G =1,....m; (=1,...,n) it follows X, =g(X,, ..., X,)elM , ,

Hence using geK? !, we obtain X = g(X,, ..., X, )e[M] , ,, which is also a contradic-
tion to our assumption. X

2. Wehave M =M, U [ X : AfeK?, AX, ..., XMy i X = fiX,, ..., X,)}

Let us consider an arbitrary vector xeM: - If XeM;b then Xe[M]K »_1 follows by induc-
tion assumption.

Let XeM';L\M;b. Then there is a function fek? and there are vectors X,,..., X, eM;b
with X = AAX,,...,X,). Bythe induction assumption we have

Xypsoooos XyelM - feK® implies by the definition of K” that there are functions

% ,gmeK”“l with f= g(g,,...,g,). Hence X]’ =g(X,, ... ,Xn)t-:[M]Kb_l
G=1,...,n) and finally X=g(gl(X1, ALy ,Xn),... ,gm(X1 T ,Xn))=

w0, o )e[M]Kb_ .- Therefore (3) is proved for arbitrary i> 1 and arbitrary fixed

b > 1. Inparticular (3) is proved for i = q, where ¢ is defined as in (2). Using (2) we ha-
ve



=
IMIK,, L = ML,

K )

for arbitrary integer b = |.

, (The vectors, which can be generated by functions of

We observe (M|, = |[M]
K

K° X K, we also obtain by functions of A, what follows by the definition of the closure
[M]g ).

By induction we get for arbitrary integer b = |:
el
(4) M| , = IM],.
K
In particular, (4) holds for b - a, where « is defined in (1), i.c.
€
IM]“" = IMIA %
Clearly, K = |K]| implies the converse direction
(
IMl; = IM)) |-
It ideK, the theorem is proved.

b) Let id¢K. By the definition of |M],  we have M)y - |[M]e ia ) for all sets of
functions A

it
= Lol . . , , . . "

K= (¢, ¢} implies [K] K and [KU iy =Ry L) and K5 leos

|
\
implies ide| K| and |[K U id| | |KJUlid} too.

and ¢, are the constant functions,

0 1

Hence, using part a), we oblain

IMIK M’”A‘U{MI |M||A’u;,‘dl | - |M||A'|U=n/: IMI|I\'|'
q.c.d.

3. A survey on results

In this section we will give the answers to our problems for cach closed set of Boolean

functions.
Let the closed sets ol Boolean functions denote by the notation by Post, see ().

FFurther we use the following notations:

o i l' |
s el H
= [0) o ‘I s

e i = IS k) denotes the vector of I’A containing a | exactly in the j-th

component.

I .\’d'k. X denotes the vector of 17, which does not coincide with X' in any

component.
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- If M & V., we consisder M also as a matrix. We say M has the property

A, B,C D, if and only if for each pair(i,j), | < i< j< k, the 2-rows-matrix Mli’ whose first

row is the i-th row of M and the second row is the j-th row of M, has a column

((1)), ((1)), (g), (:), respectively. Further M has the property C(u), D(u), > 2, if and only
if every matrix consisting of u rows of M has a column

3 (),

respectively. Let P be a Boolean function of // A,B,C,D. Then M has the property P’ 5

ie ] 0,1 | , ifand only if M has the property P and does not contain, in addition, rows
consisting only of i's. Accordingly, let P°! defined as PO A P!.

Now we are able to formulate the main results.

nn

2. A theorem Let Ke {O0.S.P.L;|. M=V, s
19 K-complete, if and only if M satisfies the condition of table 1,

20 4 K-base, if and only if M is K-complete and has the cardinality given in

table 1.
set criterion of completeness m
0, M=V, 2¥
0,.0, M; AE 1 2k _ 1
05,0 M=V,\ (0} 2 1
0, VXer we have XeM or XeM k=1
0,.0, M=V, \ 0,1 2 —2
0, V XeV, \ 0,1 wehave XeM or XeM 2 =l
P % (e, ..,e) k+ 1
S5 S, ‘i 183 s €| k
P, P, i{_l_,—l, » € | k+ 1
EF =4, . 8 k
L, .:IX],...,Xk_leM:rg(Xl,...,Xk_l,_l)=k k= 1
i By s o g MR s, X )= k
Ly : %, PR o "o AR o - k
L, FIXI,...,XkeM:rg(Xl,...,Xk)=k and k+ 1
XM\ LX), X ) g,
Ly ?]X],...,Xk_leM:rg(Xl,...,Xk~l)=k—lk
PR T X . Xy 4} J,, and
i even number of vectors of Hya-iva s e 1K

with sum 1

Table 1.
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These results are proved in (2), (3) and (4).

|
Theorem 3. Let Ke {Ci, D, A,, F}, F:‘} . M=V, is K-complete, if and only if M satis-
fies the condition P of table 2. The K-bases have the minimal cardinality m and the
maximal cardinality p, given in table 2.

In table 2 let

I, e datd,
2. X[ = min (y: ye N, y = x),

i x ==
3. 9,(k) = xe N » [["25]]> k > [[[5%—1”
S|
> e> (2521

*)For u= 3 we do not give an explicit formula; see the remark at the end of
“this section.

X
4.¢2(k)=xeN9 {[x;]

3,
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K 4 m p
C, AvVB Jlog, k{ k-1
(e (AyB) Jlog, (k + 1) k
. (AY B)° Jlog, (k + 1)[ k
£ (AvB)" Jlog, (k + 2)[ k+ 1
D, (A v B)(CvD)" Jlog, (k + 1) + 1 k+ 1
2%k 2<k<4
D, ABCD 0, (k) + 1
k
3 k>S5
D, (Av B)(CV D) Jlog, K[+ 1 k
(22 danes
A Ay ALLA, AB 1 (k) K2
[{] k=17
P <k (AvBC(w)° [ () 2<u<k-2
F¥ (< k) (AVB)D() Jlog, (k + 1)[ + 1 k+1 p=k—1
2« u=k—1<5
S PRI
2
FE, (u< k) ABC() 0, (k) w=2 B+ 6<u<k-1
B (u< k) ABD(u) o () + 1, u> 4 (E) 2 W< k—2e3
Ff (k< 2) (Av B)C(p) k
llog, k[ + 1 =)
K} W< k) (AvBD(Q) 2
Fr. B (k= k) (AvBYC(K)
- Jlog, (k + 1) + 1 k+ 1
F., Ff (1> k) (AVB)D(K))
.
o Pl | (B ABC(k)} 2k—1 2<k<6
p (k) + 1
Fr  FE . (w>hk ABC(k)J [4522] +1 k>7
& k
Fy . P (> k) (AVB)C(K)
Jlog, k[ + 1 k
gl (u=>k) (AN B)D(k)
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4. Proof of Theorem 3
1. Completeness

By Theorem 2 of (3) we have only to consider the following closed sets of Boolean func-
tions: C,, C3, C4, Dl »D,, D3, A, Ay, A4, F¥, F7(i= 1,2,3,4). The problems were solved
for the sets Cl, C3, Cy> F,‘.‘, F7 (i=1,4) in (3) and for the sets D, and D, in (2).

So we have to prove the statement of Theorem 3 for the closed sets

ReLD i d, , Ay, W52 FREEY

1. First we show that the conditions of table 2 are necessary. Let M be K-complete.

1.1 The monotony of the functions of K implies that M satisfies AB (i.ec. A A B). To
show this, let (i,j) be a pair with ije { 1,..., k} and i+ j such that Mi./' does not contain
a. column (0). Then it is impossible to generate vectors, having the i-th component 1 and
the j-th componenet o, by monotonic functions, i.e. [M], * Ky

Hence M has to satisfy B and, in analogy, A too.

1.2. If K=D,, M has to satisfy CD too. To show this, let (ij) be a pair with

ije {1,...,k} and i+ j such that M,; does not contain a column (). Let M

be a matrix of the same type as Mi]., whose elements of the first row coincide with the corres-
pondent elements of the first row of Mil., while this does not {mld for any element of the
second row of Mil.. Then le,. does not contain a column (O), it is impossible to generate
the vector (0) by M,fl. and by a monotonic function. Thus, it is impossible to generate
vectors, having 1 as the i-th and j-th component, by Ml./. and by functions of K = D,.
Hence, M has to satisfy D and, in analogy, C too.

1.3. Let Ke{F!,F7 | (i= 23). Then M has the property C(u) for u < k and C(k)

for u= k and p = . Either QeM or QO¢M.

In the first case M satisfies C(u) and in the second case there is a function feK with fiM)= 0.
Now the statement follows by the definition of the functions of F} or E

1.4 1If Ke{ A3. A4, F‘z‘, F3 | NO.0;55 « 4 0) = o holds for each function feK. Thus,
M does not contain rows consisting of o’s only.

1.5. If Ke {A4, F‘z‘. F;} we obtain, in analogy to 1.4., that M has no rows consisting
of 1’s only.
We notice that M satisfying AB implies M has no rows consisting of o's or 1’s only.

2. In order to show that the conditions of table 2 are sufficient, let M be a matrix having
the property P(K) of table 2. Denote the rows of M by «, and let

4y
L ]
L
4

-a.:




N 7

be an arbitrary chosen vector of Vk. Then we give a function feK satisfying fiM) = a.
If =(@®y,...,b) and y=1(¢;,...,¢,), B<y meansthat b, <¢, for i=1,...,14,
and at least for one i we have the inequality.

2.1 Let Ke {A,,A,,A, FiF FiFr)
Then

a; if e=e,
fla) =1 0 if there is a a; with a< a;,
1 otherwise.
22 Let X=D,.
Then
(ai if a=a,
a, if a= ;,
0 if thereisa «; with a<a, or a<a,
I ifthereisa a, with a> a, or a >a;
0 for all other @ with a = (0, ~),

1 for all other a« with a = (1, ~).

Thus this part is proved.

2. Cardinality of bases

If we consider the matrices M as an incidence matrix of a family F of k subsets of an
r-clement set R, the determination of m is equivalent to the determination of the maximal
cardinality n(r) of families of a finite set satisfying a certain K-condition, according to
m= min{x:xeN, n(x)>k} .

The following conditions for M and F are equivalent:

— AB < X ¢ Y for all different X,YeF,
—CD o XNY#0,XUY#R forall X,YeF,

—Ccw<e U X,4R forall X, X,,...,X,eF.
i=1 L

The maximal cardinality of families satisfying the conditions related to AB, ABCD,
ABC(2), ABC(p) p = 4 was determined by Sperner [12], Katona [9] and Schénheim [11]
and Brace and Daykin [7], Milner [10], the author [5], respectively.

Fraknl [8] and the author [5] solved this problem in the ABC(3) case for sufficiently
large r. These maximal cardinalities have different structures for even and odd r. So we
did not give an explicit formula in table 2 in this case.

The values of p were determined by the author in [6]. '



(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

(10]

(1

(12]

i

References

S.W. Jablonski, G.P. Gawrilow, W.B. Kundrjawzew, Boolesche Funktionen und Post-
sche Klassen, Akademie-Verlag Berlin, 1970.

H.-D. Gronau, Erzeugung dualer Vck.toren durch selbstduale Funktionen, Wiss. Zeit-
schrift der Univ. Rostock, Math.-Nat. Reihe, 23 (1974), 9, 791-799.

H.-D. Gronau, Erzeugung dualer Vektoren durch gewisse abgeschlossene Mengen
Boolesher Funktionen, Rostocker Math. Kolloquium 3 (1977), 45-56.

H.-D. Gronau, On the generation of binary vectors by some closed sets of Boolean
functions (linear functions and alternatives), Proceedings of the 4th Winterschool on t
the Theory of Operating Systems — “Visegrad” 1978, Computer and Automation
Institute of the Hungarian Academy of Science, to appear.

H.-D. Gronau, On Sperner familoes in which no k sets have an empty intersection,
J. Combinatorial Theory A, to appear.

H.-D. Gronau, Minimale Familien, in: Extremale Familien von Teilmengen einer endlichen
Menge und die Erzeugung von dualen Vektoren durch Boolesche Funktionen, Disser-
tation, Wilhelm-Pick-Universitat Rostock, 1978, 33-67.

A. Brace, D.E. Daykin, Sperner type theorems for finite sets, Combinatorics (Proc.
Conf. Combinatorial Math. Inst. Oxford, 1972), 18-37.

P. Frankl, On Sperner families satisfying an additional condition, J. Combinatorial
Theory A 20 (1976), 1-11.

G.O.H. Katona, Two applications of Sperner type theorems (for search theory and
truth functions), Period. Math. Hung. 3 (1973), 19-26.

E.C. Milner, A combinatorial theorem on systems of sets, J. London Math. Soc. 43
(1968), 204-206.

J. Schonheim, On a problem of Purdy related to Sperner systems, Canad, Math. Bull.
17 (1974), 135-136.

E. Sperner, Ein Satz tiber Untermengen einer endlichen Menge, Math. Z. 27 (1928),
544-548.



g o
Osszefoglald

Binaris vektoroknak Boole fiiggvényekkel vald generdlasarol

Hans-Dietrich Gronau

Legyen M C |0,1 ) k. ahol k természetes szam. Jeldlje K a Boole fiiggvények egy
zart halmazat. Az Osszes zart Boole fliggvényhalmazra megadja a szerzé annak sziikséges és
elégséges feltételét, hogy M K-teljes legyen, azaz hogy M K-lezardsa megegyezzen a | 0,1 Jk
halmazzal. Toviabba meghatirozza |0, 11 ¥ K-bazisainak lehetséges minimélis és maximalis
szamossagat, ahol M K-bazis ha minimalis a K-tejességre nézve.

Pesnome

O nopoxneHuy OHWHADPHBIX BEKTOPOB OYJIEBEM (OYHKIIUAM

XaHu-JuTpux ['poHAY

[lycte M < {O,l}k, rne k HaTypaJibHOE 4YUciio, U K 3aMKHyToe
MHOXECTBO DbyJsieBrIX QYHKLUMW. ABTOD IHaeT HEeOO6XOOUMBIE U INOCTATOU-
Hble YCJIOBHA K-TIOJTHOCTH MHOXecTBa M. [long K-TIOJIHOCTBI NOHHUMAaEeT-
CA, 4YTO 3aMelKaHUue MO K MHOXECTBa M DABHO MHOXECTBY {O,l}k.

B nanpHenmem OyOyT onpeliejieHbl BO3MOXHBIE MUHUMAJIbHBIE U MaKCH-
MaJibHbBIE MOHHOCTH K-6a3UCOB MHOXECTBA4 {O,l}k, roe M ABJAETCHA
K-6a3ucoM, ecJii OHO MHUHHUMAJIBHO OTHOCHUTEJIbHO K-IIOJIHOTHI.



	Hans-Dietrich Gronau: Bináris vektoroknak Boole függvényekkel való generálásáról���������������������������������������������������������������������������������������
	Oldalszámok������������������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������


