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ABSTRACT

Robinson's statisticel minimum-delay model / or the method of
predictive deconvolution / hes been effectively used in seismic
prospecting for oil and gaes. It is used to eliminate multiple
reflections from surface layers and reverberations in water layer.
However, in our opinion, this model is not clear in some respects.

In this paper we try to give o new interpretation and more

4

generel condilion Tor this model, which are vossibly more suitable
to practice. Ve also point out thoat, with the new conditions, the
computation process based on observations is just the same as in

the case of Robinson's model. In her vords, the Robinson'’s

ot
assumptions contain some simpliflications,howvever his computation
gives practically correct results.

We also give examples for the nredictive deconvolution of

the new process.

§.1. ROBINSON'S LODEL

In,order o Tfix ddeas,. det u: congider a specific physical
situation, namely the provler of seigmic exploration for oil in
the earth’s sedimentary strata. Tlhe cource is an explosion or
another form of energy, which ig introduced into the ground at the
surface. The reflection response X, is the geismic reflection
record / time series / which is Cigitally recorded at the surface.
The reflection coefficient sequence €, is o digitized
representation of the reflectivit;: of the carth as a function of

€n 1o the refliection coefficient of
ravel time of the input osignel in
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depth., I'ore exactly speakin
e
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the interface n, where th
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going to the interface n is _'2_-. . As a result, knowledge of the
sequences for various geographic locations on the surface allows
the seismic interpreter to make contour maps of the earth's
sedimentary structure at depth.

By certain assumptions / see [8] , P«457 / Robinson introduced
the following equation:

X+ OXo y + A Ka 4. A%, , S8 nzo,4,2,* (1)

where the Q,-s are unknovn deterministic values, which depend
on the geological structure of the observed area.
In the case of a noise appearing, the reflection response has
the form
Yn = Xp+ (2)

3

where V,, is a noise. Here we suppose the noise is eliminated.
The predictive deconvolution problem is to compute the Q;s from
the X, ~s. However, (1) implies a system of equations
having more unknown variables than the number of equations, so

it is impossible to find the ¢&,-s.

Robinson proposed the statistical method as follows:

Although the model (1) is deterministic, i.e. there is no random
variable in it, but the sequence ¢, may be considered as a

realization of a random white noise, i.e.
£ ¢ '62 nss (3)
E¢.=0 t. =
tv\ n o n#s

If we suppose further that
A+ 0,z +a212+ ot o +aPzF:::o for - (zhsd (4)

then I,, is a stationary autoregressive process. The coefficients
@,,a;,.-+ , ap then can be estimated from the observations X, -s,
and the ¢,~s are estimated by

A~ N ~
i—n = xn & aix'n-4.+ s o e apxn-P (5)
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§.2. SOME REMARKS ON ROBINSON'S LiODEL

In our opinion, Robinson's model is not clear in some respects:
/a/ In the equation (1) the {,~s are deterministic values, so we
can consider them as special random variables such that

= ST Var €, =0

which contradicts the assumption (2)

/b/ In practice the interfaces are not so arranged as in our
assumptions, i.e. the travel time of the input signal in going to
some interface is not always equal to 1% y, Where n is some positive
integer, but may be an arbitrary reecl value t. Thus we can not
consider the E“—s'as exact reflection coefficients.

/c/ Vle recourse to irregularity of the sequence ¢, to make
information for the earth’s sedimentary structure at depth. For
example, if §{,=-o , we think that perhaps there is no interface at
depth n, if §,=14 , we think it may be an interface between oil

and gas strata... The assumption that the {,-s have the same mean
and variance seems not always suitable to the practice.

/d/ In his model Robinson supposed only that the sequence £, is
uncorrelated. / see [6] /. llowever, by the following example we
want to show that in practice , when we have to estimate the
correlation function from the sample time series, this assumption
is not always sufficient for getting good estimates,

Ixample 1l: Let our model be

s SR S e SN o = g 2SS e
where |a}<1i , u, = cosnw end V/ is an uniformly distributed
random variable on [o,2m. Then
Euna<o0 Eu,ug =
o nts

Thus the sequence wu, is & white noigse in wide sense.
| As usual, then a is estimated by

N
Z xn+1l.n

~ S 1
O i
N

2
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Now suppose a =0  then
A Ccos (2N+1)W — cosszinw
a = - Cosw -

Sin (2N +4A)W+ (2N -1)sinw

from which we can see that

-~

P @ 2 - CosW 8¢Ss
N-od

Thus the estimate & is always a random variable, its limit is
also such a random variable, which has not any connection with the
true value a . Ience we can not say that & is a: good estimate
of-a.

§.3. THE MODIFIED MODEL

In order to modify Robinson'’'s model so that it be more suitable
to practice, let us firstly consider the simplest case:

Suppose after explosion the input signal f&) propagates to the
earth’s crust. When acting an interface having reflection
coefficient & it reflects to the surface with reflected wave
%HJ:-EFH). Since the elastic wave {{t) represents the motion of
particle about its equilibrium point, {() always has a damped
sinusoidal form / in the case of explosion it is relatively narrow
with great frequency /.Now let us consider some observed value u
on glt). In geophysics the arrival time of a reflected wave is.
usually considered as a uniformly distributed random variable
/ i.e. we do not know exactly when the reflected wave appears /.
Thus the observed value w can also be considered as . a random
variable w=4qg(@) where T is a .uniformly distributed random
variable on some interval (a,b). Ve have

b
Eus= i_& £5F(’C)At =0 / cf. Riemann lemma /
2 b 2
st e = C (6)
b-Aa a

Or more exactly speaking,Eu is negligible compared with Euz .
although & is some fixed value / even in the case ¢>o0 /)

the measured value u may be arbitrary value in [_'-s‘g] . Hence wu
can not be considered as an approximation of & . ;
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By the above reason, we propose to modify (1) by introducing the
new model:
Xa + Q1xw.¢+ R apx,n_P 2R nz04,2,-. (7)

Where Eu,z0 , EUi = CE%.

For the reflection coefficients are different, Euﬁ can not be
constant. IHowever, by estimating the reflection coefficients from
oil wells, White and Obriend /1974/ of British Petroleum,
Schoenberger and Levin /1974/ of Exxon saw that the reflection
coefficient sequence ¢, is like the realization of a white noise,
i.e. for N 1large enough

4 B2 =2 2
y 5=
Nn:oiru-si"‘do AT T

/ see [8) , p.490 /. By (6) and (8) we have

4 S 2 A B2 2 2
-JZ-EU,‘ :C-E-Z_..En g C¥ =6 20 (9)
n=o no

We suppose that in the case of a complicated geological phenomenon
the variables u, -s are independent.

Briefly speaking, we suppose that the reflection response
satisfies (7) and the following three conditions:

/a/ The variables u,,u,, u,,..- are independent with mean O and
T YR
Elual K L0 for gome K end ~¢.-79 (10)
N-4
. A 2 2
/b/ LA'L”» N—Z:; Eu = 6° Y0 (11)
1o/ ) g g A0 "'+0~PZP4’-'O for {z] <4 (12)

We would like to remark that the condition (10) is obvious because
the variables U -s are uniformly bounded. For the validity of the
condition (12) the reader can see in [5] and [6] .

§ .4, PREDICTIVE DECONVOLUTION OF LONG-RUN STATIONARY
AUTOREGRESSIVE PROCESS

Definition 1:We call the process x, satisfying (7) , (10) , (11)

and (12) a long-run stationary autoregressive process.
This notion does not occure in the standard literature on
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time series analycsis.

Definition 2: We call the process Y, 2 stationary autoregressive
process corresponding to the above defined long-run stationary

process %X, if Yn satisfies
’!}n‘ + 61‘13“_4_4. .-J+ aF\én-F:On L = o-:-i/OILIZI,.; (13)

A : . : r 2
where V,, 1is a white noise with variance 6

Theorem: Let x, be a long-run stationary process satisfying

(7)o (20) , (11) , [12). then for s'=..-4,6,42... ‘there exist
the limits
T
ln G w2 €5 e 1)

where ¢, 1is the correlation function of the corresponding

stationary process Yy, .
Proof: By (12)we can take the reciprocal B(z) of the Z-transform A
A

B@) B e = Ak b2+bzz+.--
e Azt tayz? i S

and the process %X, can be written in the form
(=)
S z:—_;_ébs e where ‘u =o' For n< o

By (10) Bt ¢ d for some d7vo.
Let

S ¢
En"“ﬂ"t”n / 60:—2%

Using llinkowski'’'s inequality, we have

4 1
s, T A4 o
(E ‘gn\'ﬂ- 0)44-6 2 (E)U%\ 5 Eui\ )H'Jo §
A A
e N1+ v
$(Eluniz+o)+ 4+ Eul < RN

from which
A+ 6,

14 4, .4‘_*.50
AL St € S R

The sequence §ﬂ satisfies the conditions of Liarkov’s theorem
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/ see {2] , D.287 / therefore

X s
N = 00 N w-o

Thus we have
N=-1 N-! n-1

Plam A 2 (12 ~Eul) = Plim (43 ul -2 EUR) = 0 (5]

N->00 Nnzo N =00

By (11) end (15)

N=-! nN-

2 ik 2_ 2

P({m 8 Zuv\ = R(m, —“2,_4 e =6
n=0 n=(

N—>eco N—)oo

2
Since the variables M,-$ are independent, by the equivalence
theorem / see [3) , p.263 / we have

g ME g 2.
e\m "’—Z_J uV\ - S AeSe (16)
N—=>0Q n=o
For $z.42 3,... We can write
N1
N -t S S+ ]
-— = A4
ST e T i s (17)
N n=o k=0 Tzo  CS+8+T (Tea)s +847
lNow consider
_N_\__ 2 ]2 i 2
l\l cco N ?’:o g (ff1)$+?+2- NZ N
where

~
oy
(

M- = [N-Pﬂ]
g S

‘'Here we have used the independence of the variables U, -s.

d U
Ts+f42  (4a)se e

Usidg Tchebychef 's inequality we get

Plim — Z_,“l

N_)ooN ¢:o

Ve can see the variables ﬂ&-s are independent, using the
equivalence theorem again we get

bl

_'1(\,1_ 'qt =) a.s.

oy
Y

Cim
N—>e0 o



- 86 -

From which and (17) we have

N~
N=soo i

From (17) and (18) we have

N1 4 Nt oo oo
‘F Zr K =‘()‘.WT\T Z_.:beunfse T
N0 N LEr N oo nz¢ L= Azo
- oo
= b, b, i e ..5 b -E 2
LL; rzé ‘:’»:m RN Goy #est noy 2‘ b r "t"dmsﬂn”%
Thus the proof is complete. R
Remark: If we know U, ,s:p4,2,.... P then a4,a,,.--, ap are
determined by Yuie-Vialker-type equations
.?° By q?-« a4 ¥4
y AR, R \f’p-z a, e 1 ‘-‘fz'
({79_4 “?9-2 Yo ﬂp (fp
Therefore the u _-s are determined by
Un = 2, + aaXng £ + qpxh-p (19)
In practice we estimate , by
A
e —E-Exnﬁ x
and then By 0p y eytp 8BTE estimated by
Ré =-r (20)

where

o>
I

(a" /aZI'“ / ar)

i (00 %2y o0 p)



o Ay P-4
P\ 2 ‘A ro rp_z,
fP_ 4 rp_ LI ro

Therefore the estimate u“ of U, is obtained by

A A ~
u'\' - 'xn-r-Q47Cn_i +\-- +QP tn’P
and we have

A
‘F(W\— uV\ = un a154
IN ScA

§.5. ON THE LIMITING DISTRIBUTION OF THE ESTIMATES

It iswell known,that if x, is a stationary autoregressive process
then ¢%V%df¢>has a limiting normal distribution. However this is
not always true for a long-run stationary process. For the sake of
simplicity here we illustrate this by the following example:

Example 2: Let %, satisfy

Xy +AXA_4 = Up o5 MR o, 4,2,

where the 4Y,-s are independent with Eu,-0 and

62 n even
g o n odd

Then by (20) a is estimated by
-4 N-1

" (%%x) (_ﬁhx By

Suppose a =0 , then 4 =0 , i.e. the distribution of a- is
degenerated.

Thus, although the estimation problem is the same for both
processes, but we must be careful when we want to test hypotheses
for a long-run stationary process.
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§.6, SOME NUMERICAL EXALIPLES

Example 3: Let X, be a long-run stationary process defined by

i = U Q=05 naioj 4%, w499 (71)
(A4 Wn : n =10k +L€,L=042/3
TR W, n =40 k+€,€=4,5,6,%
~ = 9 3W, U Vs ors (22)
n = 10k+ 2289
L 0 o; Vo 2058

k=04,2,.-,49

where the Wu-s are independently,normally distributed random
variables with mean O and variance 1, the V,-s are independen:
uniformly distributed r.v.s on [O,l] and indépendent of Wn . Thu

fim -L-E Euz = 5.0

Na N nzo
Prom randomly generated un;s we can compute the X,-s / see
Table 1 , here only the first 60 observations are printed /

J

Table 1l: Long-run stationary process defined by (21) and (22)

n o =55 - LA n L 2 Cn

0 2.9643 15 - <1,2439 ' 30 4,9835 45 1.1672
3, =1.6%58 " 36 Q4343 34 0.3325 46 -0.5887
2. 21,2496 1T T.9400 '32 . 0237 47 =0.,9002
3 =6.,9688 18 =0.9705 33 - -0.0831 48 0.4501
4 36511 -« 19 0.4852- 34 0.3186° 49 - -0.2251
5 =2.1529 . 2@ - <=1,9999 35 0.1936 50 -0,5336
& 510097 5 1.6766 . 36 -=1.2565 5L 2,0615
T 2.0500 27 - =1.6783% -9 1.1738 52 -1.8660
8 -1,0250 23 -2.,9980 38 =-0.5869 53 -10,3786
9 J.0880" . 24 i.4378 39 2:3421 .54 3.6968

=
o

-4.,2701 .25 -1.4391 40 -0.5952 .55 -3.5001
-0, 1656 . -26 I 7844 AL 0,018 56 2.3429
12 3.4760 27 =1.6509 42 =4.9674 57 < -1.T7414
o A s @38254 - 43 70509 58 - 2.F707
14  3.8189 29 -1.7480 44 -3.6282 59 -4.9872

o
—
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By (20) we get the estimate a = 0.4680 .
Hence the estimates a

the first

U,-s are also obtained / In table 2

30 values are printed /

only

Table 2: Long-run white noise defined by (22) and its estimate

estimated estimated
long-run long-run long-run long-run

n. . white noise white noise n white noise white noise
g 2.9643 2.9643 »5 0.6655 0.5432
1 -0.,1637 -0.2587 16 -0.2077 -0.1679
2 -2.0725 -2.0198 13 2+1481 21348
3 -7.5936 -7.5536 18 0.0 -0.0622
4 0.1667 0.3900 £9 0.0 0.0311
5 -0.3274 -0.4444 20 -1.0573 -1.0729
6 -0.0668 0.0022 21 1.0267 1.0683
i 2.5548 2.5224 22 -0.8399 ~-0.8937
8 0.0 -0.0657 23 -3.8372 -3.7834
9 0.5307 05886 L T20.  Z0.0612 0.0348
10 ~-3.7485 -3.7819 25 -0.7202 -0.7662
11 -2.3006 -2.1638 26 1.0648 11169
€ 5 3538953 3.3986 2 -0,7587 -0.8159
13 -4.0101 -4.1215 28 0.0 " 0.0529
14 0.9449 L. 129l 23 -1.3358 -1.3623

FProm table 1 and table 2

we can see that the condition ug =0

/ in

practice it means that &g =0, i.e. there is no interface at

s
X, , because Xg =-1,025 . Ilowever after the predictive

can not be recognized on the reflection response

deconvolution we get'ag =-0.065% 'which is approximately O.

Example 4:

where

Let

Xn + Xy + Q22X TU,

Xn

be a long-run stationary process defined by

G412 =0.7 - 8y 50,49

and

W= 0,4,2'.‘-,499

(23)
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49, n=6k+?,0=01
M, = > 24 n= 6&+% ,€=2;3 & =op,..-,83 (24)
) n= 6%+l, £=4,5

The V,. -s are independently , uniformly distributed random
variables on [}0.5,0.5]. Thus
b foig z :
K =B Eaa-= 0-4F
[ e M

A
By (20) we get the estimates a,=-0.6268, q,= 0.4475. In table 3
the first 30 wvalues of u, and its estimate are printed.

Table 3: Long-run white noise defined by (24\ and its estimate

estimated estimated

long-run long-run long-run long-run

n white noise white noise n white noise white noise

W 0 I vVl B W o

H R e
&~ W HEO

-1.0830
1.0675
0.1832
0.0092
0.0
0.0
1.3899

-0.5841

-0.1011

-0.0429
0.0
0.0

-1.3358

-1.0959
§.1625

-1,0830
0:,9882
0.2518
0.0642

-0.0023

-0.0289
L3707

-0.4816

-0.1218

-0.0902

-0.0218
0.0097

-1.3183

-1,1862
0.0672

15
16
17
18
19
20
21
22
23
24
25
26
o7
28
29

-0.2498
0.0
0.0
0.0507
1.7568
0.1240

~0.0776
0.0
00

%))

-1.7805
0.0198

~0.1032
0.0
0.0

-0.2138
0.0467
0.0257
0.0458
1.7445
0.2443

-0.0529

-0.0526

-0.0456

-0,1293

-1.7715

-0.0960

-0.1116
0.0425
0.0382
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06 o6paTHOM OGUJILTPE ACHMITOTHUYECKH CTALMOHAPHHX BPEMEHHHX pPAINOB

®aH JJaHr Kay

Peswme

CraTucTHYEeckas MoOeJyib Po6HH30Ha OmHJla 30PeKTHBHO HCIIOJIb 30—
BaHa B 06JlaCTH CEeMCMHYECKOI'O HCCJIeJOBaHHUA pPecypcoB HedTH U ra-

3a. Ilo HameMmy MHeHﬁIO 3Ta MOJOeJiIb B HEKOTOPOM CMHCJI€ He sfCHa.

B sTON paboTe obobumas YyCJIOBHS OPUTHHANILHONW MOIEJIM IJaeTcCs
HOBHIH IOIOXOI K Inpo6JsiemMme. MH nokKas3mHBaeM, YTO XOIO YHCJIEHHOI'O cue-
Ta, KOTOpHH TpebyeTcsa 6oJiee oOb6mHM YCJIOBHAM COBNalaeT C OpHUI'H-
HalbHEMH dopmyJsiaMH PoOHMH3OHa. B KOHIe pabOTH pe3yJsbTaTH HJIJIOCT-

PHPYHOTCA YHCJIEHHEMH 3KCII€PHMEeHTaMH.

ASZIMPTOTIKUS STATICONARIUS IDGSOROK PREDIKTIV DEKONVOLUCIOJAROL

Phan Dang Cau

Osszefoglald

Robinson statisztikai modelljét hatasosan haszﬁéljék a gaz és
olaj-kutatasokban. Azonban, véleménylink szerint ez a modell
néhany szempontbdél nem vilagos. A jelen dolgozatban a

Robinson modell egy uj értelmezését adjuk. Bebizonyitjuk,

hogy az uj feltételek mellett a megfigyeléseken alapuldé szami-
tési folyamat ugyanugy toérténik, mint a Robinson modell esetén.

Illusztracidként adunk néhany numerikus példat.
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