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1. INTRODUCTION

If we have two compact sets A,B ¢ R! such that

ANB={0} (the zero) and A is to the left of O and B
is to the right of O, then the algebraic (Minkowski) sum
A+B contains A U B, hence

(1.1) fqw(BB) 3 M, (R)+4, (B),

where‘k1 and <41, are Lebesque-measure and inner L-measure
in R, respectively (A+B is in general not L-measureable).
This implies that (1.1) holds for any L-measureable sets
A,B & R1, because the measures are translation invariant

and A,B can be approximated from inside by compact sets.

The inequality (1.1) is the 1-dimensional Brunn-Minkowski
-Lusternik (B-M-L)-inequality. We see that the proof of
(1.1) is quite simple. We know also that equality occurs in
(1.1) if and only if A and B are homothetic intervals.

While the "if" part of this statement is trivial, the "only
if" part has been rigorously proved first in early fifties

by Henstock and Macbeath [11. They solved the problem via

the following integral inequality: Given &>0 and L-integ-

rable functions f£f,qg: R1—, Rl such that O<7ﬁ= sup f(x) « +eo,
¥
0<d:= sup g(x) < +o0, we have
X

= 1/3 -
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(4.2 S* n(e)at z (f+8) (f“f Fooax + 7 Kxan,
R1 R1 R1

where S* is the inner L-integral, h(t) := sup{h(x,y):x+y=t},t€R1,
and h(x,y) equais to f(x)+g(y) when f(x)g(y) > O and
zero otherwise [117.
Henstock and Macbeath used for the proof of (1.2) the
following nice idea which goes back to the Bonnesen's proof
of (1.1), CL21 (see also [31).

Denote

(1.3) A(g) := {xer': £ (%) >(qu}' Big) i=§ x€R1:¢% (x) ad‘?},
Os§s1,

(1.4) clg) = {ter':n™ () > (r+8)°‘5}, og & 1.

Then

(1.5) C(§) 2 A + B(f), os fsl,

hence, using (1.1) we get

(1.6)  AJC()) 3 & A +@BP), Ogg§el

and integrating (1.6) over O € f £1, we get (1.2).

In the last step we used the obvious identity

+00

£1.7) S1 S (x)dx = IC(‘({xz\f(x)?f} )dj.
o

R




e A

It can be seen easily that the inequality
X # O,
more "integral-theoretic" form taking "ess-sup" instead of
"sup" in the definitions of h(t), » and d . Namely, using
the steps (1.3) = (1.7)

(1.2) holds ‘for

any 00 & x&teo, as well as (1.2) can be given a

we can easily prove

1_;& _(1 g (x)dx,

(1.8) S; k(t)dt 2
R

'§1 f(x)dx +
R R

N>

where 0 £ r}= ess-supf (x) < +e9,

(0 J}zzess—sup g(x) < 4w,
X %

and

(1.9) k(t) := ess-sup min {7:}f(x/a),6_t

X

ter’.

Define for a,b.20, 08 A K] -and =00 & & < +egg K#ED
the "extended" means as follows
0 if &a-b =0
) s b T e
X
(Fa o+ (=301 T g aib > 0,
(1.11) e R TERA AR S el
& X %0
ate) |t e, b0 sl s Maa B = min i ahl,
-00 (= \
X => —od
6 if
(A) o
(1.13) Bia by e Ay R T e farb] =
+00 X% ~» +00

maxfa.b} if

g((t=x) /(1-3))},

a b=0

a-b>» 0.
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It is clear that for any a,b,c,d 2 O and -—00s x £ +o0
we have .
A A ;
(1.14) u'* (@,004'?) (c,a) > minfac,ba}.

Hence we get from (1.8) immediately

(1.15) S ' wat 2 Q) (528 2 ff(x)dx+ 1—C}A—_(g(><)d><),
R1 T R1 R1
where
(1.16) (t) := ess-sup Ma:)(f(x/A), g(%é%)), t€R1.
XGR‘I

(The function h(i)(t) is already measurable [L4L], while

h(t) is in general not.)

The "ess-sup" definition of h(i)(t) has an interesting
auxiliary effect: taking characteristic functions of
two sets Ya and.xB instead of f and g, the function hi:)(t)

does not depend on & and it is the characteristic function
of the set

(1.17)  AAm(1-2)B := { xeR" :4(AAN(x- (1-3)B)) > OJ.

The set (1.17) is empty if one of the sets has the measure
zero. This set has been later called in [5] the "essential
sum" of the sets AA and (1-A)B. This sum is already measure-
able (CL3]) and
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(1.18) AAm(1-A)B € AA+(1-A)B := { x€R':2A N (x- (1-A)B) # @}.

One can see easily that for compact sets A,B

(1.19) A Am(1-1)B 22A +(1-2)B ,

* *
where A , B are the setg of density points of the sets A,B.
*
We recall that XEA iff (see, e.g. [11)

éﬁ(A(}Ex-J,x+J])
lim
d->o+ -3

= 2.

After that using the inequality (1.1) and the facts
* *
(4(1(A) =R ), M(B) =#(B ), we see that

(1.20) M, (A28 (1-2)B) 2 A4, (B) + (1-2)k, (B)

holds for any measureable A,B c r',

The later inequality is a slight sharpening of the B-M-L
inequality (1.1) (see [6] for details).

The first multidimensional extension of (1.2) is due
to Dancs and Uhrin [7] (see the case k = n-1 of Theorem
3.1 below and remarks in Section 4). The main problem in
extending (1.2) (or (1.15)) to many dimensions is the
presence of f’and é\. Applying to the right hand side of
(1.2) the H8lder inequality, we get a weakening of (1.2)
where 9~ and ) are already not involved. After that taking

an induction on dimension, one can easily prove:
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(-4
If «>0 then, denoting @w:= ok e have

’ W @
(1.21) S h (t)dt » ((S £(x)dx)  + (f gxrdx) )79,
n

rR" R R

This inequality is due to Dinghas [(81.

As to a weakening of (1.15), one first prove that for
@ab,c,d >0 and °(+,5 20 (see, [91,C101 for details):

(1.22) (a5t (o, a) went?) (ae, ba) .
A 3
=tA

Now applying this inequality (with «2-1, A= 1) to the
right hand side of (1.15) and performing an induction on
the dimension n, we get for &2 - 1/n the inequality

(1.23) J ) (yae p D (‘(f(x)dx, gg(x)dx) ,
n n n

Ly
R 1+ne R R

(1.23) or a weaker form of it (when "sup" is used instead
of "ess-sup" in the definition of hg) (t)) has been proved
and studied by many authors ([53,C71,C11],C121). Taking in
(1.23) X=+o0and f:= xA’ g :=Xp Wwe get a following

strengthened form of B-M-L inequality ([51])

1/n)n

’

(1.24) 4 (AA=(1-2)B) 3 (Ag @)™+ (1-2) 4 (B)

where “n is the L-measure in R™ and the essential sum is

defined analogously to (1.17). In what follows we shall refer

tg the weaker form of (71.23) ( "sup " instead of "ess-sup" and
4 A\t

SRn instead of SRn ).Aas (1.23) .
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In this paper we prove some multidimensional extensions
of (1.15) that sharpen and extend the result in CTJ]. Similar
but weaker = results have been proved also in [10]. However,
our main aim is to prove an extension of the reduction
theorem in [6] proved for the Lebesque measure A
The measures involved will be generated by so called essen-
tially AK-concave functions. We note that many density
functions of mathematical statistics belong to this class
’(see Section 4 for details).

2. PRELIMINARY REMARKS

Before turning to multidimensional extensions of (1.15)
we shall write an elementary lower estimation for
V(AA®(1-2)B) , where ¥ is a measure defined on L-measureable
sets of < R". In general, one can expect only that

(2.1) Y QAR (1-2)B) 2 V(AA)+V((1-4)B).

(The inequalities of type m(A+B) 2 m(A)+m(B) in the more
general setting in locally compact Abelian groups are
studied in C1731).

We shall see that for well defined classes of measures
estimations much better than (2.1) can be proved.

In what follows, we shall frequently use the following
identity (an extension of (1.7) to higher dimensions):

+00
(2.2) S (x)dx = ‘g ({xer": ds,
Rny X s fn{x ym)zg}) f

where ¢ is any non-negative L-integrable function (here and
everywhere below S-dx means L-integral).
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IE f:Rn-+'Rl is an L-integrable function, then it generates

a measure

(2.3) V(a) :=S f(t)at, aeL.
A

The function £f=1 is the generator of the L-measure (4h

(the integrable here means that f f(x)dx is also meaningful
n
R

but it can have the value +09). Let A€ 8% be an essentially
bounded set (i.e. essxrsugﬂg(x)<+4°) such that

(2.4) O ¢ mg(A) := ess-sup X (x)E(x) < +e0,

xGRn

Then denoting

(2.5) Ag(g) := {xer:f(x) > me(A)§ ),
we have
1
(2.6) V(a) = mg(A) so (“n(Af(f»df'
Now, assume that for some O € A €1 and -o00& & & +0 the

* function f is such that

(2.7) £(t) 2 ess —sup M(:) (£(x/A) , £(t-x) / (1-2))

xeRn

for -a.e. teRn.
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Denote the function on the right side of (2.7) by
p'A) (t), terR" (this is defined for all te€R").
Let A,BE R% be two essentially bounded sets and let

ter™ be such that

(2.8) M (ABL(F) A (£-(1-A)B.(5))) > O.

For an x€R™ belonging to the intersection in (2.8) we
y

have

f(x/a)’ £((t-x)(1-4)) }‘; ¥ 5

(2.9) min{

i.e. (2.9) holds for all x from a subset of positive
/%—measure.

This implies, denoting

(2.10) p(t) := ess-sup min{ f(x/4) 2 f((t_x)/(1_3))}
: X€ER" mf(A) mf(B)

that

(2:11) (AAE!(1-3)B)P(f) 2 ﬁAf(j)!U-A)Bf(f),

hence using the trivial inequality (1.14) we see that

(2.12)  Y2as(1-1)B) > M2 (m (a) ,m (®)) -

1
: So (o PR (B (1-2)B(£)) a5
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If (2.7) is satisfied for all 0&£ A € 1, then we call the
function f essentially «-concave.

Using (1.24) and the inequality

ot+(3 o+3

Geisn, a (a,b)'M(ﬂA) (E,a) 5 mat 3T acili-2) T hay:

which holds for a,b,c,d 20 and a+Bgo0, «f < o0
(see [101), we get immediately from (2.12)

(2.14)  v@AAR(1-2)B) » min{ ™0/ Aa), (1-2) "0 A)m) g,

where oS &-1.

This inequality has been proved for -ocog&¢-1/n in [T]
(see Section 4 for details). We see that already the trivial

reduction inequality (2.12) is sharper than a known result.

3, AN INTEGRAL INEQUALITY AND REDUCTION THEOREM

Here we use the definitions and notations of the previous

sections. First, some new notations.

Let S cR" be a k-dimensional linear subspace, O < k £ n,

and T ¢ R® be an (n-k)-dimensional linear subspace such

that SeT-= R" (the direct sum). The L-measures in S and
T will be denoted by /lk and (R respectively.

We shall denote the L-integrals both in S and T by S dx
(the meaning will be clear from the context). By definition

lo® =1, M@ =o.
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Given an L-integrable non-negative function £:R"— R1

+l
we shall denote
(Brse) 10E ) :=S f (x+u)dx, u€r,
S
(3.2) mk(f) := ess-sup i(f,u),
u€eT
in particular
(B+.3) mo(f) := ess=-sup f(x), mn(f) 2= 5 f(x)dx,
XER n
R
and
(3.4) . Hf(S) :={ x€R": £(x) » mo(f)f} ; OS§E.

Given two L-integrable functions f,g:Rn-» RJ_, denote for
-00<xL+©0 and O0< A4 £1

(3.5) h®) (t) := ess-sup A (£(x/2) g ((t-x) /7 (1-2)), ter?,
PR g |
XER

TEFOREIER =

(3.6) k(a) () := ess-sup M(A) y TET,
X

ueT % im E) . mdg)

(in particular if k = n then k(:) @) = 1).

Now, we have

Theorem 3.1. The following two inequalities hold
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(3.7) g ess-sup min{'i(?é?) ,9((t_§)<é;_A)) } dt.. =
n n o o
R XER

1
> _go &(?\Hf(s‘)mﬁ-&)Hg(j))df ;

Ll s e o T o<+ﬁ > 0, (ef/&+p)) 2-1/k, then

(2) (3) j (2)
(3.8) Sn h g (aez u7) m (0 m @) kD mar,
R

where wi= O&)+OpH)T. o

Proof. The proof of (3.7) is quite simple.
Denoting by qjt) the integrand in the left hand side of
(3.7), we can easily see (analogously to (2.11)) that

(3.9) H (f) 22H-(g)e(1-2)H_(F) ,
.5 2A%y a'§
Which gives (3.7).

The case k = n = 1 of the inequality (3.8) is a simple
consequence of (3.7): apply first (1.20) to the integrand
in the right hand side of (3.7), integrate over O g f s1,
take into account (1.7) and finally use (1.14) to get (1.15)
(in fact, we have proved (1.15) along these lines also in
Section 1). Now, applying (1.22), % 2-1, A= 1, we get
from (1.15) the case k =n =1 of (3.8).
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Assume for the moment that (3.8) is already proved for

k =n-1 (n > 1). Then the case k = n can be derived in
the following way.

Let &« and /3 be such that

(3.10) %+ 20, xf/(x+p) > 3__11- .

Then, we know that

(3.11) S A e de 5o B ey ('g));fkf;” (mar,
n —
R JE

where W= (1,{,(+1//3+n-1)-'1 .

T is now 1-dimensional, hence applying (3.7) for n = 1
and after that using (1.20) and (1.7) we get

(351.2) f h (E).dt > M (m (£f) ,m (9))A—x+t(1-A)———
Rn X - _/5 n-1 n-1 %_1 (£) Hh_

The conditions (3.10) are equivalent to the conditions

1 -
(3:13) &2-1/(n-1), (3;-———— .
1+ (n-1)&

Let o(,ﬁ be such that 0(+ﬂ =20 and of/&+p) > - %, or
equivalently

1 -
(3.14 %2~ 5 A2 Time -
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It is clear that for such « and ﬁ the conditions (3.13)
are also fulfilled, and we can write (3.12) for

& : 1
o p E =6 For this /3 we have -/3>,-1 (because oc2- H)'

t
hence using (1 .22)%he right hand side of (3.12) we get

= ! .
¢ p Rt hin (hdtz M @ (£),m ()5 ¥ @ (© (@)
n e 3

A

for any o« and B fulfilling (3.14). This proves (3.8) for

the pair (n,k = n) (assuming that it holds for (n, k = n-1).
Now, take the pairs (n,k), 1 € k £ n, into lexicographic
order, i.e. (n1,k1)<(n2,k2) iff either n, < n, or

{ n, =n, and k1<k2}.

We get a sequence

(3.16) (171) £ (2,1) £ (2,2) € (3,1) £ (3,2) <€ (3,34 ...

We proceed with the proof of (3.8) by induction on this
sequence, For n =k =1 (3.8) 1is true. Assume we have
proved (3.8) for all first N-1 members of (3.16).

Let (n,k) be the N-th member of the sequence. If k = n
we are ready by the above reasoning because the case

(n,k = n-1) 1is assumed to be proved by the induction. So
assume 1 £k €£n-1, n> 1 and

1 -«
(3.17) tF-gr P Fima

(these conditions are equivalent to /S+o( S 04 o(ﬁ/ (°(+16) > - ]](-) 2
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We can write using (1.22)

(3.18) M((:)U/mk(f), 1/mk(g))-5n h' 2 (vrat >
R

(A) 1 X, U 1 T-u , 2-X
P ‘( ess~sup Sess-sup M CamfG+3), giz—= + =—=.] dzyde s
T €T (5xes i et B o TR

d+ﬁ

Applying (3.8) case (k,k) to the inner integral gs...dz,

where now o(/S/ (x+f) plays the role of « , we get that the
right hand side of (3.18) is not less then

@y, LED  ilg, 53

{(3:19) ‘g ess-sup M )} dre

T weT w mk(f)' m, (g)

By this (3.8) and the whole theorem is proved. =

1

o be L-integrable function and A,B ¢ R" be

Let f:RP—>R

two essentially bounded L-measurable sets.

Denote

(3.20) m () := m( /T]g.f), my (B) := m ( Xéf)

and for Og § <1

Alg) == {uer: 1i(k:f,u) 3 mk(A)f}

(B 233)
B(f) := { uer: i(Zgf,u) 2 my (B)§3.
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Now we have

1

Theorem 3.2. If = SN & +og, O A% 1 0O<£k<n
and A,B and f are such that
(3.22) o <mk(A)', mk(B) < +eo0
and
(3:23) f(t) = ess-sup M(i) (£(x/A) ,f(:'__;;{)) for a.e. teRn,
n
XER

then for the measure ¥ generated by the f we have

(3.24)  v(Aa®(1-2)B) > M'a) (m (A) ,my (B)),

"
So(“n-k (AR (5)®(1-21B(£))d § ,

where

A= 1:<ko( S

Proof. After some technical observations, (3.24) will follow
from the previous theorem.

Denote the right hand side of (3.23) by r(i) (t) and

(A) : (A) X, X =Xy o =30
(3%25) B o (t) := ess IslupMa< (XA(x)f(j),/tB(ﬁ)-f(m))-

XER

First we prove that
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(3.26) g r‘;:)(t)dt:[ s(,’(”(t)dt.
AAB(1-1)B R?

It is clear that

[3.27) /‘{2 (t) = ess-sup M( A(;), /IB(%:—QX))

Am(1-3)B <€R™

where M 1is defined by (1.13).

Now, using the trivial inequalities

(3.28) ess-sup (x)-ess-sup Y¥(x) > ess-sup(¥(x)-g(x)),
~sup f (x). ess=sup P(x) 3 ess=sup(f(x) .

Al \
$3:29) M(a,b)Mx}c,d);> M, (ac,bd),

we see that the left hand side of (3.26) is not less than
the right hand side.
On the other hand, if for given t and x

3.300  MP & e, pEDH.eED) o,

then clearly /R(%) = XB(%) =1 (M(i) is the "extended"

mean), i.e.
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(3.31) xX€AA N (t-(1-A)B).

The definition of ess-sup shows that if 8(3() (t) > O then
there is a set E such that (Qn(E) > 0 -and for all XEE
(3.30) holds, i.e. t€AA®m(1-2)B. This shows that the right
hand side of (3.26) is not less than the left hand side.
Apply now Theorem 3.1 to fupctions )&f and }gf.

Similarly to (2.11), we can easily check that

(3.32) C(S) 2 2A(f)m(1-A)B(§), O< § < 1,
where
e .
(3.33) ciyy = {wer: kG Wing ).
Hence
(3.34) { &% ('t)d'ras1(¢4 ( A(9)®(1-2)B(5))d5.
I w & n-k g

By this (3.24) is proved (we apply (3.8) in the sharpest

i By

4, CONCLUDING REMARKS

1. The case k = n-1 of (3.8) has been principally proved
in [7] (more exactly, the "sup" was used instead of "ess-sup").
The "ess-sup"-case of these inequalities needs some additional
care.

For any O £ k € n, a weaker form of (3.8) has been first
formulated and proved in [101.
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For the domain ~00L & £~ % a following inequality has
been also proved in [T73:
\ (a)
(4.1) sup My’ (£(x),q(y))dt =
Rn,%x+(1—2)y=t

“ min{qn+(1/°6§ f(x)dx,(1—3)n+(1"")f g(x)dx }
R R"

(under the assumption the f and g are such that the func-

tion sup Mi?)

... is integrable).
Using the inegquality (2.13), we can see easily that in each

e
k=1 '

the inequality (3.8) gives results that are "from both sides"

of the domains - 1/k€ o < - k =0,1,2,¢0¢,n-1,

sharper than (4.1).

The inequility (1.23") has been successfully applied in
many branches of mathematics: stochastic programming
(the case &= 0, [141,015]); mathematical statistics

( X2~ %, [161); theory of probability ( e¢2- %, £123) ;

theory of diffusion equations (= 0; L51).

Some principally new results concerning the convolution of
unimodal functions has been proved using both A1.23) and
sty oL 9T ).

The conditions of equality in (1.23") has been investigated
in {111 ( «¢2- %)- and. in E153 . (= 0) .

In fact, using another method of the paper [1], one can
prove sufficient and necessary conditions of equality in
(1.23) for n = 1, &¢p-1 (see [173, P- 131). The proof of
such conditions for the sharper inequality (1.15) seems to
be a more difficult problem and this has been done only

for upper semi-continuous functions £ and q (see [171]).
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2. As to lower estimations for Vv (AA®(1-3) B)

(or for V,(AA+(1-3)B), where V¥, is the inner

y -measure) only the case k = n of (3.24) has been
Btmdied. (£S5, 071, 0E13,012256153) . For o &~ % the in-
equality (4.1) was used in [7] to prove a lower
estimation for V, (AA+(1-A)B). Using (2.13), our inequal-
ity (3.24) can be used to write in each of the dogains

- % S <= k_1-1_' k=0,1,...,n=-1, inequalities lv"vhich are
"from both sides" sharper than those in [(7]. The case
f = 1 (L-measure) and k = n-1 of (3.24) (more exactly

—

taking (%*(AA+(1—2)B) instead of <A'n(AAEJ(1—3)B) is

essentially due to Bonnesen (this is the classical sharp-
ening of the B-M-L inequality, see [61] for details).
The proper geometric content of inequalities is not quite
clear yet, it is so even in the case f =1 (L-measure) .
For L-measurecah the quantities m (A) are called in
the geometry "inner transversal measures" ("innere
Quermass", see e.g. [18]). An interesting theme of study
would be to compare (3.24) (at least the case f = 1)
with some other results in geometry that use transversal
measures (see [6] for more details).
The study of more general measures seems to be interesting
as well. Let us recall that the function f satisfying
(3:23) for all O& A6 1 we called essentially &~concave,
If in (3.23) we take "sup" instead of "ess-sup" and teRrR™
instead of a.e. teR" (let us @ll these functions &«-concave) ,
we get a more restricted class of functions.

tMany important density functions in statistics
are known Eo be &-concave. For example, the density
functions of normal distribution, Wishart distribution,
multidimensional @B-distribution, Dirichlet-distribution
are known to be 0-concave (log-concave, see [1L41,C151),
while those of the Pareto-distribution, Student-t-distribu-
tion, F-distribution are known to be «&-concave for some

& <0 (C117).
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3. The inequalities (3.7),(3.8) and (3.24) are
to be considered as tools for getting new lower
estimations for and y(AA®m(1-31)B).
Say, we can apply them successively for a series of
"nested" subspaces S. One can imagine, that we would
get a plenty of inequalities of a pretty complicated
from (a simple example of this procedure can be found
in [61). Further research will show, whether these
complicated (but very sharp) inequalities can be used

in solving some interesting problems.
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OfgHa penyKIIMOHHas TeopeMa IJiga Mep CyYMMH OBYX MHOXEeCTB B R

B. YXpUH

Pesome

IIycTs ‘“k ecTp Jleb6erosass Mmepa i Rk, 0<k<n, ¥ onpemenum
IOJIsT OBYX H3MEPHUMHX MHOXeCTB A, B €R HX eCTEeCTBEHHYK BHIIYKJIYIO
xkom6uHanumio kak (AA.& (1-1) @:=={zeRk:tak(AAn(z—(l-A)B))>0},
i\ £ 1% ‘OyeTs SC?Rn u TC:Rn TaKHue JIHHEeHHHEe IIOONpPOCTpaHCTBa pas3-—
mMepHocTd k u(n-k), uto S = T = R". ABTOp B INpelnOyumei CcTaThe
/Coll. Math. Soc. J. Bolyai, Vol 48, North-Holland, 1987, 551-
571/ mayl HYXHYI OLEHKY OJIsS (un(AA & (1-)2)B) HCNONL3ysA €CTeCTBEeH-
HHE CympeMyMH QyHKmm# f(u): = (ak(A(\(S+u)), ge(u)as A&(Bﬂ(s+u)%
ueT, u fan—k_Mep €CTEeCTBEHHHX BHIIYKJIHNX KOMOHHAIIUM BEepPHHX MHO-
XKEeCTB ypPOBHA 3THUX OQYHKIUHN. CTaThfA pPacClpOCTpaHseT 3TOT pe3yjbTaT
Ha 6oJiee obmue MepH V,s KOTOPHE MHOYUHUPOBaHH HEOTPHLATEJbHHMHU
OYHKUIUAMU /omnpelesIeHHEMH Ha Rn/ M3 XOpouo oIpenesyieHHEX Ccy6kJac-
COB OIOHOBEPMHHHHX /yHUMOIanbHEHX/ OYHKUUN /cyBkjaccly T.H. o-BOI-
HyTHX OyHKuuit/. JJIa IOKasaTeJbCTBa pes3yjbTaTa aBTOp CruepBa OO-
KasHBaeT N-MepHOe pacClWHpeHHe KJIaCCHYEeCKOI'o 1-MepHOI'o HHTerpalib-
HOT'O HepaBeHCTBa XeHCToka u Mauburta [Henstock, Macbeat, Proc.
London Math. Soc., Ser III., 3 ‘1953 ,6182-194/. PesynbTaT s
Vs @ Takxe NOKa3aHHOe HHTerpaJlbHOe HepaBeHCTBO YTOYHSKWT U 0606-

mapT BCe npenunyumue pe3ynbTaTH I[I0OXOXer'o Turna.
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EGY REDUKCIOS TETEL OSSZEG-HALMAZOK MERTEKEIRE AZ R -BEN

Uhrin B.

Osszefoglald

az Rk

k

Legyen -ban levd Lebesgue-mérték, O < k < n.

Mk
Két A,B € R
AABH(1-2)B := {26R":y, (AAN(z-(1-1)B)) > O}, O < A <1

L-mérhetd halmazra definialjuk

(a halmazok "lényeges konvex kombinacidéja"). Legyenek

sc R® &s Tc R™ k~ ill. (n-k)-dimenzids alterek,
amelyek direkt Osszegben kifeszitik a teret. A szerzd egy
elSbbi cikkében /Coll. Math. Soc. J. Bolyai, Vol 48,
North-Holland, 1987, 551-571/ a un(xAEK1—A)B) mértékre

egy alsdé becslést adott, amelyben a ¢ (u) := (A N(S+u)),

Mk
Y(u) := uk(B N (S+u)), ue€erT, fliggvények lényeges supremumai

ill. ezen fliggvények alsd szinthalmazaira vonatkozdé lényeges

konvex kombinacidinak I mértékei szerepelnek. Jelen
cikkben a szerzd ezt az eredményt olyan Vo mértékre terjeszti

ki, amelyeket az R'-en definialt unimodalis fliggvényosztaly
bizonyos j6l definialhatd alosztalyaiban levd filiggvények
generalnak (az u.n. a-konkav fliggvények).

Az eredmény bizonyitasahoz a szerzd eldszdr egy klasszikus
l1-dimenzids integral-egyenldtlenség (Henstock, Macbeath,
Proc. London Math. Soc., Ser III. 3 (1953), 182-194)
n-dimenzids kiterjesztését bizonyitja be. Mind a bizonyitott
n-dimenzids integrél—egyenl6t1enség, mind a v, -re vonatkozd
eredmény az eddigi hasonld eredményeket élesiti és altala-

nositja.
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