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1. INTRODUCTION
The relational database have been studied since Codd (L1.
Such database can only deal with well-defined and unambiguous

data. But in the real world there exist data which can not be
defined in certain and well-defined form bv any means. The
databases for above mentioned data have been investigated by
different authors. [8,15]1 have developed the models for data
with incomplete information and null-values. In [10,13,14]

the authors have used the concept of linguistic variables to
design intelligent database systems. The use of linguistic
variable for a database is complicatéd but it is every important
for describing objects that we do not have enough information
such as "he is young", "A is far from B" ... These objects may

be presented in a table as below:

STUDENT NAME AGE HEIGHT
A 20 about 1,70 m
B young 1,80
e about 25 high
The terms "young", "height", "about 25",... are called fuzzy

terms. The fuzzy terms are a great class of data. To extened
a database with fuzzy terms, the authors use in this paper

the possibility distribution function [16]1 and multivalued
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logic.

In section 2, the basic definitions of fuzzy set  theory
and linguistic variables are briefly mentioned. In section 3,
we introduce the conceptual framework for a fuzzy database. The
evaluation of a fuzzy query in a fuzzy database by relational
algebra is presented in section 4. The section 5 extends the

concept of data dependencies in relational database. In this

section a concept of ternary degenerate decomposition of an
extended relation is also introduced.

2. THE BASIC DEFINITION OF FUZZY SETS

In this section we shall briefly present the fuzzy notations
and concepts which are minimally required for this paper.

More details of discussions may be seen in [9,161.

Definttion &.1.

Let U = {u} be a universe of discourse. A fuzzy set u
of U is a set of ordered pairs {(u,(i&(u))}, u€lU, where [qg(u)
is the grade of membership of u in u, and /IE‘ i I S P [

is the membership function.

Definittion 2.2.
Let u and v be two fuzzy sets of U.

a. Equality:
u and v are equal, written as u i Ve J1%% /Qg(u) =/(Y(u) 7
¥ ueu.
b. Containment:
u is a subset of v, writte.n as ug g ¥y LE£f /(E(u) < (ay,(u)
¥ uevu.

c. Complementation:

The complement of a fuzzy set u of U, denoted by ig, is
defined by (a-ﬁu(u) = 1 —(I(B(u), Yueu.
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d., Union:

The union of u and y, denoted by u Uy, is defined by
(u) V uy, (1), ¥ueu.

~

(u) =

“u
Vv ~
-~

U
u &

e. Intersection:

The intersection of u and y, denoted by u N p A

defined by u (u) = uu(u)A.uV(u), u€ev.
2 X ¥z e

-

The symbols V and A denote the maximum and the minimum,
respectively.

Definttton 2.3.

Let u be a given fuzzy set of U. A A-level fuzzy set,
denoted by Y4y is defined by

i = {(u.ug(u)) |lueu (1)}

where J-level set u()) is defined by

wa) = fulp Nk s &, ‘wewl, & ABLO, 1L,

Definition 2.4

A linguistic variable is characterized bv a quintuple
(A, T(A),U,G,M) in which A is the name of the wvariable; T(A)
(or simply T) denotes the term set of A, that is, the set of
names of linguistic values of A; G is a svntactic rule for
generating the names in T; M is a semantic rule for associating,
with each t in T, its meaning M(t), which is a fuzzy set of U.
The meaning of a fuzzy term can be presented in the form
M(t) = {(u,ug(u)) |ueu}.
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It is easy to express a A-level meaning of a fuzzy term
te€T. Let t be a linguistic value of A of universe discourse U.
The )A-level meaning (or simply A-meaning) Ma(t), ten  is:a
fuzzy set in the form Mk(t) = {(u,ut(u)) ueMt(A)}, where Mt(A)
denoting A-level set of fuzzy term t, is defined by

M (2) = {uluﬁ(u) > A, u€u}.

3. AN EXTENDED DATABASE BY APPLICATION OF FUZZY SETS AND
LINGUISTIC VARIABLES

A relation over a set of attributes W ={ A1,...,An} is
denoted by R(W) (or simply R). Each attribute A€W is
associated with a basic domain U(A) which specifies all
possible real values for A. Each basic domain can be extended
by a corresponding set of linguistic values T(A). Then the
domain of the attribute A can be presented in the form
Dom(A) = U(A) VU T(A) (or simply D =U U T).

A relation R over a set of attributes W is said to be a full
relation of it contains no linguistic values, that is, for any
AEW, Dom(A) = U(A) (d..ee T(A)>= @), IE R idis not a full
relation, that is T(A) # @ for some A€W, then R is called
extended relation.

We use A,B,C,... (or with indexes) to denote single
attribute and X,Y,%,.. (or with indexes) to denote sets of
attributes of W. For a set of attributes X € W, a X-value is
a mapping r that assigns to each attribute A; of X an value
from its domain D(Ai) - U(Ai)U T(A;) (or simply By = UiU Ti).
The value assigned to the attribute by such a mapping is
denoted by rEAi]. An extended relation over X is a set of

X-values.
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Without loss of generality it is assumes that the set of
attributes W is finite. An extended relational database can

be defined as follows:

Definition 3.1.
An extended relational database DB is defined as a set of

extended relations Ri' 1=, oAl e

DB = {R ,...,Rn},

1
in which every relation Ri is defined as a subset of the

Cartesian product of a collection of domains, i.e.'

R, € {U(Ai1)UT(Ai )}><...><{U(Ai )UT(Ai ¥

1 k k

where U(A; ), J = 1,k are basic domains and T(A; ), 3 = T,k
J J
are the set of fuzzy terms (linguistic values) of linguistic
variables Ai.'
J
To evaluate the meaning of any fuzzy term teT(Ai), Aiex,
in this paper can be used the techniques developed by [161].
The meaning of all values u€U(Ai), A €X, 1is denoted by M(u)
and presented in the special form M(u) = {(u,1)}.

We introduce some (mathematical) concepts as follows.

Definition 3.2.
Let r,,r, be two tuples of an extended relation R(X)
over the set of attributes X < W.

a. r,[A] ;;:rZEA] ifE Ml(r1EA]) = MA(rZEA]) for A€x,

r.CAl, r,CAIED(A), AELO,11.

1 2

A - A :
b r1,r26R(X) r Yy, 1fE r, [A] o rZEA] for all

A€X.
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The relation L is called M-level equivalence (or briefly

~

A -equivalence) .

Remark.

If the relation R is full, then the concept of A-level
equivalence is identified with the equality of two real values,
i.e. r1[A] = rz[A], r1[A], rz[A]eU(A).

It is easy to show that the relation ais an equivalence
relation.

.

In the following z)‘d;is written by ® for sake of simplicity.
Let W be the set of all possible tuples which are defined
on W, i.e. it contains all X-values for all X € W. Every
A-level extended (written x-relation for short) is a A-equi-
valence class defined by ™. The class of relations equivalent

to R is denoted R and R is called a representation of R. Two

relationsR1,R2 over X are A-equivalent, dencted by Ry ® R,, iff
for ¥r1eR1, 3r2€R2 such that r, s~ r, and
for V‘r2€R2, ?r1€R1 such that r.s r,.
Given a set of tuples {r1,...,rn}, one can eliminate all

tuples that are )A-equivalent to other tuples, and enlarge the
others to their A-equivalent X-values. The x-relation represen-
ted by the set of X-values so obtained will be denoted
{r1,...,rn}f.

A tuple t is said to belong to or to be an element of R, written
t € R when for some R' in R, t€R'

The following proposition is straightforward.

Proposition 3.1.

t is a tuple of R iff there exists a tuple r of R such
that ‘T & t.

In other words, a tuple t belongs to an x-relation iff its
representation contains a tuple r which is A-equivalent to t.

An x-relation over X &€ W is represented by the set of
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X-values and will be denoted by the set {r1,...,rn}f, in which
all A-equivalent tuples have been identified. The set opera-

tions on the set of x-relations can be defined as follows.

Let §1, §2 be two x-relations over X. We have

Union: R, U R, = {r|rer; or r€Ry} ¢ -

Intersection: §1 N §2 {r|3r,er,, r ~ r, and 3r2€R2, r oy r2}f

Diference: R, \ 13‘2 {r|r€R1 and ﬁrzeR2 such that rzrz}f.

Given a set of all A-meaningsof a linguistic variable A
(domain of A is D = U V T), denoted by ﬁx. Let M)\(u) and
MA(V) be A-meaningsof wu,v€D, respectively. Some operations
in Qf)\ can be defined as follows:

Definition 3.3.

Union: f
My (u) U M,y (v) = {(uy,u uVig(uy)) |u; €M (VUM (D).
Intersection:
+
M, (W) A M, (v) = {(ui,uu(ui)/\uv(ui))iuieMu()\)nMv(A)}
Complementation:
Lg) = C(uy, 1-ug(uy) [u€0, T-u (ug) > A).

It is assumed that there exist in G} two elements MO and
M1 of two values u, and u1€D, where MO and M1 are defined by:

MO = M(uo) ?.

M1 = M(u,) {(ui,uu1 (u;)) qu1 (u;) =1 for V-uieu}.

MO is called A-empty meaning and M1 is called A-full meaning.
Clearly, for all M(u)eo'b'a (the set of all A-meanings of a _
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linguistic variable A)

M(u) MO iff uu(ui) < X t'for V’uieU and

M(u) MUt e (B)) §1 . for ’V'uieU.

The l-empty meaning and A-full meaning have following proper-
ties:
For all M(u)€ &5

X £
u) MO MO; M(u) U MO = M(u);

M(u); M(u)(.{; M1 = M1.

M(u) ﬁ M1

Proposition 3.2.

The set of all A—meanlngsJ of a linguistic variable A of
an x-relation R(X) with the operations d is @ distri-
bqglve lattice but not ‘a Boolean algebra with the operations

i and4ﬁ.

Proof.

It is easy to show, that all laws such as idempotency,
commutativity, associativity, absorption and distributivity

for the operations U and () are satisfied.

In order to show that &H is not Boolean algebra, we con-

sider a following example.

Let us assume that there exist two elements of A-empty
meaning MO and A-full meaning M1. We must show that the laws
of complementarity are not satisfied, i.e. M(u) JﬁM(u) # MO,

.{_

and M(u) U —f:M(u) # M1 for some M(u)GJA-
Liet: oA =, 085,

M(u) = {(u1r003)l(u210'6)I(u3lo-7)l(u4lO'8)I(u5I1')I(u6IO-5)I

(u7.0-4)}
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MO.S(u) = {(u21006) ’ (u31007) ’ (u4l008) ’ (u511-) ’ (u6'o.5)}

-ﬁMO'S(u)= (u;,0.7), (ug,0.5) , (u;,0.6)

£
M, g N -{:,MO.S(u) = {(u6,0.5)} # MO.

0
Mo.S(u) V=M (u)

ORD

{(uy,0.7), (u,,0.6),(u;,0.7), (uy,0.8),

(u5,1.),(u6,0.5),(u7,0.6)} # M1.

4. QUERY EVALUATION

If a query Q with fuzzy terms is formulated on an extended
database then there are three important bounds of interest:

(a) . The set of all objects which surely satisfy the
query Q, i.e. they satisfy Q with truth-value 1.

(b) . The set of all objects which very probably satisfy
the query Q, i.e. they satisfy Q with truth-value
equal or greater than X (0 < A < 1).

(c). The set of all objects which may possibly satisfy

the query Q, i.e. they satisfy Q with truth-value
less than , A.

In this paper we are interested only in the problems(a)
and(b) for a language based upon the relational algebra. The
A-value depends on database users. The problem(c) is very
complicated and its part is investigated together with null-
-value problem in [8,1L4,151].

To evaluate a query in an extended database, the operations
V and A must be used here for defining the upper element and
lower element of any two elements of lattice (Jx (d& is a

partially ordered set), respectively (see [T3]).
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Let MA(U)' M, (v) be two A-meanings in.d& in the form

M, (u) {(ui, uu(ui))luiGMu(A)}, ued and

Mk(v) {(vj, uv(vj))lvjeMv(A)} veD

or in other form (see definition 2.2)

.f.
M, (u) = U e e e and
A “iemﬂl(“’ (fitedaihities
p .
M)\(V) = U {(leuv(vj))}-

VjeMVC)

The operations are defined as follows:

£

U ' {agvvys uguy) Aug(vy)) [viem ()} and

(v)
wemy - - 7

Ml(u)VMA

& {(ui/\vj, uu(ui)Auv(vj))lijMV(k)},

uiEMu(k)

Mx(u)AMX(V)
for all u,veD.

The predicate calculus based on languages contains two
simple relational expressions such as r1[A]@ r,CB] and
rCAlOc, where ris,X, and r are tuple variables, A and B are
attributes, ¢ is a fuzzyv constant from domain D(A), O is one of
the comparision operations =, #, >, 2y, <3 <. The evalua-
tion value of an expression is in the interval [O,11.

W.l.0.g. the above expressions can be presented in the form

of a simple fuzzy predicate, denoted by p:
p=:u0v or p := u @ ¢, where u,v,c€D.

Let f be an evaluation function with respect to p. The truth-
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-value of function f with respect to p is a number T of the
set {o}urx,131. The Boolean operators AND, OR, NOT may be

defined as, T AND.t' =St N ', OR T =T V. 1r'% and
] o STNE < S ool
NOTT = {
O otherwise

where 7", 7 are numbers of the set {0} ucC),13.

Now we consider the comparison operations

oce{=, #, >, >, <, <}. These are defined as follows.

1l if M)\(u) — MA(V)' u,veD
£l =v) =<1, if el i S

O, otherwise

where 1 is defined by

A
1 % ) (uu(ui)—uv(ui))2>
w€M (AUM ()
1 u v
‘ g EE M GaIAM() = iMaGr) and M, (u) # M, (v)
i = { A A A A A

0O, otherwise.

f(u< v) 1is defined analogously.

o, if MA(u) = MA(V)'
flu A v) = T = d=T 1E =g = 3}
1 , otherwise.

The remaining operations can be defined by

f(u < v) Elal = w) Vofild < a9

B (1 v) ¥ £iass w)a

Il
il

Qi)
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Based upon evaluation of a simple fuzzy predicate we can

evaluate a fuzzy predicate expression as follows:

Let p and q be two simple fuzzy predicates. Then we have

f(p AND q) £(p) & Elg)i

f(p) V £(q).

f(p AND q)-

Given two tuples of W r1[x] and r,[X] W' with X € W. The
truth-value of an expression r1EX]@r2EX] is defined by the

following equality

tx1) = A (f(r

EAi]Or
AiGX

[Ai])).

f(r1EX]Or 5

2 1

where oe{=, #, >, 2 Sy _<_}-

From the above concepts of an expression evaluation we can

define the following relational operations.

Definition 4.1.
Let R(Y) be an x-relation. Let X be a subset of Y ¢ W. *
The projection of R(Y) on X, denoted by RI[X], is a set of

tuples r for which

= A
- there exists r' in R(Y) such that r[X] z xr'CX3],
- there exists no r'' in R(Y) such that r''CX] # r'CX31,

s el % 2\1 riX3]

R(X1 = {rfX1 = (rtA,3,...,rtA 1) [ reR and A,ex, i=T,k}.
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Definition 4.2.

Let R be an x-relation over X. A,B are two attributes of
X and ¢ is a fuzzy constant of D(A). The selection A O B
and A O ¢ can be defined by

RCAGB] = {r|f(rCAJOrCLBl1) > T, r€R, T > A}&,
RCAOcI = {r|f(rCAl0c) > T, rER;. T A}%,
respectively, where 0 is one of {=, #, >, >, <, <}.

Definttion 4.3.

Let R and § be two x-relations over xy'’

and YZ,
respectively, where X,Y and Z are subsets of W. The natural
join of x-relation R and x-relation S on the common set of

attributes is defined by

RLXY1#SCYZ] = {r| (JteR) (Is€S) (YAEY) (rfAl = t[A]l or

AT = S EASNFCE(EEATS = s AN =E) sn S aned
(#$A€X) CrCAJ = tCAJ] and
WAEZ)CrCA] = sEAJJ}f X

5. THE DATA DEPENDENCIES IN AN EXTENDED RELATIONAL DATABASE

5.1. Lossless decomposition of an extended relation

The concept of loss-less decomposition of a relation is
very important in the process for designing a database, because
instead of storing the relation R in the database, we can store

only its projections.

& The ‘union X Wiy “is' denoted by XY.
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In this paper we only investigate the lossless decomposition
of an x-relation into a family of some of its projections. Let
an x-relation R be a representation of a A-equivalence class
under = in the universe X-relation R(W). r1EA] 2 rZEAJ means
that r1EA] 2 rZEAJ, 1.5 Mk(r1EA3) = MA(IZEA]) for

r1,r2€R and A€W. When no confusion occurs, in this section

we write the symbol R instead of R, being a A-level extended

relation.

' Definition 5.1.

Let X,Y be two subsets of W with XY = W. An x-relation
R(W) is said lossless decomposable (or simply: decomposable),
denoted by R(W) = RC[XJI%*RCY], if for all tuples pairs r1,r2€R

satisfying r1txf]Y3 A rZEX(\YJ, there is a tuple

A
=, 2 EXA sand  rEY¥Yl é T By

r€R such that r[X3] 1 2

From the above definition 5.1 the concept of decomposition
of an x-relation into n different projections can be generalized

as follows.

Definition 5.2.
n
Let X;,, 1 =1,n be subsets of W with U X, =W.
i=1
An x-relation R(W) is said n-ary decomposable if for any

;i such 'that x,EX. 0 X3 A AL X0) Xy
Sk J 7

n tuples rieR, 1 3

i i | G U S T there is a tuple r€R such that

Il
—
(o]

A .
rEXi] = riEXi], Al

Some important data dependencies can be defined as follows:
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Definition 5.3.

Let X €W, Y e W. A A-functional dependency (abbr. AFD)

X Y holds in an x-relation R(W) if for every two tuples
v A ; ; A
r,/r,€ER, r,[X1 = r,[X] implies r LYl £ r,Cyl.

3

Definition 5.4.

Let X €W, YSW and Z = W\XY.
A JA-multivalued dependency (abbr. AMVD) X+§ Y|Z holds in an
x-relation R(W) if for every pair of tuples

r1 = (r1EX], r1EY], r1[ZJ) and r, = (rZEX],rZEY],rZEZ]) belong
to R such that r1[X] é r2[x]’
Lyt = (r1EX],r1EY],r2[ZJ) and ks = (r1EX],r2EY],r1EZ]) belong

to R, too.

A different way to view an AMVD and a decomposition is
given below, which again is a generalization of a similar

result of R. Fagin.

Proposition 5.1.

AMVD X A Y holds in an x-relation R(W), where X < W,
Y «W, if and only if, whenever R 1is lossless decomposable
in two projections RCXY] and RIX(W\XY)I].

PI”OOf..

It is assumed that R is decomposable.

From definition 5.1 there are two tuples L. x €R such that

2
r1 = (r1EXJ,r1EY],r1EZ]) and r, = (r2 XJ,rZEY],r2EZJ), where
B =aWLXY, X3 A rZ[X]. Then there is tuple r,E€R such that
N S'r TXY] = (r,rx1, r,[¥]) and
A 2,
r3tXZJ = r‘EXZ] = (r1IZX], rZEZ]).
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This means, that ry = (r1[X],r1EY],r2[ZJ)eR.
: A

Similarly there is Xq = (r1EXJ,r2[Y],r1EZ])GR. Then X-»>Y
holds in R. The converse is also easily shown.

The reader can verify that the inference rules, as has been
done for FD and MVD (2] satisfy for AFD and AMVD, too.
The inference rules are presented in following:
X,Y,Z and V are subsets of W.

AFD inference rules

AEDI Y "iE N e& XF o khen, X ->; Ve

AED2 wif 2 <V -and X ->; Y then XV ->; YZ.
\FD3 : if X2 Y and Y2 2z then x 3 z.
XEDE & 4f X2 ¥ ana wv Az wwen wv dz.
AFDS : 1 %2y anda x 22 then x 3 va.
NED6 s dif X A YZ and X —>; Y then X ->; &l

AMVD inverence rules

AMVDO : X-*Z‘rY +EE x3+w\Y.

then X +>‘-> Y-

ANNVDL ¢ AE - Y eX
AMVD2 : 4if Z SV and X-5>Y then xv-yz.
AMVD3 @« d4f X ->>1> Y and Y -23* Z then X A ZNY 5
\MVDE : 4f X->Y and XV+5Z then xv-> Z\wv.
AMVES et ifE X ->>5> '8 and X A Z then X -25* Yl o
: >L, A ); A
AMVD6: o  dift KXoy and X+¥Z then X*5YN Z, X+>Y\7,

X A Z\Y.
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. AFD-)AMVD inference rules

At Ehen X i YaS

AFD-AMVD2 : if X2 and Y2 32',(3'e %, YNZ=9)

\FD-AMVD1 : if X 2

A
then" "X »"Z':

AFD-)AMVD3 : 1f X &Y and Xy +33 then X iz\y.

Let B be a family of all n-ary decompositions of the
x-relation R over W (denoted by (X1,...,Xn)). This family

has the following properties.

Theorem 5.1. [6]_

n
Let R an x-relation over W. X; €W, i =a1tn, Xi = W.
i=1
The family.@ of all n-ary decompositions of the x-relation R

satisfies the following conditions:
e i, 2 0 W) B,
2. If  (Xqse0erXy) e B then (xﬂ(”,...,xﬂ(n)) e R
where w: {1,...,n} » {1,...,n} 1is a permutation.

3 LE (X1""’Xn) e B and Xi € ¥ €W, i.= 9,n. then

7

(XqreeerXy_qo¥ X5 qreear X)) €B.

:
4. TE. (Biari 800 e 2 and X, € X, 1 # 3 then

COTRERTS ST 12 SRTETRVS SPPPIS eR.

AP M ek Ve Bndl o e ) eB with

17"

Y‘]nYi:xi' i=2,n and Yif\ ngxin Xj'

L@ g0 4,3 2,0 then - (X, '0 Ty ¥pikalink,) eB .

Prioof.
Like the proof in [6].
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5.2, Ternary degenerate decomposition of an x-relation

An interesting class of decompositions of an x-relation
which plays an important role in the design process of a data-
base, is the acyclic decomposition [3].

In [5] the author has investigated the general properties
of a full family of all ternary decompositions of a relation.
In this subsection we will only consider the class of ternary
acyclic decompositions of an x-relation. (The following results
are correct for a ternary acyclic decomposition of an
usual relation). Let (X,Y,Z) be a ternary decomposition of an
x-relation R(W). If X,Y,Z are no-emptyvy subsets of W with
XYZ =W, X # Y # 2 and Xy £, X Q% 4@  and
X NnZ=¢@ then this decomposition is said acyclic.

Proposgition §.2. [3,6]

Let R be an x-relation over W. X,Y,Z are no empty subsets
of Wwikth X¥2 =W and X NY #4d, YNZ+9, XN Z2=0.
(X,Y,Z2) is a ternary acyclic decomposition of x-relation R
iff the following data dependencies are satisfied in R:

X0 Y S x, (X 0O X)(Y r2) Ay anda (¥ nz) .

Proof.

It is easy to verify.

It follows directly from definition 5.2 and theorem 5.1
the following:

Proposition 6.3.

If (X,Y,Z) 1is a ternary .acyclic decomposition of an
x-relation R over W, then (XY,Z), (X,YZ), (XY,YZ) are . binary
decompositions of R and (X,Y), (Y,2) binary decompositions
of projections R[XY] and R[YZ], respectively.

To capture more the semantics of data,we use here the
concept of degenerate multivalued dependencies [12] for deter-

mining which join of relations can be updated by insertion or



=218 =

deletion of a tuple without other tuples entering or leaving

the join.

Definition 5.5. [12]

A A-multivalued degenerate dependency X . Y|2 holds in
«n x-relation R(W) with 2 = WAXY if for every pair of

A

tuples r,,r, € R, r1[X] 3 rz[X], either r1[Y] = rz[Y]

or ¢,z A gl

The definition 5.5 can be reformulated in the other form
of the corresponding binary decomposition as follows.

Definttion §.6.

Let R be an x-relation over W and (X,Y) be a binary de-
composition of R.
(X,Y) is binary degenerate decomposition of R if there exist
two x-relations R; and R, such that R = R1L/ R,, X {15% 3 x

holds in R, and X N Y 4 Y holds in R with R1[X 0 X6

1 2

RZ[X Nyl =4g.

In (1] the authors have studied the effect of type of
binary degenerate multivalued dependency for the update problem.
For our purpose, the most important of this result is that a
relation R can be deletion- or insertion- viable if and only if
a certain degenerate decomposition holds in R.

Attempts to generalize this result to decompositions of an
xX-relation (in meaning of A-equivalence) into more than two
components we introduce a new concept called ternary degenerate
decomposition.

Definition 6.7.

A ternary acyclic decomposition (X,Y,Z) cf an x-relation

R over W is degenerate if there exist two x-relations R1 and

R, such that: R = BU By X AY 3 ¥3 holds in R, and
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Y Nz 3 xv holds in R, with R [XNYINRIXAY] =9 or
R[Y nz] N Ry[YNZ]=9.

In the following it is assumed that (X,Y,Z) is a ternary
acyclic decomposition of R(W). This decomposition has some

properties as follows.

Proposition 6.4.

If (X,Y,Z2) is a ternary degenerate decomposition of R,
then (X,Y2), (XY,Z) and (XY,YZ) are binary degenerate de-
compositions of R; (X,Y) and (Y,Z) are binary degenerate de-

compositions of the corresponding projection R[XY] and R[YZ].

Proof.

It must be show that (X,YZ) is a binary degenerate decompo-
sition. Since (X,Y,Z) is degenerate, then there exist R1 and
R, such that R =Ry UR, and XNY vz in Rqs

YyNz3xy in R,. W.l.0.g. it is assumed that

RIX NY ]NRy[XNY] = @.

First we have to show that (X,YZ) is a binary degenerate de-

composition of R.

We have X N Y 3 vz that holds in R,. It remains only to show

1
that X .A ¥ 4% ‘helds in R »

Since (X,YZ) is a binary decomposition and R1[X Nnyln
R,[XN Y] =9, . the following data dependencies hold

in R2:

) 3

A NYYo== X, ¥ N2 XY.

Hence Y N Z A 9,45

After the applications of inference rule AFD- MVD2 we have

X0y 3 x.

In order to show that (X,YZ) is degenerate under the above
assumptions, we must construct R{ and R) as follows. Since
(XY,z) is a binary decomposition then it satisfies the following

conditions: for any pair of tuples r,,r, € R with
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r1[Y N 2] 3 rz[)’ﬂ Z], there exists a tuple r € R such that

[I>

r(xy] A r. [ X%Y]- ‘and riz] r2[Z].

1
Three cases can . happen.
- Case 1: if ry, I (= R1 then it is easy to see that

r € R1, 00,

Case 2: of rys I, e R2 then it is easy to see that

r e R2, tOO.
- Case 3: w.l.o.g. it is assumed that ry e R1 and
r, € R2.
If r € R, then r(Xxy] 4 r1[XY] and r(z] A rz[Z].
A

It follows that r[X N Y] r,[x N Y], which contradicts to
the fact that R1[X axian R2[X N Y] = @. It remains only
the case that r € R.,.

1
A r1[XY] and X NyY

>

Since r[XY] YZ holds' in R then

1!
> : X

r =r, in R1. Hence r1[Z] = r2[Z].

This shows that if there exists a tuple rq € R4 such that

r,ly nz] % r,[Y N 2] where r, € R,, then it must satisfy

A

r1[Z] =.r2[Z]. All such tuples of R, can be grouped to a set T.

Then two x-relations R% and Ré can be constructed as follows:

— | ——
Rl = Ryt T, Ry = Ry\I.
We have also Ri[Y o A 4 R)(Y N z] = ¢ and the data dependen-
cies YN z &'Z and Y E 2 XY holds respectively in R%

and Ré. Hence (XY,Z) is a degenerate decomposition of R.

All remaining decompositions are easy to verify to be de-

generate of R.

Proposition 5.5.

If (XY,Z2) and (X,YZ) are degenerate decompositions of
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R,then (X,Y) and (Y,Z) are degenerate decompositions of
R[XY] and R([YZ], respectively.

Proof. Trivial.

Propositions 5.6.

TE. (¥¥52) ;s ds-a degenerafe decomposition of R and (X,Y)
is a degenerate decomposition of R[XY],then (X,YZ) is a
degenerate decomposition of R and (Y,Z) is a degenerate decom-
position of R[YZ]. ‘

Proof.

Since (XY,Z) 1is a degenerate, then there exists two

x-relations R1 and R with @ R = R1(J R, such that . Y A 2 A XY

2
holds in R, and Y N2 32 2 holds in R, and

Rj[Y nNzlnN Rz[Yﬂ 21 =

We want to construct now two x-relations R% and Ré which

satisfy all conditions of (X,YZ) to be degenerate. Since

(X,YZ) is a binary decomposition, then for any pair of tuples

ry,r, € R with r1[X N Y]vA r2[X A Y], there exists r € R

such that riX] A rj[X] and r(yz] A r.[Yz].

2[
There are three cases:

Case 1.

If» r.],r2 e R1 then r € R1. Since, 1f r € R2 then
r(yYz] i rz[YZ]. Therefore r(Y N z] 23 r,[y N z]. 1t is
contrary to Ry[Y A Z] N R,[Y Nzl =g.

Case 2.

Similarly, it is shown that if r1, r, € Ry then r € R2.
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Case 3.

W.l.o.g. it is assumed that ry e R1 and r, e R2.

A

¥E \ &€ Ry then - xl¥ N'a] r,[Y N z]. It is contrary to

R1[Yf\ Z] N Rz[Yﬂ Z] = ¢-

There is also only the case that r, € R1 and r,r, € R2.
Because (X,Y) is degenerate decomposition in R|XY], the

tuples r,,r, satisfy r1[x N Yl A r2[X Y Y, +hén
A

r,lx] A r,[X] or r1[Y] r,[Y]. But from degenerate decompo-
sition (XY,YZ) we get r1[YJ # rz[Y]. It follows that

r1[X] A r2[XJ. This means, that s S o [ R, . The last case
show that if there exists a tuple r € R2 such that

[[>

X Y] et[X a.¥Y]l, x* e R,, it must satisfy r(x] - : Rl B 3 A
All such tuples of R, can be grouped to a set T. Then two

x-relations can be constructed as follows:

RL = Rt 7 and R!

5= R2\T.

We have also R = R,'I U Rj, Ri[x (8 8 B Ré[x Nyl =¢@.

From the construction of R{ and Ré as above, it is easily seen

that the data dependency X N Y 3 X holds in R% and the data

dependency X} Y 3 YZ holds in Ré. Therefore (X,YZ) is a
degenerate decomposition of R.
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O6o6umeHue pEeJISIUOHHHX 6a3 OaHHHX NPpUMeHsas TeopHwo "daszsu"

MHOXEeCTB W JIMHI'BUHCTHYECKHX INEepeMeHHHX

Jlue TueH ByoHr, Xo TxyaH

PeswomMme

B peasllbHOM MHpe CymeCTBYWT HOaHHHE, COOepXaHHEe KOTOPHX OYEeHb
HeTOuYHoe /Hanpumep, "oH monomou"/. JJyia pa3pabOTKH TaKUX JaHHHX
U 719 NTOCTPOEHUS TEOpeTHYECKHUX OCHOB TaKUX 6a3 HOaHHHX yXe NpH-
MeHsgeTcsa Teopusa "daszs3u" MHOXECTB. JpyroM NOoOxXon — BBECTH B 6a3y
IOAaHHHX [epeMeHHHEe HOBOTI'O THMa, T.H. JIMHTBUCTHUYECKHE Ie€pEeMeHHHE.

B crTraTthe paspaboTaHa Teopusa 6a3 OaHHHX, HCIOJIb3ysa oba MmeTona.

A "FUZZY" HALMAZ-ELMELET ILL. "LINGVISZTIKAI" VALTOZOK ALTAL

KIBOVITETT RELACIOS ADATBAZISOK

Lien Tien Vuong, Ho Thuan

Osszefoglald

A valdés vilagban olyan adatok is vannak, amelyek tartalma
eléggé pontatlan (pl. "fiatal"). Az ilyen adatok feldolgoza-
sadra "fuzzy" ("elmosddott") halmazelméleten alapuld ujfajta
adatbazis-elméletet dolgoztak ki. Egy masik mdédszer az u.n.
"lingvisztikai" ("nyelvészeti") valtozdk bevezetése. A cikkben
a két médszer alapjan egy Gjfajta relacibés adatbazis-elmélet

részletes ismertetése van.
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