SOME REMARKS ON THE ALGORITHM OF LUCCHESI AND OSBORN

HO THUAN

Computer and Automation Institute, Hungarian Academy of Sciences

Let $S = \langle \Omega, F \rangle$ be a relation scheme where $\Omega = \{A_1, A_2, \dots, A_n\}$ the universe of attributes, and $F = \{L_i \to R_i \mid L_i, R_i \subseteq \Omega, i = 1, 2, \dots, m\}$ - the set of functional dependencies.

In [2] C.L. Lucchesi and S.L. Osborn provided a very interesting algorithm to determine the set of all keys for any relation scheme $S = \langle \Omega, F \rangle$.

The algorithm has time complexity

$$O(|F| |K_S| |\Omega| (|K_S| + |\Omega|)),$$

following our notation, i.e. in time polynomial in $|\Omega|\,,|{\bf F}|$ and $|K_{\bf S}|\,,$ where

|F| - the cardinality of F, and K_S - the set of all keys for S.

We reproduce here this algorithm with some modifications in accordance to our notation.

Algorithm OL1. Set of all keys for $S = \langle u, F \rangle$

Comment K_S is the set of keys being accumulated in a sequence which can be scanned in the order in which the keys are entered;

```
K_{S} \leftarrow \{ \ker^{*} (\Omega, F, \Omega) \};
for each K in K_{S} do

for each FD (L_{i} \rightarrow R_{i}) in F do

T \leftarrow L_{i} \cup (K \backslash R_{i});
test \leftarrow true;

for each J in K_{S} do

if T includes J then test \leftarrow false;

if test then K_{S} \leftarrow K_{S} \cup \{ \ker(\Omega, F, T) \}
end
end;
return K_{S}.
```

The following simple remarks in some cases can be used to improve the performance of the algorithm of Lucchesi and Osborn.

Remark 1 To find the first key for $S = \langle \Omega, F \rangle$, instead of Ω , it is better to use the superkey $(\Omega \backslash R) \cup (L \cap R)$ and algorithm 1 in [1], and instead of the algorithm key (Ω, F, T) , it is better to use algorithm 2 [1] for finding one key for S included in a given superkey T.

Remark 2 In [1] we have proved that

$$R \setminus L \subseteq \Omega \setminus H$$
, $H = \bigcup_{K \in K_S} K$

i.e., R \ L consists only of non-prime attributes. Therefore if R \subseteq R \ L then

$$R_i \cap K = \emptyset, \forall K \in K_S.$$

and $L_i \cup (K \setminus R_i) \supseteq K$.

key (Ω, F, X) is the algorithm which determines a key for $S = \langle \Omega, F \rangle$ that is a subset of a specified superkey X.

That means, when computing $T = L_i \cup (K \setminus R_i)$, we can neglect all FDS $L_i \to R_i$ with $R_i \subseteq R \setminus L$, for every $K \in K_S$. Let us denote

$$\bar{F} = F \setminus \{L_j \rightarrow R_j | L_j \rightarrow R_j \in F \text{ and } R_j \subseteq R \setminus L\}$$

Remark 3 With a fixed K in K_S , it is clear that if $K \cap R_i = \emptyset$ then $L_i \cup (K \setminus R_i) \supseteq K$. In that case it is not necessary to continue to check whether T includes J for each J in K_S . So, it is better to compute T by the following orders

$$T = (K \setminus R_i) \cup L_i$$

Remark 4. The algorithm of Lucchesi and Osborn is particularly effective when the number of keys for $S = \langle \Omega, F \rangle$ is small. But basing on what information one can conclude that the number of keys for $S = \langle \Omega, F \rangle$ is small? There is no general answer for all the cases, and it is shown in [3] that the number of keys for a relation scheme $S = \langle \Omega, F \rangle$ can be factorial in |F| or exponential in $|\Omega|$, and that both of these upper bounds are attainable.

However, it is shown (in [1], Corollary 1) that

$$|K_{\mathbf{S}}| \leq c_{\mathbf{h}}^{\lceil \mathbf{h}/2 \rceil}$$

where h is the cardinality of $L \cap R$. Thus if $L \cap R$ has only a few elements then it is a good criterion for saying that S has a small number of keys. In the case $L \cap R = \emptyset$, $\Omega \setminus R$ is the unique key for $S = \langle \Omega, F \rangle$ as pointed out in [1, Corollary 4]. Example We take up the example in [2, Appendix 1]

 $\Omega = \{a,b,c,d,e,f,g,h\}$

 $F = \{a \rightarrow b, c \rightarrow d, e \rightarrow f, q \rightarrow h\}$

It is clear that for this relation scheme

 $L \cap R = \emptyset$,

and it has exactly one key, namely aceg. Taking into account the remarks 1, 2, 3 just mentioned, the above algorithm can be modified as follows.

Algorithm OL2. Set of all keys for $S = \langle \Omega, F \rangle$;

 $K_{S} + \{Algo1^*\} (\Omega, F, (\Omega \setminus R) (L \cap R))\}$

for each K in K_S do

for each FD ($L_i \rightarrow R_i$) in \bar{F} such that $K \setminus R_i \neq K do$

 $T \leftarrow (K \setminus R_i) \cup L_i;$

test + true;

for each J in K_S do

if T includes J then test + false;

if test then $K_S \leftarrow K_S \cup \{Algo2^*\}(\Omega,F,T)\}$

ena

end;

return Ks.

Remark 5 The Algorithm OL2 now has time complexity

$$O(|K_{S}||\Omega|(|K_{S}||\overline{F}| + |F| |L \cap R|))$$

^{*)} Algo 1 and Algo 2 refer to Algorithm 1 and Algorithm 2 in [1] respectively.

REFERENCES

- [1] Ho Thuan and Le van Bao, Some results about keys of relational schemas, Acta Cybernetica, Tom. 7, Fasc. 1, Szeged, 1985, pp. 99-113.
- [2] Lucchesi, C.L., Osborn, S.L., Candidate keys for relations, J. of Computer and System Sciences, 17. 1978, pp. 270-279.
- Osborn, S.L., Normal forms for relational databases.

 Ph.D. Dissertation, University of Waterloo, 1977.

Néhány megjegyzés a Lucchesi-Osborn algoritmushoz

Ho Thuan

Összefoglaló

Az [1]-ben két algoritmust javasoltunk az adott szuper-kulcsban levő kulcsok megkeresésére. Ebben a cikkben, felhasználva a két algoritmust és néhány egyszerű megjegyzést, megvitatjuk a Lucchesi-Osborn féle algoritmust [2].

Несколько замечаний об алгоритме Луччеси и Осборна

Хо Тхуан

Резюме

В статье [1] мы дали два алгоритма для нахождения ключа реляционной схемы, который содержится в данном супер-ключе. В этой статье, используя эти алгоритмы и несколько простых замечаний, улучшается алгоритм Луччеси и Осборна [2].