
MTA SZTAKI Közlemények 35/1986 pp. 5 3-63

AN A P P ROAC H TO A U T O M A T E D SYN TAX ANALYSIS

Lie. Miguel Fonfvia ATAN

Lie. Eugenia G. Muniz LODOS

Lie. Luis A. Fajardo Alvarez de la CAMPA

Ing. Jorge L. de la Contera RUIZ

Lie. R. Basilio Zubillaga BERAZAIR

Lie. Luis E. Fernandez LARA

Institute Central de Investigacion Digital
Habana, Cuba

Introduction.

In programming or writing compilers three problems must be solved
syntax analysis, lexicological analysis, and code generation or
semantic management.
At the present level о-f development о-f the theory of languages
and compilers, it is almost an established principle that -from
the three problems mentioned above only the third one requires a
heavy treatment by the writers of compilers, i.e. the lexicon,
and especially the syntax, should be a frame only for semantic
management. The writer of compilers should find a syntactical
method flexible enough to enable adequate semantic management.
In order to achieve the automation of syntax analyzers, a wide
variety of syntax analyser generators have been developed from
the description of a language grammar described in Backus's
Normal Form, or in some other similar manner to provide the
compiler writer with the syntax analyzer.

54

The method of syntax analysis can be divided into two large
groups: the ascending ones which build the syntax tree of
recognition -from the chain been analysed up to the generation's
syntax auxiliary, and the descending ones which, starting -from
the generation's syntax auxiliary, work down to the text to be
recogni zed.
Within the recognisers of the ascending type, techniques of
precedence have been successful, and also that defined by Knuth
in 1965, the LR technique, which has been widely accepted for
theoretical and practical studies. From this, the techniques SLR

and LALR, defined by De Remer in the late sixties, have been
der i ved.
With particular reference to LALR<1) techniques, a syntax
analyzer generator was implemented in 1971 starting from L..AL.R (1 >
grammars, that. is, grammars to which the LALR (1) technique is
applicable, thus demonstrating the feasibility of generating
analyzers of this type.
In 1972, a Syntax Analyzer Generator (SAG) similar to the former
was built at the Centro de Investigacion Digital, from which
tables were generated which enabled syntax analysis of ALGOL 60
and COBOL compilers for the CID 201-B mi ni computer, the
effectiveness of this method of analysis having been demonstrated
in both.
The method of analysis LALR(1) in the form of a program guided by
tables has the required flexibility as mentioned above. It.
possesses qualities which render it. effective as a base for a
SAG, among which are the following:

55

- Determinism in the analysis,
- Easy interaction with lexicologie and semantic management,
- Instantaneous detection о-f errors.
- Generality, in the sense that the class of LALR(1> grammars is
wide.

- Easy alteration of language syntax.
- Easy recovery of syntax errors.
- Valuable parameters with respect to memory required and speed
of analysis.

The method of analysis with LALR<1> grammars should be regarded
as the programming of a deterministic pushdown automata that
performs the syntax analysis by making adequated changes in its
states.
The types of states present in this automata are three:
applications, read, and look-ahead states. For each rule or
production in the grammar there is a state of application, these
states being the suitable ones to interact with the semantic
management of the compilation process. The action that takes
place in these may be resumed, from a properly syntactical
viewpoint, into two tasks:
- Reducing or increasing the analyzer stack according to the
number of symbols present on the right portion of the rule which
produced it.
- Comparing the top of the stack with the first component of a
set of associated pairs and comming up to the state indicated av
the second component of the corresponding pair.
The reading states' function is to read the chain of which
analysis is desired as to whether or not it belongs to the

56

language. The syntactical action associated with them is one of
reading the symbol and comparing it with one or more that. can
occur in the state, comming up to the corresponding destination
о-f the matched symbol. If the symbol being read is not among
those legal in that state, a syntax error is detected.
The look-ahead states have their origin in the automata's need to
look at a symbol in the chain (that is, the head) in order to
determine which one is to be the next state that will enable
proper continuation of the analysis. The associated syntactical
action is to ascertain in what branch the looked symbol is
located and come up to the corresponding destination. If the
symbol is not found in any of the branches then a syntax error is
detected.
These two states are the ones which interact with the lexicologie
analyser in the compilation process. In conceiving the look
ahead states, it should always be remembered that these states do
not read but only look at the symbol.
The method of analysis operates with a stack into which the
reading states are pushed as they are consulted, the necessary-
history being maintained in the stack that enables continuation
of syntax analysis.

BAG applications.
Our experience with the use of the BAG of CID 201—В began with
the COBOL compiler written for the CID 201-B, with which the
grammar corresponding to PROCEDURE DIVISION was processed. At
that, time the tables resulting from SAG was a listing that had to
be manually loaded and optimised. Notwithstanding this

57

difficulty, the use of this technology increased the efficiency
of the System and the speed of its setting. We will not go
further into this application because the current version of SAG
is an improvement by which, besides the listing with all the
states, terminals, non terminals, etc., a paper tape is obtained
containing the tables already coded and optimized.
In the case of the COBOL compiler for the CID 300/10 we decided
to use this method for the syntax analysis of the whole language.
Starting from the syntax of the COBOL sentence, the grammar for
the language was designed. However, due to the structure of the
compiler, which owing to memory capacity problems is divided into
overlay regions, the language's grammar was divided into three
parts: one for compiling IDENTIFICATION DIVISION and ENVIRONMENT
DIVISION, one for compiling DATA DIVISION, and another one for
PROCEDURE DIVISION. With each of these parts the SAG was used to
obtain the tables and thus the corresponding syntax analyzer.
The procedure followed is simple: the compiler has an initial
state to detected the symbol IDENTIFICATION, then it delivers
control to the syntax analyzer of the first two divisions, which
finishes upon detecting the terminal symbol DATA. Next the
syntax analyzer of DATA DIVISION is loaded and given control,
which ends when symbol PROCEDURE is detected, thus loading and
delivering control to the syntax analyzer of this division, which
finishes when end of compilation is detected.
The grammar of PROCEDURE DIVISION has a special characteristic in
so far as it was necessary to divide the analyzer into two parts
owing to memory capacity problems with CID 201-B when this

58

grammar was processed (it has the highest number of rules and is
the more complex due to recursiveness). So there exists two
grammars named "PROCEDURE P" and "PROCEDURE S", with which the
syntax analysis of COBOL instructions is performed.
There were grouped in the "PROCEDURE P" grammar, the conditional
sentences of COBOL and all grammatic rules presenting
recursiveness while in the "PROCEDURE S" grammar the imperative
sentences of the 1anguage were placed.
The main problem with this approach was the way in which the
change from one table to another was to be carried out (in the

same memory area) so that it should be transparent to the
compiler. The following is a description of the solution adopted.
Syntax analyser "PROCEDURE P" was the first to receive control,
as has been explained, upon detection of the word PROCEDURE. For
this analyser, imperative sentences of the language such as
ACCEPT, DISPLAY, etc., are terminals. This enables one state
alone of "multiple reading" generated by the analyser to detect
the type of instruction being managed. If it was a conditional
instruction, its analysis can be done within the analyser
"PROCEDURE P".
In case of an imperative instruction, when the word identifying
the instruction is detected (it appears as a terminal), control
is given to a special procedure (it appears in the compiler as
one more semantic subroutine) that substitutes in the compiler
the parameters of the tables generated by "PROCEDURE P" grammar
by those of "PROCEDURE S", adequately placing certain indicators
within the compiler, and continuing the processing by analyser

59

"PROCEDURE. S". When the end о-f the instruction is detected,
control is given to another special procedure (it appears in the
compiler as a semantic subroutine) that carries out the process
in reverse order, and processing then continues b y a n a l y s e r

"PROCEDURE P".
It is to be noted that the side effect of this solution is a
reduction in the speed of compilation, since the grammar tables
have to be exchanged when an imperative instruction appears in
the source program.
In this manner we were able to apply the SAG in the COBOL

compiler for CID 300/10 and solve the problems.
With the experience obtained in applying the SAG extensive,
complex grammars, we tackled the design of the compiler of the
dBASE—300 laguage, having in mind to process its grammar in
automated form. A grammar was designed that included all
sentences in the language. This first grammar, however, could not
entirely be processed by SAG. At this point we wish to comment
the deficiencies and shortcomings of SAG so that the final
decision adopted be understood.
The Syntax Analyser Generator (SAG) written for the minicomputer
CID 201-B with 32 К words of central memory (like PDP-8), behaves
like an independent program, that is, it operates with no
Operating System. Due to memory restrictions, it was not possible
to go deep into the diagnosis of errors; both the syntax errors
of grammar (due to ambiguity of common errors in punching) anti
the error of exceeded capacity causes the program to stop
execution without issuing any specific error message, so the
user must go into an analysis of its whole grammar and find with

60

a pragmatic approach of "trial and error" a solution of the
problem. This is a slow, tedious process in which the grammar
must, be rewritten again and again, and executed by SAG.
This process took, in general, me - time than foreseen and we had
to make a decision to obtain our syntax analyzer through the
automated method (produced by SAG) and the ad hoc method.
To achieve this end we gradually reduced the initial grammar and
finally obtained a grammar that can successfully be executed by
SAG, the generated tables are loaded and the rest of the
sentences are processed by the ad hoc method. To accomplish this
it was necessary to alter both the scanner and the syntax
analyzer so that it contemplated the work with the two methods.
Every command of the dBASE--300 language is processed by SAG
except those that are simple (formed by terminals only' and the
arithmetic expressions which upon the syntax analyzer detecting
terminals with which an arithmetic expression can be started
gives control to a module called arithmetic: scanner that
processes the expression by ad hoc method. When detecting a
symbol not belonging to the expression the arithmetic scar
returns control t.o the syntax analyzer delivering the read symbol
as not read so as not to affect the syntactic analysis.

Cone1usi ons.
The use of a Syntax Analyser Generator allows to increase the
performance of the programming techniques in any process that
requires a complex syntactic analysis.

61

Using SAG for CID 201-B it was possible to verify the theoretical
advantages that have been described in the introduction of this
paper, although due to peculiarities of the implementation these
advantages are reduced. In any case, it has been shown that its
application may with satisfactory results be accepted as a
"partial" solution for the syntax analysis of complex grammars.

Bi b 1i ography.
1. — Aho, A.V., J. Ullman The theory of Parsing, Translation and

Compiling. Volume 1: Parsing. Prentice Hall, 1972.
2. - Anderson, T., J. Eve, J.J Horning. Efficient LR(1) parsers.

University of Toronto, Computer Systems Group, 1972.
3. - De Remer, F.L. Simple LR(k) Grammars. Comm. ACM 14, 1971.
4. - Fonfria, M., E. Muniz, Informe tecnico del Compilador de

COBOL para la CID 201-B.
5. - Fonfria, M. y otros, Cinco anos de Aseguramiento de Proqramas

Basico de Gestion para el Sistema CID— 1310, ICID, 1986.
6. - Fonfria, M. y otros, Sistema de Gestion de Bases de Datos

dBASE—300. ICID, 1986.
7. - Gries, D. Compiler Construction for Digital Computers, New

York. John Wley, 1971.
8. - Jares, L.R. A Syntax Directed Error Recovery Method.

University of Toronto, Computer Sysytems Group , 1972.
9. - Lai onde, W.R. An Efficient LARL Parser Generator, University

of Toronto, Computer Systems Group, 1971.
10. - Mc Keeman, W.M., J.J Horning, D.B. Wortma. A Compiler

Generator. Englewood Cliffs, N.J., 1970.

i

62

11. ” Muniz, E. , V. Llopis, B, Zubillaga. In-forme Tecnico del
Generador de Analizadores Sintactico LALR<1), CID, 1976.

12. - Zubillaga, B. Generador de tablas optimizadas L.AL.R (1) , CID,
Universidad de la Habana 1976 Tesis de Especialista.

13. - Zubillaga, B. Representacion optimizada de una Família de
Conjuntos. Rev. CID Electronica y Proceso de Datos en Cuba.
No. 2 1982.

»

63

Az automatikus szintax-analizis egy tárgyalása

M.F. Atan, E.G. Lodos, L.A.F.A. de la Campa,
J.L. de la Cantera Ruiz, R.B.Z. Berazain,

L.E.F. Lara

Összefoglaló

1972-ben a Havannai Számítástechnikai Intézetben /Centro de
Investigacion Digital/ építettek egy szintax-analizis gene
rátort /Syntax Analyzer Generator, SAG/, amely felhasználá
sával végezték el a CID 201-B mini-szárnitógép számára az
ALGOL ill. COBOL fordítóprogramjainak szintaktikus elemzé
sét. A cikk a munka elméleti hátterét és a tapasztalatokat
foglalja össze.

Подход к автоматическому синтакс-анализатору
М.Ф. Атан, Е.Г.М. Лодос, Л.А.Ф.А. де да Кампа,
Й.Л. де ла Кантера Руиз, Р.Б. Беразаин,

Л.Е.Ф. Лара

Р е з ю м е

В 1972 г. был в Гаванском Вычислительном Институте /Centro de
Investigacion Digital/ построен генератор синтакс-анализа
/Syntax Analyzer Generator, SAG/, с помощью которого были ана
лизированы компайлеры АЛГОЛ-а и КОБОЛ-а на машине CID 201-В.
Статья описывает теоретические основы работы и опыты с рабо
той .

	M.F. Atan - E.G.M. Lodos - L.F.A. Campa - J.L.C. Ruiz - R.B.Z. Berazain - L.E.F. Lara: An approach to automated syntax analysis��
	Oldalszámok������������������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������

