MTA SZTAKI K&zlemények 35/1986 pp.53-63

AN APPROACH TO AUTOMATED SYNTAX ANALYSIS

Lic. Miguel Fonfria ATAN

Lic. Eugenia G. Muniz LODOS

Lie. Luis A. Fajardo Alvarez de la CAMPA
Ing. Jorge L. de la Cantera RUIZ

Lie. R. Basilio Zubillaga BERAZAIN

Lic. Luis E. Fermandez LARA

Institute Central de Investigacion Digital
Habana, Cuba

Introduction.

In programming or writing compilers three problems must be solved:
syntax analysis, lexicological analysis, and code generation or
semantic management.

At the present level of development of the theory of languages
and compilers, it is almost an established principle that from
the three problems mentioned above only the third one requires a
heavy treatment by the writers of compilers, i.e. the lexicon,
and especially the syntax, should be a frame only for semantic
management. The writer of compilers should find & syntactical
method flexible enough to enable adequate semantic management.

In order to achieve the automation of syntax analyzers, a wide
variety of syntax analyser generators have been developed +From
the description of a language grammar described in Backus's
Normal Form, or in some other similar manner to provide the

compiler writer with the syntax analyzer.

The method of syntax analysis can be divided into two large
groups: the ascending ones which build the syntax tree of
recognition from the chain been analyzed up to the generation’s
syntax auxiliary, and the descending ones which, starting from
the generation’'s syntax auxiliary, work down to the text to be
recognized.

Within the recognisers of the ascending type, techniqgques of
precedence have been successful, and also that defined by KEnuth
in 1965, the LR technique, which has been widely accepted for

theoretical and practical studies. From this, the techniqgues SLR

and LALR, def;ned by De Remer in the late sixties, have been
derived.

With particular reterence to LALROL) techniqgues, a syntax
analyzer generator was implemented in 1971 starting from LALRCL)
grammars, that is, grammars to which the LALR{1) technigue is
applicable, thus demonstrating the feasibility of generating -
analyzers of this type.

In 1972, a Syntax Analyzer Generator (8AG) similar to the former
was built at the Centro de Investigacion Digital, from which
tables were generated which enabled syntax analysis of ALGOL &0
and COROL compilers Ffor the CID 201-B minicomputer, the
effectiveness of this method of analysis having been demonstrated
in both.

The method of analysis LALR(1) in the form of a program guided by
tables has the required flexibility as mentioned above. =
possesses qualities which render it effective as a base For a

SAG, among which are the following:

- Determinism in the analysis.

- Easy interaction with lexicologic and semantic management .

= Instantaneous detection of errors.

- Generality, in the sense that the class of LALR(1) grammars 1s
wide.

- Easy alteration of language syntax.

- Easy recovery of syntax errors.

- Valuable parameters with respect to memory reguired and speed
of analysis.

The method of analysis with LALR(1) grammars should be regarded

as the programming of a deterministic pushdown automata that

performs the syntax analysis by making adequated changes in its

states.

The types of states present 1n this automata are three:

applications, read, and loock-ahead states. For each rule or

production in the grammar there is a state of application, thece

states being the suitable ones to interact with the semantic

management of the compilation process. The action that takes

place in these may be resumed, from a properly syntactical

viewpoint, into two tasks:

- Reducing or increasing the analyzer stack according to the

number of symbols present on the right portion of the rule which

produced it.

~ Comparing the top of the stack with the first component of @

set of associated pairs and comming up to the state indicated DOV

the second component of the corresponding pair.

The reading states’ function is to read the chain of whian

analysis is desired as to whether or not it belongs to the

- BE ot

language. The syntactical action asscciated with them is one of
reading the symbol and comparing it with one or more that can
occur in the state, comming up to the corresponding destination
of the matched symbol. I+ the symbol being read is not among
those legal in that state, a syntax error is detected.

The look-ahead states have their origin in the automata’'s need to
look at a symbol in the chain (that is, the head) in order to
determine which one is to be the next state that will enable
proper continuation of the analysis. The associated svntactical
action is to ascertain in what branch the looked symbol is
located and come up to the corresponding destination. I+ the
symbol is not found in any of the branches then a syntax error is
detected.

These two states are the ones which interact with the lexicologic
aralyser in the compilation process. In conceiving the look-
ahead states, it should always bes remembered that these states do
not read but only look at the symbol.

The method of analysis operates with a stack into which the
reading states are pushed as they are consulted, the necessary
history being maintained in the stack that enables continuation

of syntax analysis.

SAG applications.

Our experience with the use of the SAG of CID 201-E began with
the COBOL compiler written for the CID 201-B, with which the
grammar corresponding to FROCEDURE DIVISION was processed. At
that time the tables resulting from SAG was a listing that had to

be manual 1y loaded and optimized. Notwithstanding this

difficulty, the use of this technology increased the efficiency
of the System and the speed of its setting. We will not go
further into this application because the current version of SAG
is an improvement by which, besides the listing with all the
states, terminals, non terminals, etc., a paper tape is obtained
containing the tables already coded and optimized.

In the case of the COROL compiler for the CID 300/10 we decided
to use this method for the syntax analysis of the whole language.
Starting from the syntax of the COROL sentence, the grammar for
the language was designed. However, due to the structure of the
compiler, which owing to memory capacity problems is divided into
overlay regions, the language’'s grammar was divided into three
parts: one for compiling IDENTIFICATION DIVISION and ENVIRONMENT
DIVISION, one for compiling DATA DIVISION, and another one for
FROCEDURE DIVISION. With each of these parts the SAG was used to
obtain the tables and thus the corresponding syntax analyzer.

The procedure followed is simple: the compiler has an initial
state to detected the symbol IDENTIFICATION, then it delivers
control to the syntax analyzer of the first two divisions, which
finishes upon detecting the terminal symbol DATA. Next the
syntax analyzer of DATA DIVISION is loaded and given control,
which ends when symbol FROCEDURE is detected, thus loading and
delivering control to the syntax analyzer of this division, which
finishes when end of compilation is detected.

The grammar of FPROCEDURE DIVISION has a special characteristic in
so far as it was necessary to divide the analyzer into two parts

owing to memory capacity problems with CID 201-E when this

o BED

grammar was processed (it has the highest number of rules and is
the more complex due to recursiveness). 8So there exists two
grammars named "FROCEDURE F" and "FROCEDURE 8", with which the
syntax analysis of COBOL instructions is performed.

There were grouped in the "FROCEDURE F" grammar, the conditional
sentences of COEROL aﬁd all grammatic rules presenting
recursiveness while in the "FROCEDURE 8" grammar the imperative
sentences of the language were placed.

The main problem with this approach was the way in which the

change from one table to another was to be carried out (in the

same memory area) so that it should be transparent to the
compiler. The following is a description of the solution adopted.
Syntax analyzer "FROCEDURE F" was the first to receive control,
as has been explained, upon detection of the word FROCEDURE. For
this analyzer, imperative sentences of the language such as
ACCEFT, DISFLAY, etc., are terminals. This enables one state
alone of "multiple reading" generated by the analyzer to detect
the type of instruction being managed. If it was a conditional
instruction, its analysis can be done within the analyzer
"FROCEDURE F".

In case of an imperative instruction, when the word identifying
the instruction is detected (it appears as a terminal), controi
is given to a special procedure (it appears in the compiler as
one more semantic subroutine) that substitutes in the compiler
the parameters of the tables generated by "FROCEDURE F" grammar
by those of "FROCEDURE S&", adequately placing certain indicators

within the compiler, and continuing the processing by analyser

- 59 -

"FROCEDURE S5". When the end of the instruction 1is destected.
contral is given to another special procedure (i1t appears 1 the
compiler as a semantic subroutine) that carries out the process
in reverse order, and processing then continues by analyser
HRROCEDURE #''.

It is to be noted that the side effect of this solution 13 =
reduction in the speed of compilation, since the grammar tables
have to be exchanged when an imperative instruction appears 10
the source program.

In this manner we were able to apply the &AG 1in the COROL

compiler for CID Z00/10 and solve the problems.

With the experience obtained in applving the SAG extensive,

complex grammars, we tackled the design of the compiler of the
dBASE~-200 laguage, having i1in mind to process its grammar 1in
automated form. A grammar was designed that included all

sentences in the language. This firset grammar, however, could not
erntirely be processed by 5AG. At this point we wish to comment
the deficiencies and shortcomings of 85AG so that the final
decision adopted be understood.

The Syntax Analyser Generator (S5AG) written for the minicomputer
CID 201-F with 32 K words of central memory (like FDF-8), beraves
like an independent program, that is, it operates with no
Operating System. Due to memory restrictions, 1t was not possible
to go deep into the diagnosis of errorsi both the syntax errors
of grammar {due to ambiguity of common errors in punching) ana
the error of exceeded capacity causes the program to stop
edecution without issuing any specific error message, so the

user must go into an analysis of its whole grammar and find with

N A

a pragmatic approach of "trial and error" a solution of the
problem. This is a slow, tedious process in which the grammar
must be rewritten again and again, and executed by SAG.

This process took, in general, mo = time than foreseen and we had
to make a decision to abtain ouw syntax analyzer through the
automated method (produced by 85AG) and the ad hoc method.

To achieve this end we gradually reduced the initial grammar and
finally obtained a grammar that can successfully be executed by
SAG, the generated tables are loaded and the rest of the
csentences are processed by the ad hoc method. To accomplish this
it was necessary to alter both the scanner and the syntax
analyzer so that it contemplated the work with the two methods.

Every command of the dBRABE-Z00 language is processed by SAG
except those that are simple (formed by terminals only' and the
arithmetic expressions which upon the syntax analyzer detecting
terminals with which an arithmetic expression can he started
gives control to a module called arithmetic scanner that
processes the expression by ad hoc method. When detecting =«
symbol not belonging to the expression the arithmetic csuar >

returns control to the syntax analyzer delivering the read symbol

as not read so as not to affect the syntactic analvsis.

Conclusions.
The use of a Syntax Analyser Generator allows to i1ncrease the
performance of the programmning technigues in any process that

requires a complex syntactic analysis.

o N

Using SAG for CID 201-B it was possible to verify the theoretical
advantages that have been described in the introduction of this
paper, although due to peculiarities of the implementation thnese
advantages are reduced. In any case, it has been shown that its
application may with satisfactory results be accepted aszs a

"partial" solution for the syntax analysis of complex grammars.

Bibliography.
.- Aho, AWM., J. Ullman The theory of Farsing, Translation and

Compiling. VYolume 1: Farsing. Frentice Hall, 1972

)

-~

2.~ Anderson, T., J. Eve, J.J Horning. Efficient LR(1) parsers.
University of Toronto, Computer Systems Group, 197Z.

.~ De Remer, F.L. Simple LR(k) Grammars. Comm. ACM 14, 1971.

4.~ Forifria, M., E. Muniz, Informe tecnico del Compilador de
COEBOL para la CID 201-R.

5.~ Fonfria, M. vy otros, Cinco anos de Aseguramiento de Frogramas
EBasico de Gestion para el Sistema CID-1310, ICID, 1986.

6.~ Fonfria, M. vy otros, Sistema de Gestion de Bases de Datos
dBASE~-Z00. ICID, 1986.

7.- Gries, D. Compiler Construction for Digital Computers, New
York. John Wley, 1971.

8.~ Jares, (S 7 7 A S8Syntax Directed Error Recovery Methoa.
University of Toronto, Computer Sysytems Group, 1972.

9.~ Lalonde, W.R. An Efficient LARL Farser Generator, University
of Toreonto, Computer Systems Group, 1971.

10.— Mc Keeman, W.M., J.J Horning, D.E. Wortma. A Compiler

Generator. Englewood Cliffs, N.J., 1970.

11.~ Muniz, E., V. Llopis, B. Zubillaga. Informe Tecnico del
Generador de Analizadores Sintactice LALR(1), CID, 197&.

12.—- Zubillaga, BE. Generador de tablas optimizadas LALR(1), CID,
Universidad de la Habana 1974 Tesis de Especialista.

1%.~ Zubillaga, E. Representacion optimizada de una Familia de
Conjuntos. Rev. CID Electronica y Froceso de Datos en Cuba.

No. 2, 1282,

B .

Az automatikus szintax-analizis egy targyalasa

M.F. Atan, E.G. Lodos, L.A.F.A. de la Campa,
J.L. de la Cantera Ruiz, R.B.Z. Berazain,
L.E.F. Lara

Osszefoglald

1972-ben a Havannai Szamitastechnikai Intézetben /Centro de
Investigacion Digital/ épitettek egy szintax-analizis gene-
ratort /Syntax Analyzer Generator, SAG/, amely felhasznala-
saval végezték el a CID 201-B mini-szamitdégép szamara az
ALGOL ill. COBOL forditdprogramjainak szintaktikus elemzé-
sét. A cikk a munka elméleti hatterét és a tapasztalatokat

foglalja Ossze.

[IogxoO K aBTOMAaTHYECKOMY CHHTaKC-aHaIu3aTopy

M.®. ATaH, E.I'.M. Jlogoc, JI.A.®.A. ne na Kawmmna,
N.JI. ne na KaHTepa Pyus, P.E. Bepaszaul,
J.E.®. Jlapa

Pes3swmMe

B 1972 r. 6mm1 B I'aBaHCKOM BHYHCIHTENILHOM HHcTHUTyTe /Centro de
Investigacion Digital/ mocTpoeH reHepaTop CHHTAKC—aHallk3a
/Syntax Analyzer Generator, SAG/, C NOMOWbHK KOTOPOI'O ORI aHa-—
JIU3HMpPOBaHH Komnawnjepwn AJII'OJI-a u KOBOJI-a Ha mamuHe CID 201-B.
CTaThss ONHCHBaeT TeOpeTHYEeCKHEe OCHOBH paBoTH U OMNHTH C pato-

TOH.

	M.F. Atan - E.G.M. Lodos - L.F.A. Campa - J.L.C. Ruiz - R.B.Z. Berazain - L.E.F. Lara: An approach to automated syntax analysis��
	Oldalszámok������������������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������

