MTA SZTAKI Kozlemények 35/1986 p. 79-87

INDEX TREATMENT OF A DBMS FOR A MINICOMPUTER

Lie. Maria Elena Bragado BRETANA
Lic. Miguel Fonfria ATAN

Institute Central de Investigacion Digital
Habana, Cuba

Introduction
In this paper it 1is shown the method implemented +or 1rndev
treatment in the Data Base Management System dBASE-Z00, for the

cuban minicomputer CID-300/10 (like the FDF-11/0%).

The technique _employed to treat indexes in dBASE-Z00 is the
organisation called B+ tree. With the use of this technique 1t
is possible to accomplish all transactions defined in dBASE-ICO
in a suitable way as it is efficient Ffor both random and

sequential access to records and modification operations.

In order to have a better understanding of the implementation of
B+ tree in dBASE-Z00 File Control System, the analysis is divided
into the following sections:

- B-trees and their data structures.

- Find, Insertion and Deletion.

- Operation costs.

- B+ trees.

- Other variants of B-trees.

The First two sections are referred to B-trees because the

characteristics explained are also present in B+ trees.

- 80 -

B-~trees and their data structures.

The structure implemented for index treatment in dBASE~-Z00
corresponds to the B-tree definition given in [Rayl, i.e., it has
the following properties:

a) Each path from the root to any leat has the same length.

b) Each node, except the root and leaves, has at least k+1 sons,

where k is a natural number. The root is a leaf and has at
at least two sons.

c) Each node has at most 2k+1 sons.

A node of a B-tree 1s the page in which the index is stored.

A page of the B-tree in dBABE-200 looks like this:

[e : et b ; : : ;
l l ijJ k1 plj [W 1w kz] r2l- Gas [km 1pm irm.j R L

| . i 3 SR = ! 5 A

S~ S x

next % number pi — pointer

previous of keys in ki — key

page the node ri - record number

This data structure of a page has the following properties [Rayl:

a)d Each page contains between k and 2k keys except the root page
which may contain between 1 and 2k keys.

b) Let m be the number of keys on a page (not a leaf). F has m+l
SONS.

c) The keys in a page are sequential in i1ncreasing order and
each page contains at most Zk keys and Zk+1 pointers.

d) lLet F(pi) be the page to which pi points, let K(pi) be the
set of keys on the pages of that maximal subtree of which
F(pi) 1is the root. Then the following conditions alwavs

hold:

V G oHE Kipoy ., => . vk

V y € E(pi) => kidy<ki+l 3 1gLi<m

Y

iz

E. (pm) =Y kmiy

The record number behind each key in the page enables to accesss

directly the requested record in the relative file.

This information in the page is a peculiar characteristic of this
implementation, taking advantage of the relative organizaticmn of

the data file.
Find, Insertion and Deletion

Find.
A find operation in a B-tree of order k never visits more than

1+log n pages, where n is the number of records in the file.
k

This is possible bhecause record operations in a B-tree alwave
leave the tree balanced.
The B-tree balancing scheme restricts changes 1in the tree to &
single path from a leaf to the root, so0 it can not introduce
"runaway" overhead [(Coml.

The find algorithm is simple logically.

Insertion
The insertion operation requires a previous find operatiocn witn
which it is possible to get the page where the new key is agoina

to be inserted.

& B2 =

Three cases may be found (assuming the new key is not present):
i) empty tree
ii) page not full

iii) page full

In the first case it is necessary to create a root page with the

new kevy.
In the second case the new key may be inserted in the correct

position.

In the third case it is necessary to split the page, that is, the

smallest k keys are placed in one page, the largest k keys are
placed in another page, and the remaining value is promoted to
the parent page where it serves as a separator. In the worst

case splitting propagates all the way to the root and the tree

increases in height by one level.

Deletion

Like insertion, the deletion operation needs a previous +ind
operation to locate the key to be deleted.

Assuming the key is present, it is poscsible to find two cases:

a) the key is on leaf page

b) the key is not on a leaf page.

In the first case the key can be deleted from leaf.

In the second case it is necessary to find the adjacent key and
place it in the position of the deleted key. To find the adjiacent
key in key—-sequence order it is necessary to search for the

leftmost leaft in the right subtree of the deleted key.

= Ry

In both cases it is necessary to check whether an underflow
condition is present, that is, if the leaf has less than k kevs.
In this case it is possible to redistribute the remaining keys

between the two neighboring pages but only if there are at least

2k keys to distribute. If there are less than 2k keve 1t is
necessary to perform a concatenation process, where keys are
combined into one page and the other is discarded. Then the

separating key in the ancestor is no longer necessary and is also

added to the single remaining leaf.

As can be seen, the process of concatenation may force
concatenating at the next higher level and so on, to the root of
the level, and it is possible that B-~tree decreases in height by

13

Operation costs
The cost of a find operation is increased with the growth of the

file size logarithm. This is:
log. ———=—r—r [Rayl [Coml

where @ h - height of the page tree

n - number of keys

k= minimum number of keys per page
Insertion and deletion take time proportional to log&n in the
worst case because these operations need aditional access bevond
the cost of a find operation as it progresses back up the tree.
The costs are at most double, so that the height of the tree

still is the main element for these costs.

B e

As can be seen, the number of keys in a page is the parameter on
which the performance of all operations depends.

Bayer and McCreight [Rayl show a way to determine the optimal
number of keys in a page to achieve minimum time per transaction,
in terms of fixed time spent per page, transfer time, key size,

and a factor for average page accupancy.

In the case of dRASE-300 there are practical limits to page size.
The disks on which the system is supported are divided into fixed
blocks of 812 bytes length.

Thus, each page in dBASE-Z00 is 912 bytes in order to avoid extra
overhead in the process.

In practice, considering standard key size the behaviouwr of the

algorithm with this size page was quite suitable.

B+ trees

The organisation chosen was B+ tree, a variant that aveids the
problems with sequential processing in B-trees.

These problems are the requirement of extra space for at least
log h(n+1) pages [kKnul in main memory to avoid reading them
twice in the seguential processing.

Also, the next operation may require to access several pages
before finding the desired hkey.

In a B+ tree all keys reside in the leaves.

The relative organisation of a file in the dRASE-Z00 enables
implementing E+ trees in a very comfortable way, because this
file can be accessed directly once we have the number of

correspondent record in the sequence order.

i B

With B+ tree the logarithmic cost properties for operations by
key are retained and the next operation for a seguential
processing requires at most 1 access. Besides, no page will be
accessed more than once.

On the other hand, the feature of B+ trees that all keys recide

in the leaves allows to simplify the deletion operation because

the removal of the key to be deleted is simple, and the tree reed
not be changed while the leaft remains al least half—full. It
means that a copy of a deleted key will be present in the trese
and can direct searches to the correct leaf.

Redistribution or concatenation process will be necessary only 1f
an underflow condition arises in the leaf and this process is

similar to that in B-tree.

Other variants of B-trees

Several variants of B-trees were analvzed in order to chocse a
technique for the implementation of index treatment in dBASE-
I00. These variants were: B¥ tree [Knul, Virtual B—trees [Coml,

Compression technigue [Wagnl, and Binary B-trees [Bayll].

Ex tree was discarded because its implementation seems to be =z
little more complicated and then it requires more main memorw
with the resulting increase of overhead.

In the case of Virtual B-trees there is a practical inconvenience
because our system computer does not have facilities of virtuail
MEMOr Yy .

With the compression technique pointers can be compressed usinag a

displacement from a page address instead of the absolute addrescss

.

value. This technique is particulary useful for virtual E-trees
where pointers take on large address values.

Finally, Rinary EB-trees are appropriated for a one—-level store,
bacause a Binary B-tree is a B-tree of order 1. This means that

each page has 1 or 2 keys and 2 or 2 pointers.

‘Conclusions

B+ trees retains the logarithmic cost properties for operations
by key and has no problems with the next operation for a
sequential processing.

In practice, B+ tree proved a very suitable organisation for

indeyx ,freatment in dBASE-300.

References

[Bayl Bayer, R. and Mc Creight. "Organization and Maintenance of
Large Ordered Indexes". Acta Informatica 1,3(1972) 173-18%,

[Rayl]l Bayer, R. "Binary B-trees for Virtual Memory". Froc. 1971
ACHM SIGFIDET Workshop, ACM New York, (219-233).

(Bell Bell, D.A. and 5.M. Deen. "Hash trees versus BE-trees". The
Computer Journal Vol.27, No. 3 1984.

[Rlal Black, J.F. et al. "a robust B-tree implementation”.
FProceedings of the Fifth International Conference on
Software Engineering. pp 63-70. (9-12 March 1981).

[Coml Commer, D. "The ubiguitous B-tree". Computer Surveys, Val.
11, No. 2, June 1979.

[Knul Knuth, D. "The Art of Computer Frogramming", Vol. P

[Wagl Wagner, R. "Indexing designs considerations”. IEM Syst. J.4

(1973) 3B1-367

=i B e

Miniszamitbégépek szamara irt DBMS index-kezelése

M.E. Bragado Bretana, M.F. Atan

Osszefoglald

A cikkben a kubai CID-300/10 /~ PDP-11/05/ mini-szamitdgén
szamara irt dBASE-300 adat-kezeld rendszer index-kezelését
ismertetik. Az index-kezelési technika "B+tree'"-nek nevezett

szervezésen alapszik.

TpakKTOBKa HHIOekKCcOB B DBMS 1yl MHHH-KOMIIBHOTEPOB

M.E. Bparamno BpeTaHa, M.®. ATaH

PRe 3.0 M e

B cTaThe peyb HIOET O TPAKTOBKE HHIOEKCOB B HMIIJIEMEHTAIIMU IaKeTa
o6paboTKkH HDaHHHX dBSE-300 mns KyBHHCKOTO MHHH~KOMIIBOTEDA
CID-300/10 /~ PDP-11/05/. TexHHMKa TPakKTOBKH HHIEKCOB OCHOB&aHa
Ha oOpraHu3aluMM Has3BaHHoOuM "Bt+tree".

	M.E.B. Bretana - M.F. Atan: Index treatment of a DBMS for a minicomputer���
	Oldalszámok������������������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������

