
MTA SZTAKI Közlemények 35/1986 p. 79-87

INDEX T R E A T M E N T OF A DBMS FOR A MIN ICOM PUTER

Lie. Maria Elena Bragado BRETANA
Lie. Miguel Fonfria ATAN

Institute Central de Investigacion Digital
Habana, Cuba

Introduction
In this paper it is shown the method implemented tor indev
treatment in the Data Base Management System dBASE—300, For the

cuban minicomputer CID-300/1Ü (like the PDP-11/05).

The technique employed to treat indexes in dBASE-ЗОО is the
organisation called B+ tree. With the use oF this technique it
is possible to accomplish all transactions deFined in dBASE-300
in a suitable way as it is eFFicient For both random and
sequential access to records and modiFication operations.

In order to have a better understanding oF the implementation oF
B+ tree in dBASE-ЗОО File Control System, the analysis is divided
into the Following sections:

- В -trees and their data structures.
- Find, Insertion and Deletion.
- Operation costs.
- B+ trees.
-■ Other variants oF B-trees.

The First. two sections are ref erred to В-trees because the
characteristics explained are also present in B+ trees.

80

В-trees and their data structures.
The structure implemented for index treatment. in dBASE-300
corresponds to the В-tree definition given in CBayl, i.e., it has
the -following properties:
a) Each path from the root to any leaf has the same length.
b) Each node, except the root and leaves, has at least k+1 sons,

where к is a natural number. The root is a leaf and has at.
at least, two sons.

c) Each node has at most. 2k + l sons.

A node of a В-tree is the page in which the index is stored.
A page of the B—tree in dBASE—300 looks like this:

pO к 1 .plj ri P2 к 2 r2 km I pm I rm.

next number pi - pointer
previous of keys in ki - key
page the node ri - record number

This data structure of a page has the following properties CBayl:
a) Each page contains between к and 2k keys except the root page

which may contain between 1 and 2k keys.
b) Let. m be the number of keys on a page (not a leaf). P has m+1

sons.
c) The keys in a page are sequential in increasing order and

each page contains at most 2k keys and 2k+l pointers.
d) Let F'(pi) be the page to which pi points, let K(pi) be the

set of keys on the pages of that maximal subtree of which
p(pi) is the root. Then the following conditions always
hoi d :

81

The record number behind each key in the page enables to access
directly the requested record in the relative file.

This information in the page is a peculiar characteristic of this
implementation, taking advantage of the relative organisation of
the data file.

Find, Insertion and Deletion

Fi nd ,
A -find operation in a В-tree о-f order к never visits more than
1+1 og n pages, where n is the number о-f records in the -file,

к
This is possible because record operations in a B—tree al wavs
leave the tree balanced.
The В-tree balancing scheme restricts changes in the tree to a
single path -from a leaf to the root., so it can not introduce
"runaway" overhead C Com II.
The -find algorithm is simple logically.

Insert.i on
The insertion operation requires a previous find operation with
which it is possible to get the page where the new key is going
to be inserted.

82

Three cases may be -found (assuming the new key is not present):
i) empty tree
ii) page not full
i i i) page f ul 1

In the first case it is necessary to create a root page with the
new key.
In the second case the new key may be inserted in the correct
posi t i on.

In the third case it is necessary to split the page, that is, the
smallest к keys are placed in one page, the largest к keys are
placed in another page, and the remaining value is promoted to
the parent page where it serves as a separator. In the worst
case splitting propagates all the way to the root and the tree
increases in height by one level.

Del et i on
Like insertion, the deletion operation needs a previous find
operation to locate the key to be deleted.
Assuming the key is present, it. is possible to find two cases:
a) the key i s on leaf page
b) the key is not on a leaf page.
I n the first case the key can be deleted from leaf
In the second case it is necessary to find the adjacent key and
place it in the position of the deleted key. To find the adjacent
key in key-sequence order it is necessary to search for the
leftmost leaf in the right subtree of the deleted key.

83

In both cases it is necessary to check whether an under-flow
condition is present, that is, it the leat has less than к keys.
In this case it is possible to redistribute the remaining keys
between the two neighboring pages but only it there are at least
2k keys to distribute. It there are less than 2k keys it is
necessary to pertorm a concatenation process, where keys are

combined into one page and the other is discarded. Then the
separating key in the ancestor is no longer necessary and is also
added to the single remaining leat.

As can be seen, the process ot concatenation may torce
concatenating at the next higher level and so on, to the root ot
the level, and it. is possible that В-tree decreases in height by
1.

Operation costs
The cost ot a tind operation is increased with the growth ot the
tile size logarithm. This is:

n + 1
h log ------- EBay] [Com]

к 2
where : h - height ot the page tree

n - number ot keys
к - minimum number ot keys per page

Insertion and deletion take time proportional to log,n in theК
worst case because these operations need aditional access bevond
the cost ot a tind operation as it progresses back up the tree.
The costs are at most. double, so that the height ot the tree
still is the main element tor these costs.

84

As can be seen, the number of keys in a page is the parameter on
which the performance of all operations depends.
Bayer and McCreight CBayD show a way to determine the optimal
number of keys in a page t.o achieve minimum time per transaction,
in terms of fixed time spent per page, transfer time, key size,
and a factor for average page accupancy.

In the case of dBASE-300 there are practical limits to page size.
The disks on which the system is supported are divided into fixed
blocks of 512 bytes length.
Thus, each page in dBASE-300 is 512 bytes in order to avoid extra
overhead in the process.
In practice, considering standard key size the behaviour of the
algorithm with this size page was quite suitable.

B+ trees
The organisation chosen was B+ tree, a variant that avoids the
problems with sequential processing in B-trees.
These problems are the requirement of extra space for at least
log ̂(n+1) pages CKnu3 in main memory to avoid reading them
twice in the sequential processing.
Also, the next operation may require to access several pages
before finding the desired key.
In a B+ tree all keys reside in the leaves.
The relative organisation of a file in the dBASE-300 enables
implementing B+ trees in a very comfortable way, because this
file can be accessed directly once we have the number of
correspondent record in the sequence order.

85

With B+ tree the logarithmic cost properties -for operations bv
key are retained and the next operation -for a sequential
processing requires at most 1 access. Besides, no page will be
accessed more than once.
□n the other hand, the -feature of B+ trees that all keys reside
in the leaves allows to simplify the deletion operation because
the removal of the key to be deleted is simple, and the tree need
not. be changed while the leaf remains al least half-full. It
means that a copy of a deleted key will be present in the tree
and can direct searches to the correct leaf.
Redistribution or concatenation process will be necessary only if
an underflow condition arises in the leaf and this process is
similar to that in B—tree.

Other variants of B—trees
Several variants of B-trees were analyzed in order to choose a
technique for the implementation of index treatment in dBASE-
300. These variants were! B* tree CKnul, Virtual B-trees CComl ,
Compression technique CWagnl, and Binary B-trees CBaylH.

B* tree was discarded because its implementation seems to be a
little more complicated and then it requires more main memory
with the resulting increase of overhead.
In the case of Virtual B-trees there is a practical inconvenience
because our system computer does not have facilities of virtual
memory.
With the compression technique pointers can be compressed using a
displacement from a page address instead of the absolute address

86

value. This technique is particular/ useful -for virtual B-trees
where pointers take on large address values.
Finally, Binary В-trees are appropriated -for a one-level store,
bacause a Binary В-tree is a B-tree о-f order 1. This means that
each page has 1 or 2 keys and 2 or 3 pointers.

Cone ! us i ons
B+ trees retains the logarithmic cost properties for operations
by key and has no problems with the next operation for a
sequential processing.
In practice, B+ tree proved a very suitable organisation for
index .treatment in dBASE-300.

References

CBayl Bayer, R. and Me Creight. "Organization and Maintenance of
Large Ordered Indexes". Acta Informatics 1,3(1972) 173-189.

CBayl] Bayer , R. "Binary В-trees for Virtual Memory". F'roc. 1971
ACM SIGFIDET Workshop, ACM New York, (219-235).

CBell Bell, D.A. and S.M. Been. "Hash trees versus В-trees". The
Computer Journal Vol.27, No. 3 1984.

CB1a] Black, J.P. et al. "A robust В-tree implementation".
Proceedings of the Fifth International Conference on
Software Engineering, pp 63-70. (9-12 March 1981).

[Com] Commer, D. "The ubiquitous B-tree". Computer Surveys, Vol.
11, No. 2, June 1979.

CKnu] Knuth, D. "The Art of Computer Programming", Vol. 3.
CWag] Wagner, R. "Indexing designs considerations". IBM Syst. J.4

(1973) 351-367

M in i s z á r n i t ó g é p e k szám ára i r t DBMS i n d e x - k e z e l é s e

M.E. Bragado Bretana, M.F. Atan

Összefoglaló

A cikkben a
számára irt
ismertetik.
szervezésen

kubai CID-300/10 /v PDP-11/05/ mini-számitógép
dBASE-300 adat-kezelő rendszer index-kezelését
Az index-kezelési technika "B+tree"-nek nevezett
alapszik.

Трактовка индексов в DBMS для мини-компьютеров

М.Е. Брагадо Бретана, М.Ф. Атан

Р е з ю м е

В статье речь идет о трактовке индексов в имплементации пакет
обработки данных dBSE-300 для кубинского мини-компьютера
CID-300/10 /~ PDP-11/05/. Техника трактовки индексов основана
на организации названной "B+tree".

	M.E.B. Bretana - M.F. Atan: Index treatment of a DBMS for a minicomputer���
	Oldalszámok������������������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������

