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1. INTRODUCTION
To give an idea about duality in mathematical programming 

Hadley (1962) cited the following line from "The Rubayiat" 
of E. Fitzgeral:

"All of this of Pot and Potter-Tell me
Who is the Potter, pray, and who is the Pot?"

The highlight of duality lies in the reciprocal relations 
lingking "Pot" and "Potter". To see it let us remember the 
case of linear programming. Given a linear (minimization) 
problem, called primal, there is a second, corresponding 
(maximization) problem, called dual such that

(i) The dual of the dual is the primal
(ii) Any feasible solution of the primal has a value 

greater or at least equal to the value of any 
feasible solution of the dual.

(iii) If an optimal solution exists for the primal then 
one exists for the dual and their optimal values 
are equal.

(iv) If the p r i m a l  has an unb o u n d e d  solution, the dual 
has no feasible solution and vice versa.

These features have proved to be very important in the 
theoretical study of optimization problems and their computa
tional practice. For the case of nonlinear programming similar
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results can be obtained, but of course, suitable conditions 
have to be imposed. What about case of dynamic programming? To 
our knowledge very little attention has been directed to this 
topic (some efforts towards it have been made by using 
Lagrangian multipliers in solving dynamic problems, (see 
Bellman (1957)) and a duality theory has been constructed for 
infinite horizon optimization of linear and convex models (see 
Weitzman (1973), Evers (1983) and Haneveld (1985)).

It is not the aim of the paper to develop the complete 
duality theory for dynamic programming. Our purpose is merely 
to study some duality aspects of a finite-stage dynamic system 
and in doing so we call attention of researchers to a useful 
technique for solving dynamic problems. The paper is structured 
as follows: in the second section we describe a dynamic problem 
to be considered. The third section is devoted to the Lagrangian 
functions associated with our problem and their properties. In 
section 4, another approach to duality theory, a conjugate 
function approach is presented and finally we give a brief 
discussion about the possibility of applying duality results in 
solving the problem.

2. DESCRIPTION OF THE MODEL
Suppose that we have a dynamic system which consists of N 

stages numbered from 1 to N. At stage к 6 {1,.,.,N} the 
system is characterized by a nonempty set of states and a 
nonempty set of actions U (x̂ ) corresponding to every x̂. 6 X̂ .. 
In the case к < N-1, under action

uk e U(xk) (1 )
state

X, 6 X,к к (2 )

will be transferred into state x. „ € X. „ of the nextk+1 k+1
stage by the law:

(3)
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Let us start with xk and apply action uk to get xjc+  ̂• 
Keeping in mind requirements (1), (2) and (3) and carrying 
on the above procedure we get a sequence of states (xk,...,x^) 
and a sequence of actions (u^,.../UN_^). Such sequences of 
states and actions are called (N-k)-process and (N-k)-policy, 
respectively. It is obvious that when xk and uk are chosen, 
x^+.j is completely defined.
Further, for any (N-k)-process and (N-k)-policy, let 
Rk ̂Xk' ' ‘ ' ,xN,uk' * * ’ ,UN-1 ̂ be t*ie cost getting 
(xk ,...,xN) by using policy (uk,--,UN_1)•
The problem that we are going to deal with is to find an 
N-policy for a given initial state x̂  such that it minimizes

R) (x1 , . . . ,x̂ j,u^ ,. ,UN-l )

over all possible N-processes starting with x̂  and all 
possible N-policies.

For the sake of simplicity we shall assume that the 
additivity property holds for R^,...,R^, i.e,

N—1
Rk (xk' ‘ ' * 'xN'uk' * * " UN-1 } = fi(xi ,ui} + fN (xN}

where к = 1,...,N-1 and R ^ x ^  = fN^xN)*
It is well known (see for example Bellman (1957)) that 

under the additivity assumption Bellman's equations will be 
satisfied :

Bk (xk) = min{fk (xk ,uk) + 1 (gk (xk ,uk) ) :uk6U (xk) }

where к = 1,...,N-1 and BN (xN) = f (x^).
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Finally, it will be assumed in the model that constraints 
uk ® are exP Ü citly expressed by relations:

hk (xk,uk) <_0, к = 1 , .. . ,N-1 (4)

where uk is taken from an arbitrary space U. For the sake of 
convenience we will assume that h^,...,hN_̂  are scalar- 
-valued, although all the results to be proved are valid for 
the vector-valued case too.

3. LAGRANGIAN FUNCTIONS
For every к G {1,...,N} and xk 6 Xk let us consider 

the following problem denoted by P(k):

N-1
min [ I fi(xi,ui) + fN (xN)] 

i=k

s-t- xk+i " 9i (xi,ui)
h.(x.,u.) <0, i = k,...,N-11 1 X —

Whenever к is indicated, we shall write x and u instead of 
(xk 1f...,xN ) and (uk ,...,uN-1), respectively and

 ̂ V* ( У к > * * * / ̂*N— 1 ̂

are (N-k-1)-vectors of real numbers. In what follows, we 
will not speak of the dimensions of the variables if it is 
clear from the context.
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Associated with P (к) the lagrangian function will he:

N-1
Lk^Xk'X,U'X,v̂  = Z + X±h ( x ^ )  +i=k

+ 1Ji(Xi+n-^i(Xi'Ui) J ] + fN (XN>'

if -X >_ 0 and

Lk (xk,x,u'̂  ' y ) = "°° otherwise.

D e f i n i t i o n  3 . 1 For a fixed xk 6 Xk , (x* ,u* , X* , y* ) is
said to be a saddlepoint for Lk if
Lk (xk /x/u/X* ,y*) >_ Lk (xk ,x* ,u* ,X* ,y*) >_ Lk (xk,x* ,u* , X ,y)

for every x,u,X and y.

L e m m a  3.1 (x* ,u* , X * , y * ) is a saddlepoint for Lk >.n if
and only if

(i) Lk (xk ,x*,u *,X*,y* ) = min {Lk (xk,x,u,X*,y*): x,u}

(ii) x* = g .(x*,u*),1+1 3i i i i = к, . . .,N,

where x,* = x, , к к'

(iii) X*hi(x*,u*) = 0,

h ± (x*,u?) 5 0, i = к, . , N-1,

P r o o f If (x*,u*,X *,у*) is a safflepoint of Lk , then
is obvious. Moreover, Lk (xk,x*,X*,y*) =

= max {Lk (xk ,x*,u*,X,y) ; X , y }.
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If one of the conditions in (ii) and (iii) does not hold, then 
by varying X and y suitably, L̂. (x̂  ,x* ,u* , X , y ) may increase 
infinitely, which is impossible. The inverse assertion is 
trivial. #

Define pk (xk,x,u) = max (Lk (xR,x,u,X,y): X,y}, 

dk (xk, , ) = min {Lk (xk,x,u,X,y): x,u}.

It is easy to see that

N-1
p (X ,x,u) = I + Wi=k

if (3) and (4) hold and 

pk (xk ,x,u) = +~ otherwise.

Consequently, the problem min (pk (xk,x,u) : x,u} will be the 
same as P(k) . We call it the к-primal problem and denote its 
optimal value by Bk (xk) .
The к-dual problem will be

max (dk (xk ,X,y) : X,y} D(k)

and itsoptimal value will be denoted by Ck (xk).

P r o p o s i t i o n  3.1 (Weak duality) For every (x,u,X,y) 
we have dk (xk,X,y) <_ pk (xk,x,u).

P r o o f . This follows immediately from the definitions. #

P r o p o s i t i o n  3.2 (x,u,X,y) is a saddlepoint for Lk if
and only if (x,u) solves the к-primal problem, (X,y) 
solves the к-dual problem and their optimal values are equal.
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P r o o f . Apply Lemma 3.1 to get this proposition. #

P r o p o s i t i o n  3 . 3 Functions d^,...,dN yield the following 
recurrence relations:

d . (x . , A,u ) = min{ f . (x . ,u . ) +i i p i l l

+ A.h. (x. ,u . ) +l l i l

+ di+1(x.+1,J',u'): xi+1,u.)

if A. > 0 and d.(x.,A,y) = - °° otherwise;l — l i
i = k,...,N-1 and dN (xN ) = fN (xN),

where the sign "'" denotes a vector for which the first 
component is omitted.

P r o o f . If A 0, then by definition d^(x^,A,y) = 
and there is nothing to prove. Now assume A _> О . Consider 
the following dynamic model consisting of stages numbered 
from к to N. The sets of states are the same as in the model 
described in Section 2. For every state x, 6 X. (i >_ k) , 
the set of actions и(х^) = (Х^+^,U). Action (х^+^,û ) 
transfers state x^ into a state of the next stage by the 
relation :

Gi(xi'(xi+i'uin  = 4+1

The cost of getting (x^.,...,xN ) by using policy 
((xi+1,u±),...,(xN ,uN-1)) will be

N-1
Z

i=k
Fi (xl,(xl+1,ul)) + W '
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where Fi (х± , (x±+1 ,ui ) ) = f^x^vu) +

+ \ .h. (x., u.)l l l i

+ witx1+1-g1 (x1,u1)),

i = and fn (xn) = fN (xN)

Apply Bellman's equations to this model to get the following 
recurrence relations:

Bi(xi) = min{Fi (x± , (xi+-j /U±) ) +

+ Bl+1(Gl (xl,(xi+1,ul)))= (xl+1,u.)}

i = and BN (xN) = Fn (xn).

This gives the relations of the proposition. The proof is 
complete. #

C o r o l l a r y  3 . 1 The following relation holds

dk (xk'A,y  ̂ = min{fk (xk,uk) +

+ lkhk (xk,uk)

* V > k (xk'uk,): V  +

+ min{„kxk+l+dk+l(xk+1,X',p')= xk+]}

P r o o f . This follows immediately from Proposition 3,3. #
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P r o p o s i t i o n  3 . 4 If (x,u,A,y) is a saddlepoint for Ly 
with initial point x^, then (x',u',X1,у') is a saddle- 
point for L]<.+ i with initial point xjc+-| = 9k^xk'uk^’

P r o o f . By virtue of Lemma 3.1 it suffices to show that

Lk+1 (xk+1, x ' , u ' , y '  ̂ = miniLk+1 (хк+1 ,x',u''X''p') :x'/u'}.
(5)

Indeed, again by Lemma 3.1, >_ 0 and xk+-| = gk (xk,uk).

It follows from Proposition 3.3 that

dk (ïk ,J,p) = fk (ïk ,5k) + »k\ (xk ' V  +

+ Ук (хк+Г9к(хк ’ик)) +

+ dk+1(xk+1' ' 1 ' (6)

Remembering the definition of dk we have

dk (xk ,X,y  ̂ = Lk (xk ,x,u,A,y) =

fk (xk ' V  + W xk'“k> +

+ к (хк+Г9к <хк,ик)) +

t (Xk+-| fX  ̂ Í У )

Compare the latter relation and (6) to get (5). The proof 
is complete. #

C o r o l l a r y  3 . 2 If Bk (xk) = Ck (xk), then 
В . (x. ) = C. (x. ) for all i>^k, where x. л = g. (x. ,u. )1 1 1 1  I t  J 1 1 1
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solves Bi (xi).

P r o o f . If Bk (xk) = > then any optimal solutions
of P(k) and D(k) form a saddlepoint for L^. Now the 
assertion implied by Proposition 3.4. #

In the rest of the section, we are concerned with the 
question of the existence of A and у for a given optimal 
solution (x,u) of P(k) so that (x,u,A,y) forms a 
saddlepoint for L^. As it is known from the theory of 
mathematical programming, the answer to this question is 
not always positive. For A and у to exist some more assumptions 
about the model are needed. As before, let x^ be fixed from
xk*

P r o - p o s i t i o n  3.5 Assume that the following conditions 
hold:

(i) There are u, , . . . ,u_. . such that h. (x. ,u. ) < 0к N-1 i l l
with x.,. = g .(x.,u.), i = k,...,N-1 1+1 i l l

(ii) g± (x±, u±) = V^x.^ + W± ( u±) + c ± ,

where V|s and W|s are linear maps and c^s are vectors

(iii) fk,...,fN and hk,...,hN_1 are convex.

Then for every optimal solution (x,u) of P(k) there are 
A and y such that (x,u,A,y) is a safflepoint for L^.

P r o o f . Consider the following problem

min f (y) 
s . t. My = b ,

h (y) £ 0 ,
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where У “ (xk+1 ''* *,XN,Uk,UN-1)T/

h(y) = (hk (xk/uk),.../hN_l(xN_1/uN_1))

f(y) = Rk (xk ,...,uN-1 ) , 

b = (ck+Vk (xk},ck+1 "  '•,CN-1)T'

(T denotes the transposition),

Ek+1 0 0 -W. О ... 0к
-V.k+1 EM = k+2 O O -W. . . . . Оk+1

О О ■VN-1 EN 0 0 ••• '"N-

(Ê  denotes the unit matrix of demension of X^).

Observe that the Lagrangian function associated with this 
problem is the same as Lk> Using this fact and taking condi
tions (i) , (ii) and (iii) into account we are now able to 
apply the Lagrange multipler theorem of convex programming 
(see Luenberg (1969), p.217) to the problem and this makes 
the proof complete. #

4. CONJUGATE FUNCTIONS

In this section we maintain all the assumptions made in 
Proposition 3.5. Following the method of conjugate functions, 
first we define
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Pk (xk ,x,u,w,v) = Rr (xR

if xi+1 - 9i(xi'ui> + vi'

and h1 (xi,ui) < wi; i =

pk^xk,x'u,w,v  ̂ = + °° otherwise,

and its conjugate function

, s , \ , \i) = sup{ <t ,x> + <s ,u> + <w, X>+<v,y> -

- pk (xk,x,u,w,v): x,u,w,v}

The primal and dual problems will be

min {pk (xk,x,u,0,0): x,u}

max {-p*(xk ,0,0,X,y): X,y}

(P)

(D)

It is easy to see that (P) is the same as P(k), and in the 
case solutions for p£ exist, (D) is the same as D(k).
We have similar results:

i) -pk (xk,0,0,X,y) £ pk (xk ,x,u.0,0) for each x,u,X,y 

ii) If -pk (xk ,0,0,X,y) = pk (xk,x,u,0,0)

for some x,u,X,y, then (x,u) and (X,y) are optimal 
solutions of (P) and (D), respectively.

Now we define the primal and dual perturbation functions 
4>k, Tk associated with pk and pk as follows:

(7)
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$k (xk ,W,V0 = inf{pk (xk/xíU/w,v): x,u>

^к (xk ,t ,s) = inf{pk (xk ,t,s,A,y): A,y}
(7:

P r o p o s i t i o n  4 . 1 Under the conditions of Proposition 3.5, 
3>k is a convex function of (w,v) .

P r o o f . A direct verification will yield the proposition.

P r o p o s i t i o n  4 . 2 Assume additionally that (7) is solvable, 
then i>k ,...,i>N_.j yield the following recurrence relations

i>.(x.,w,v) = inf { f . (x . ,u . ) + Ф. . . (g. (x.,u.)+v.,w',v'):X X X X X  1+1 ' 1 1 1 1

x.,u. with h.(x.,u.) < XV. }1 1  1 l ' x —  x

i = k,...,N-i and $N (XN) = fN (xN^’

P r o o f . As the proof of this proposition is similar to 
that of Proposition 3.3, we omit it,

Remember that problem (P) is said to be stable if the 
subdifferential 9i>k (xk,0,0) is a nonempty set. Now we can 
apply Theorem 5.11 (Avriel (1976)) to get the following 
result:

Let Фк (хк,0,0) be finite, Then problem (D) has an 
optimal solution (9,y) and

фк (xk'°'°) max{-pk (xk ,0,0,A,y); A/Э}

= -Pk (xk ,0,0,Â,y)
(8)

if and ony1 if (P) is stable. Moreover, (A,y) G ЭФ, (x,,0,0)К К
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if and only if (8) holds.
The following results are immediate:

C o r o l l a r y  4 . 1 Assume that (P) has an optimal solution 
(x,u). Then there exists (A,y) such that (x,u,A,y) is a 
saddlepoint for if and only if (P) is stable. #

C o r o l l a r y  4 . 2 Suppose that (7) is solvable. If P(k) is 
stable, then so are P(k+1),...,P (N) (these problems are 
determined by Xk+1'•*•'x n where (x ^,...,xN) together 
with some u is a solution of (7) ). ft

CONCLUSIONS
To conclude this paper we should emphasize that the 

results obtained are merely theoretical aspects of a duality 
approach for solving the dynamic problem described in 
Section 2. They provide us with a possibility of solving 
problem

maxid (x^,X,y) : A,y without constraints}

instead of

min (R^(x^,x,u): under constraints (2),(3),(4)},

where d(x^,A,y) may be calculated by recurrence relations 
given in Corollary 3.1.
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Dualitás a dinamikus programozásban 

Dinh The Luc

Összefoglaló

A szerző véges-állapotú /"finite stage"/ dinamikus rendszerekre 
vonatkozó dualitás-elméletet dolgoz ki, felhasználva a matema
tikai programozásban használatos Lagrange és konjugált függvény- 
módszert. Néhány dualitás tételt és nyereg-pont tételt is nyer, 
valamint rekurrencia-összefüggéseket, amelyek a rendszer dina
mikus tulajdonságait jellemzik.

Двойственность в динамическом программировании

Дхин Тхе Лук 

Р е з ю м е

В статье разработана теория двойственности для динамических 
систем конечного состояния /"finite-stage"/, используя метод 
двойственных функций Лагранжа в математическом программирова
нии. Доказано несколько теорем двойственности и теорем о сед
ловой точке, а также несколько рекуррентных соотношений харак
теризующих динамические свойства системы.
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