
MTA SZTAKI Közlemények 34/1986 pp. 79-89

MODULA-2 USED IN THE IMPLEMENTATION OF

DATA ACCESS CONTROL MECHANISM

B. S ZAFRANSKl
Warsaw, Poland

SUMMAK Y

Experience gained by using Module-2 for implementing a data
security mechanism based on the data access control is
presented. It entails some questions of the data access control
idea but its main aim is showing the use of Module-2 in a real
application. We show how in the simple way you can amplify
capabilities of Modula-2 as a result of introducing data access
control features.

1. INTRODUCTION

The problem of data security for any programming language
system is considered in the three following aspects:

• security of standard translation facilities (like-compiler,
linker, library of subprograms),

• security of translation products,
• security of data units processed by the programs written
in this language

Two first questions belong to the wider security problem of
standard library and files. Such kind of data security should
be resolved by the operating system and will not be considered
in this paper. However, we focus on the third problem. It
touches, in general principle, some questions of the language
system facilities to define access rules and to detect the
violations of these rules. Development of the programming
languages points out, that using their capabilities to build

80

data security mechanisms is absolutely right. Among other
things, the necessity of data protection has led to such high
level languages features as module structure with IMPORT and
EXPORT lists, possibility to define the own structure, SCOPE
rules and so on. However in data processing systems the princi­
pal question is processing of data stored in the external
files. One can find out that above listed facilities refer to
internal program objects and not influence directly the data
security in the external storage. To confirm above we can
state, that the most popular languages as COBOL, FORTRAN,
PASCAL, PL/1 have no capabilities of such data security. This
paper describes the experiences gained by using Moduln 2 for
implementation a data security mechanism based on the data
access control (DACM). The first implementation was done by
Mr Wlodzimierz Kubalski.

2. FILES IN MODULA-2 FOR RT-11

Access operations to data file in this disc storage always
depend on the file system, which is a part of the operating
system. For this reason and to save machine's independence of
Modula-2 system, operations mentioned above can not be
determined by the Modula-2 implementation CWIRTH802. However,
to provide program compatibility, the module Files (containing
file processing procedures) was created by the authors of
Modula-2. Each data file is identified by a value of type File,
which in terminology RT-11 is named a channel number. The data
file is assigned a channel number by calling either Lookup or
Create procedures. In both cases, it is necessary to provide a
file name. A file name consists of 12 characters and can be
given in a static (as a literal) or a dynamic (by value of
variable) form.

81

3. THE MODEL OF DATA ACCESS CONTROL

The complete model of data access control is presented in
CSZAF78D. We show below only those elements of the model, which
are important for the aim of this paper. These elements create
the simplified model of data access control, which determines
capabilities and operational rules of implemented mechanism
CSZAF811.

Definition

Data access control model is an ordered triple:

S = <Z,T,T>

where
Z

T
T

finite object names set,
Z = UUB

where :
U - finite active objects set,
В - finite passive objects set

finite operation names set,
set of model relations,
W =

where :
W^c UxBxT, is an access relation, which determines

access privileges of active to passive
objects,

?2C TxT, is operation scope relation. To clarify
this relation let us introduce formally
the definition of the operation scope:

Definition

An operation scope t^GT is an operation set such
that, the ability of doing the operation t^ implicates the
ability of doing operation t^G{tj}.

82

Definition
TThe operation scope {t.}£2 of operation t, is smaller

J T(equal) than the operation scope (t̂ .}G2 of the operation if
and only if {tjlCft^}.

The operation scope relation is defined on pairs of
operation names.

Definition

For t^, 12^T we say, that (t^,t2)e1P 2 if and only if the
operation scope t^ is smaller (equal) than the operation scope
t 2 *

Definition

The process of data processing, from data access control
point of view, is defined in the following way:

P { (U | , ß | 5 Y j) 9 . . . 9 (ct£53 £ 5 T ^) 5 e *«5(u^.5(3j5*Yj)}

where :
а±еи, 3_.GB, y ^ T for i=l, 2 , . . . , I.

Definition

Process P is correct, from data access control point of
view, if and only if :

V[(ai,ßi,Yi)eP]3[(ai,ßi,t)eW1]A(Yi,t)GW2
For implementation reasons it is better to check legality of a
process by using the checking function f:

Definition * IО

f : UxBxT-{0,l} in such a way, that
fl if and only if 3[(а,3,t)GT]A(y ,t)6T

f (а , 3 » Y) = \
IО in other case

Now we can say that:

Process P = { (a] »ßj »Yj)»••• ,(ai»ßi»Ti)»••., («-[»ßjsYj)}

83

for a . EU, ß.EB, y .ET is correct if and only if:i l l
I
П f (a. ,(3. ,y .) = 1
i=l

4. DATA ACCESS CONTROL MECHANISM - DACM
4.1 Assumptions of DACM

A selective DACM is based on the model S and entirely
respects its features describes above. The concrete forms of
model elements, which determine the implementation conditions
of DACM are the following:

• a set of active object names U is a set of character
strings representing the user identifications,

• a set of passive object names В is a set of RT-11 file
names,

• an ordered set of operation names which contains
operation names provided by system Modula-2 in the module
Files (see Fig.l):
T={Nil,Lookup,ReadBlock,WriteBlock,Delete,Rename,Create] ,

• ordering of set T, important for operation scope relation
, is defined by above enumerating of set elements.

This means that the operation scope is growing from left
to right. As you see the file T does not include the
Close and Release operations because they only have the
technical significance. Moreover, we have introduced the
operation Nil to forbid any processing of a data unit.

Such model allows DACM to grant access selectively to the
files, depending upon user identification and privileges that
are included in the user access privilege file - USER.PRV.

This file is an implementation of access relation . The
organization of the file USER.PRV bases on capability list
(C-list) and it can be treated as known security matrix
CHOFF77D. The checking function f we should consider as two
functions, because of static and dynamic features of file name
declaration function f is a translation time checking function

84

DEFINITION MODULE Files; /*Ch.Jacobi, for RT-11 */
FROM SYSTEM IMPORT ADDRESS, WORD;
EXPORT QUALIFIED FILE, File Name,Lookup,Release,Create,
Delete,Close,WriteBlock,ReadBlock,Rename;
TYPE FILE = СО..153 /* chanel number */
File Name = ARRAY СО..113 OF CHAR /*File name*/
Procedure Lookup (f:File, FileName, VAR reply INTEGER)

/★lookup file f in dictionary*/

Fig.l A fragment of definition module Files

and fr is a run time checking function. The function f is
called during translation whenever any file access operation
occurs. In the case of the static declaration of file name the
legality checking is performed. In the other case, the call of
function f is introduced in the procedure form to the user
module. Later at run time fr is invoked whenever it is require'
(see Fig.2).

Fig.2 Simplified schema of access legality checking
(during caipilation)

85

4.2 Architecture of DACM

Implementation of the functions f^,f and other elements of
DACM requires additional language system features, a modi­
fication of standard language processors, and/or a language
preprocessor. In our case the elements of DACM showed on the
Fig.3 create two subsystems:

• subsystem of creating and maintenance file USER.PRV.
The main element of this subsystem in the program module
EDIPRV, which is used by data administrator to manage
access privileges file USER.PRV.

• subsystem of operation legality checking.
The main program module PREPROC of this subsystem
realizes following functions:
•• geting and examining user's identification,
•• geting of file name including source user's module,
•• searching of file access operations and when occurs:

••• static file name - checking of operation legality
(function ft),

••• dynamic file name - introducing into user's module
suitable procedure from module
VERYFIER (function f) and
into IMPORT list the name
VERYFIER.

Modules USEMOD (access procedures to source user's module),
USEPRV (access procedures to file USER.PRV), VERYFIER (checking
procedures) include the auxiliary procedures which are used by
PREPROC and EDIPRV.

Fig.3 Elements of DACM

87

4.3 Compilation in MODULA-2 with DACM

The compiler is running on the Modula-2 system. It is
written in MODULA-2 itself and generates code for PDP-11. The
compiler is organized in a base part and several so called main
parts. The base part remains in the memory during the whole
compilation and schedules the execution of the main parts,
which are called sequentially IWIRTH813. The compiler has five
passes (from 1 to 5) and the interpass files. According to the
above, the DACM mechanism in current version was implemented as
a PASS 0 of the compiler. The main part PREPROC is linked to
COMP. Therefore some changes have appeared in the compile
process. The compiler, as before, is invoked by typing the file
name COMP but instead of string "source file" will appear the
string "user identification". So one must write the corre­
sponding UI. If it is right, the string "input file" and next
"output file" will appear. The input file (default extention
PRV) consists of source user's module, which will be checked by
DACM. The output file is an interpass file between PASS 0 and
PASS 1. It consists of the normal source file (module DEF or
MOD but default extension is MOD) in terminology Modula-2
system by after checking by DACM. The following passes are
running without any changes. If during PASS 0 the violation of
access rules occurs, the compilation will stop and the error
message will be written.

R MODULA <cr>
COMP <cr>

user ident >U 124
input file >PR0G1
output file>PROGl
p °
P1
P2
p3
p4
P5
end compilation *

<cr> /*user identification*/
<cr> /*name DK‘. PR0G1 . PRV is accepted*/
<cr> /*name DK: PR0G1. MOD is accepted*/

/*pass of access rule checking*/
/★indicates succession of*/
/★activated compiler passes*/

Fig.4 An example of canpilation process with DACM

88

5. CONCLUSIONS

The problem of data security exists not only in data case
but also in general data management systems (for example in
file systems). Therefore, we should develop data security
mechanisms in such systems. The best approach to design that
(in my opinion) relies on capabilities built into programming
language. The DACM implementation described in this paper
provides a nearby satisfactory solution of this problem.
However, this work should be completed and generalized in a
number of directions. The following two directions are parti­
cularly important:

1. The problem how to add the DACM capabilities to
MODULA-2 definition.

2. The problem how to expand possibilities of DACM for
checking data access not only files but also to elements of
files (for example record occurences, field of record).

REFERENCES

[HOFF77]

[SZAF78]

[SZAF79]

[WIRTH80]
[WIRTH81]

[WIRTH82]

Hofmann, L.: Modern methods for Computer Security
and Privacy. New Jersey, USA, 1977.
Szafranski, B.: The questions of program's data
security. Diss., MAT, Poland, 1978.
Szafranski, B.: A data security model in data base.
ICS PAS Reports, Warsaw, Poland, 1979.
Wirth, N. : Modula-2. ETM, 1980.
Wirht, N. : Overview of the Modula-2 Compiler.
М2 RTll, ETM, 1981.
Wirth, N. : Programming in Modula-2. Springer-Verlag,
Berlin, 1982.

89

Adat-elérési vezérlési mechanizmusok megvalósítása
Modula-2 segítségével

B. Safranski

Összefoglaló

A szerző azokat a tapasztalatokat ismerteti, amelyeket a
Modula-2 felhasználásával megvalósított adat-biztonsági
mechanizmusok terén nyert.

Применение языка МОДУЛА-2 в осуществлении
механизма контроля доступа к данным

Б. Шафраньски

Р е з ю м е

В статье представляется опыт собранный во время осуществле­
ния механизма защиты данных опирающегося на управлении доступа
к данным на языке МОДУЛА-2. Этот механизм дает возможность
контроля операции доступа к данным во время компиляции и испол­
нения программы. Механизм построен на основе формальной модели
процесса защиты данных.

	B. Szafranski: Modula-2 used in the implementation of data access control mechanism��
	Oldalszámok������������������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������

